
Machine Learning Driven Scaling
and Placement of VNF at the

Network Edges

A summation of...

1

Two - Fold Purposes of Paper
1. Effective use of using a

machine learning based model
to predict accurate amount
of Virtual Network Functions
(VNFs) to deploy based on
the network traffic(auto
scaling)

This would take place in a
distributed Mobile Edge
Computing - Network Function
Virtualization (MEC-NFV)
environment

2. Use of Integer Linear
Programming(ILP) to formulate the
placement of Virtual Network
Functions(VNFs) at the edge nodes
to minimize latency from all users
from their respective VNFs

2

3

PART I
Auto Scaling + Machine

Learning

4

Background Information

Autoscaling can be broken down into 2 categories

1. Reactive mode: thresholds can be statically predefined or
dynamically updated and depending on the value you can
scale (UP or DOWN).
a. Main weakness is that it’s still a reactive solution, cannot prepare

itself

2. Proactive mode: Let the system ‘learn and anticipate’
future needs based on scaling decisions.
a. Where machine learning techniques become very useful

5

Crash Course of

machine learning..

Under the scope of

this paper

1. Problem description
2. Multi-layer

Perceptron(MLP)
3. Modeling MLP in Keras
4. Feature Engineering(4

parts)
5. Classification using

Neural Networks
6. Model Evaluation

6

1. Problem Description

X (input) : traffic load statistics

Y (output): required number of VNFs to deploy without violating QoS SLA

X and Y will evolve over time with the main influences being

1. Mobile network traffic dynamics
2. Amount of active mobile users

X,Y will evolve together and can be modelled as a time series, and that can be
best modelled with a neural network to estimate the parameters

How to map the following

7

2. MLP - Why a Neural Network?

➔ Its proven effectiveness in evaluation time series
problem

➔ Ability to learn new patterns or customized features when
there isn’t a definite math function available to fit
(eg: non linear activation functions)

➔ This paper utilizes a Multilayer Perceptron(MLP - feed
forward neural network of 3 parts)
◆ Input layer
◆ Hidden layer (one or more)
◆ Output layer

➔ All nodes are interconnected and fed forward to the next
layer

8

3. Modeling MLP via Keras - Why?

➔ Specifically for neural network experimentation

➔ Can be run on top of other software (eg: Tensorflow,

Theano, R, etc.

➔ Simple pre built functions

➔ Wide range of activation functions

➔ Has predefined layers

➔ Modular

9

4-2 Feature Engineering

Feature Extraction & Class Definition

a. Xdefault + Xconstructed
 = Youtput

b. Default => current information that can be accessed or calculated
c. Constructed => how features will evolve over time (proactive scaling)

10

4-1 Feature Engineering

Generally how data is collected, organized,
cleaned/scrubbed, and separated

Data collection: where data will be collected

a. 6 LTE Base stations
b. 10 cells per base station
c. 8 day period, with a hourly collection rate

11

4-3 Feature Engineering

Feature Subset Selection: Help eliminate redundant or
unnecessary features

Why?
1. Reduce complexity
2. Reduce dimensionality of feature sets
3. Reduce computational overhead

12

4-4 Feature Engineering

Dataset Decomposition: how data is ‘split’ into test &
training sets

Typical split is (75% training, 25% test)

MLP model will try to find a
relationship between its
features and classes

13

5. Classification using Neural Networks

Hyperparameters: manually set parameters to get the estimations
of regular parameters

Following methods to find their hyperparameters

1. Babysitting Search - Start with an initial value,watch
 the learning process and then manually tune it again, 100%
 manually done

2. Grid Search - grid with ‘n’ dimensions, and each dimension
 maps to a different hyper parameter, then define range of
 possible values, then go through all combinations and pick
 the best one

 14

Experiment Breakdown

● 1 input layer with 12 nodes
● 3 hidden layers each with 12, 24, 12 nodes

correspondingly
● 1 output layer with 10 nodes
● Regularization Parameter = 0.01
● Optimizer: Stochastic gradient
● Learning Rate = .001
● Batch Size = 100
● Number of epochs = 300

15

6. Model Evaluation/Results

Experiment’s Assumptions and Set-up

● Bandwidth capacity (per node) = 20 Gbps
● Per VNF can process 200 Mbps without QoS degradation
● Horizontal scaling: each node can host 100 VNFs

○ Maximum of 10 VNFs per cell

● Setting: mobile data network
● Number of Base Stations(LTE) = 6
● 10 cells per base station
● Data collection duration: 8 days at a hourly rate

The model was then trained with different types of
classification algorithms

16

Performance Results

Accuracy: total number of correct predictions with total number
predictions

Precision: correct positive predictions to number of total
 positive predictions

Recall: actual number of positives that were caught by the
model by labelling it as positive

F-Measure: weighted average of both precision and recall
17

OVERALL....

Multilayer perceptron model was the most accurate with:
97% accuracy 97% recall
96% precision 97% f-measure

Experiments weakness: Hyperparameter tuning, the process was
 all manually or iteratively done

 Can be very time consuming

- Could be a pathway for future work and research!

18

Figure displays
MLP’s prediction
power , for all
6 nodes.

Blue: actual
output

Red: Predicted
VNF scaling
decision

19

PART II
Integer Linear

Programming(ILP) +
Formulation

20

Latency Optimal

VNF Placement

Problem in

MEC-NFV

Environment

1. System Modeling
2. Problem Formulation
3. ILP Model Evaluation

21

Recall...

22

System Modeling

Goal: Minimize end to end
latency by:
● placing VNFs on edge

devices closes to end
users

● Once VNFs run out of
capacity then fall back
to VNFs in the providers
cloud data center

Table: defines all
parameters used in the
formulation

23

➔ Each VNF has its own: CPU, Memory, and Network
requirements

➔ VNF has an end to end delay threshold (dj) AND
specifies a bandwidth requirement

➔ Latency from a user to a VNF(dijk)

➔ Decision variable(Xijk) binary variable where 1
assign vj to node ni using path pk

System Modeling - Most important parameters

24

ILP model that takes in the following as input
-Set of users(U) -Set of VNFs hosts(N)
-Set VNFs (V) -Latency Array (d)

Then outputs optimal solution for VNF placement by
minimizing the total end to end latency from all users

Problem Formulation

Formulated Objective Function

25

Constraints of Optimization Objective: all help ensure
the following:

Problem Formulation

Constraint 9: ensures amount of
hardware resources allocated to VNFs
is within the available resources on
the physical node

Constraint 10: end to end delay
between user and VNF doesn’t exceed
the max delay

Constraint 11: each VNF is hosted by exactly one physical node

Constraint 12: none of the physical links becomes overloaded

26

Model was evaluated using simulation experiments

Simulation Environment: Based on backbone network by a
private Mobile Network Operator

➢ Edge nodes at all base stations and capable of
hosting finite number of VNFs

➢ 1 Cloud data center capable of hosting several VNFs

ILP Model Evaluation

27

VNFs were categorized into 3 categories depending on
latency tolerance levels

1. Real Time
2. Near Time
3. Non-real Time

Used equal number of VNFs in all 3 categories

ILP Model Evaluation

28

Using IBM ILOG CPLEX:
● 1st scenario: all VNFs are assigned to cloud data

center
● 2nd scenario: VNFs assigned to edge nodes first,

then to cloud data center once capacity runs out
Had a fixed latency of 5ms from user to edge nodes
Number of VNF hosted on each node = 40
Total edge capacity of network = 240 VNFS

-Once over 240; automatically gets assigned to cloud
 data center

ILP Model Evaluation

29

ILP Model Evaluation

RED: Cloud only deployment; fixed latency of 20ms
BLUE: Edge + Cloud; lower latency times(avg: 5ms) increased when the edge nodes
were exhausted

ILP model took
6.25 seconds
to place 335
VNFs to help
minimize
aggregated
user to VNF
end to end
latency

30

IN CONCLUSION..

➔ MLP was the most effective model in predicting amount of
VNFs to deploy
◆ Beneficial in proactive auto scaling
◆ Helped minimize downtime and reduce operational

costs
➔ Proposed a optimal placement model that carefully

selects where to place VNFs to reduce user -> VNF
latency
◆ Results averaged 75% reduction in end to end latency

when all VNFs were placed at the network edges
➔ Future work potentially with federated learning

31

Citation

T. Subramanya and R. Riggio, "Machine Learning-Driven Scaling and Placement of Virtual Network
Functions at the Network Edges," 2019 IEEE Conference on Network Softwarization (NetSoft), Paris,
France, 2019, pp. 414-422.

doi: 10.1109/NETSOFT.2019.8806631

keywords: {integer programming;learning (artificial intelligence);linear programming;neural
nets;telecommunication traffic;virtualisation;virtual network functions;network operators;migrate
VNFs;network edges;efficient VNF placement;continuously changing network dynamics;neural-network
model;network traffic;commercial mobile network;Network Function Virtualization;machine
learning-driven scaling;Predictive models;Cloud computing;Real-time systems;Data centers;Load
modeling;Measurement;Base stations;Network Function Virtualization;Machine learning;Proactive
Auto-scaling;Virtual Network Function Placement;Multi-access Edge Computing},

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8806631&isnumber=8806619

32

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8806631&isnumber=8806619

