Ant-Q

A Reinforcement Learning approach to the traveling salesman
problem
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Background

The ideas behind the Ant-Q Algorithm
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Ant System

A colony of cooperating ants leaving
pheromone trails on the paths to find
food.

Random exploration » following paths
with familiar pheromones.
Pheromones can evaporate as time
passes.

Paths that are shorter will have less
pheromone evaporation.




Q-learning

Reinforcement Learning with
states, rewards, and actions.
- Finite states

- Finite actions

Model-free environment -
interacting directly with the
environment to find optimal policy
instead of creating a model.
Trial-and-error - does many trials
and updates its policy as it learns

Q-values: Q(s, a) - evaluation of the
quality of action a in state s.
- Current estimate of sum of

future rewards if we take
action a.

Q-table: gives Q-values for every
action in every state.
- Rows: states

- Columns: actions

- Use TDs to update previous
Q-values after evaluating
current state/actions.

)



Q-learning

Temporal Difference

The largest Q-value available for
The reward received | | any action in the current state

for the action taken (the largest predicted sum of
in the previous state future rewards)

¥
TD(s;,ar) = 1 +y- maaX Q(s¢+1,a) — Q(s¢, ay)
) ) 4

Temporal difference The discount factor The Q-value for the

for the action taken in (between 0 and 1) action taken in the
| the previous state previous state

Bellman Equation

The old Q-value for The temporal difference

the action taken in for the action taken in the
the previous state previous state

¥ ¥
Q™" (s¢,a;) = QOld (s¢,ar) +a-TD(s;,ar)
4 )

The new Q-value for The learning rate

the action taken in (between Oand 1)
the previous state
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Ant-Q

The Ant-Q algorithm




Ant-Q Algorithm

Travelling Salesman Problem

® Goal: find a minimal length closed tour that visits each city once

® ncities

e Each pair of cities has distance d

e Connected graph with (N,E), N = set of n nodes, E = set of edges
between cities

e HE(r,s) - heuristic evaluation of edge (r,s) - inverse of the distance

e AQ(rs)- How useful it is to go to city s when at city r




Ant-Q Algorithm

Action Choice Rule

Agent k - makes a tour

Has a list J, (r) of cities that need to be visited. r = current city

f

arg max
ue€/ (r)

S

(400w [HECWF ) ifasq,

otherwise




Ant-Q Algorithm

AQ-value Updates

- Similar to updating Q-values in Q-learning

- Includes delayed reinforcement value AAQ(r,s)

AQ(r,s) < (1-a)-AQ(r,s) +
+a-(AAQ(r,s)+y- Max AQ(S,Z))

ZEJk(s)




Ant-Q Algorithm Steps

Step 1: Initialize

1. AQ-values
2. Multiple agents, each agent is placed on
a city
3. J,(r,) - setof cities that need to be
visited
Step 2: Cycle
1. Each agent makes a move
2. AQ(r,s)'s are updated

Step 3: Delayed Reinforcement
1. Length L, of each agent's tour is
computed
2. Use lengths to compute delayed
reinforcements
3. AQ(r,s)'s are updated with delayed
reinforcements
Step 4: Termination Check
1. Check if termination condition is met

2. Ifnot, return to step 2.
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Structural Parameters




R e

Action-Choice Rule Delayed Reinforcement
Pseudo-random - Global-best
Pseudo-random-proportional - lteration-best

Random-proportional

/~




The Action-Choice Rule

arg renlafc ){[AQ(r,u)F .[HE(,,’”)]B} ifgsq, All use (1) to determine which city to go next.
§e=u e Pseudo-random Rule
S otherwise - Uniform Distribution

Pseudo-random-proportional Rule

(1) - The distribution in (2)

i . p Random-proportional Rule
[AQ(r,s)] EHE(r,s)] if €T (1) |
(r.s) E[AQ(r’u)] '[HE(r,u)]B k - Same as Pseudo-random-proportional,
r,s)=:
d A=l but with g, = 0. The choice of the next
0 otherwise city is random, chosen with distribution

2) in (2).




The Action-Choice Rule

Pseudo-random

Pseudo-random-proportional

Random-proportional

Y mean | std best Y mean | std | best Y mean | std | best
dev dev dev

City Set1 | 05| 6.18 |006| 603 (03| 587 |005| 584 |09 7.85 |0.25| 7.40

City Set2 | 05| 626 |004| 620 (03| 606 |0.05]| 599 |09 7.77 1030| 7.43

City Set3 | 05| 5.69 |007| 561 (03| 557 |000| 557 |09 7.89 |0.17| 7.75

City Set4 | 05| 592 005 584 (03| 576 |0.03| 5.70 |09 795 |0.10| 7.85

City Set 5 | 0.5 630 |004| 622 (03| 6.18 |001| 6.17 |09 848 |0.21| 8.10
Oliver30 [ 0.5]425.02 | 1.22 [ 424.69 (0.3 |1424.44 |1 0.46 (423.74 109 |515.19 | 10 |493.20
ry48p 0.3 ] 15602 | 440 | 14848 [ 0.3 | 14690 | 175 | 14422 | 09| 19495 | 797 | 17921




Delayed Reinforcement

Global-best Iteration-best
- Globally best tour from the beginning of - Best tour in the current iteration of the
the trial. trial.
- Only the AQ-values for edges in the - Slightly faster with same quality.
globally best tour will be reinforced. - Less sensitive to changes of discount
factory.
w

? if (r,s) € tour done by agent kgb

w
AAQ(r’s) = 1 gb AAQ(r»S) o Lkib

if (r,s) € tour done by agent k.,

0 otherwise 0 otherwise

(M (2)




The Action-Choice Rule

Ant-Q Ant-Q
Global-best Iteration-best
mean gtd. best | mean std. best
ev. dev.
City | 590 |0.08| 5.84 | 5.87 |0.05| 5.84
Set 1
City | 605 004 599 | 6.06 |0.05]| 5.99
Set 2
City | 558 [0.01| 557 | 557 |o.00| 5.57
Set 3
City | 576 |0.03| 570 | 5.76 |0.03| 5.70
Set 4
City | 620 003 6.17 | 6.18 |0.01] 6.17
Set 5
Og(‘)’er 424.37| 0.43 (42374 (424 .44 0.46 | 423 74
ry48p | 14697 | 157 | 14442 | 14690 | 157 | 14422




Comparisons - Ant System

Delayed Reinforcement AQ-value Updates
m AQ(r,s) « (1-a)x AQ(r,s) + AAQ(r,s)
AAQ(r,s) = z AAQ, (r,s) - Applies to all edges
k=1 Simulate pheromones and pheromone

evaporation

L4

if (r,s) € tour done by agent k
AAQ(r,s)=] I«

0 otherwise




Ant-Q Ant system
mean std. best mean std. best
dev. c dev.
6x6 | 360 | 0 | 360 360 0 360
grid
0131(‘)’er 424 .4410.46 [423.74|425.46 |0.51 | 423.74
ry48p | 14690 | 157 | 14422 | 14889 | 223 | 14803
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Observations and Characteristics

Agents do not make the same tour.

Agents do not converge to a common path.
A-branching factor - shows the dimension of
the search space.

Number of edges that have an AQ-value that
is larger than

AAQ, . [rs)-AQ. . (rs)) +AQ . (rs).
O<A=l

The search space is reduced, but agents
continue to explore a subset of the search

space.
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Figure 2: Mean length of best tour, mean length
of all agents tour, and its std. dev. Problem:
ry48p. Averaged over 15 trials.




Observations and Characteristics

Agents do not make the same tour.

Agents do not converge to a common path.
A-branching factor - shows the dimension of
the search space.

Number of edges that have an AQ-value that
is larger than

AAQ, . [rs)-AQ. . (rs)) +AQ . (rs).
O<A=l

The search space is reduced, but agents
continue to explore a subset of the search

space.

= —lambda=0.04 -rsrs~rJambda=0.06 ===== Jdambda=0.08 ————lambda=0.10

r 35

t t t t 1 t i
800 1000 1200 1400 1600 1800 2000

Iterations

Figure 3: A-branching factor. Problem: ry48p.
Averaged over 15 trials.




Observations and Characteristics

AQ-values are exploited by agents to find
short tours.
As iterations increase and good AQ-values are
learned:
- AQ-values become more effective in
finding good solutions.
- Heuristic values become less effective,

even useless.
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Figure 4: Best tour found during test session using
only the AQ-values (NO-HE test session), and using
both the AQ-values and the HE heuristic values (HE
test session). The test session was run every ten
learning iterations. Problem: ry48p. Averaged over

15 trials.




Comparison

Table 4: Comparisons on average result obtained on five 50-city problems. EN = elastic net, SA = simulated an-
nealing, SOM = self organizing map, FI = farthest insertion, FI+2-opt = best solution found by FI and many dis-
tinct runs of 2-opt, FI+3-opt = best solution found by FI and many distinct runs of 3-opt. Results on EN, SA,
and SOM are from Durbin and Willshaw (1989), and Potvin (1993). FI results are averaged over 15 trials starting
from different initial cities. Ant-Q used pseudo-random-proportional action choice and iteration-best delayed
reinforcement. It was run for 500 iterations and the results are averaged over 15 trials.

City| EN | SA [SOM | FI FI FI |AntQ
set + 2-opt | + 3-opt
1 [598]5.88]6.06 | 6.03 5.99 590 |5.87

2 [603[6.01]|6.25 | 6.28 6.20 6.07 6.06

3 1570565583585 | 5.80 265 | 357

4

5

586581 587|359 | 5.96 581 |5.76
6491633 16.70 | 6.71 | 6.61 648 |6.18




Comparison

Table 5: Comparison between the best results obtained by SA+3-opt = best solution found by simulated annea-
ling and many distinct runs of 3-opt, SOM+ = best solution found by SOM over 4,000 different runs (by proces-
sing the cities in various orders), FI and its locally optimized versions, and Ant-Q. The 2-opt and 3-opt heuristics
used the result of FI as starting configuration for local optimization. Results on SA+3-opt and SOM+ are from
Durbin and Willshaw (1989), and Potvin (1993). Ant-Q used pseudo-random-proportional action choice and
iteration-best delayed reinforcement. It was run for 500 iterations, and the best result was obtained out of 15
trials.

City set SA SOM+ FI FI FI Ant-Q
+ 3-opt + 2-opt | + 3-opt
1 5.84 5.84 5.89 5.85 5.85 5.84
2 5.99 6.00 6.02 6.01 5.99 5.99
3 5.57 5.58 5.57 5.57 5.57 5.57
4 5.70 5.60 5.76 576 5.70 570
5 6.17 6.19 6.50 6.45 6.40 6.17




Comparison

Table 6: Comparison between exact methods and Ant-Q for difficult ATSP problems. Numbers in parenthesis are
seconds. Type of delayed reinforcement: global-best. For the problem 43X2 we set y=0.01. Ant-Q was run for
600 iterations, and results were obtained out of 15 trials.

Problem | FT-92 | FT-94 | Ant-Q Ant-Q
Mean |Best result
ry48p 14422 14422 | 14690 14422
(729.6) | (52.8) | (1590) (696)
43X2 N/A 5620 5625 5620
(492.2) | (550) (238)




Conclusions

e Making Ant-Q more like Q-learning.

e Extend and apply Ant-Q to other combinatorial optimization problems.




N-Stroll

e Implement delayed reinforcement.

e Try using different action-choice rules.




Difficulties

e Implementing an ‘n’ requirement (could possibly use delayed
reinforcement for that)

e Implementing different actions for different states (since each layer of
nodes have different actions we can take).

e Whether or not we should implement multiple agents.
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