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Two - Fold Purposes of Paper 
1. Effective use of using a 

machine learning based model 
to predict accurate amount 
of Virtual Network Functions 
(VNFs) to deploy based on 
the network traffic(auto 
scaling)

This would take place in a 
distributed Mobile Edge 
Computing - Network Function 
Virtualization (MEC-NFV) 
environment

 

2. Use of Integer Linear 
Programming(ILP) to formulate the 
placement of Virtual Network 
Functions(VNFs) at the edge nodes 
to minimize latency from all users 
from their respective VNFs
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PART I
Auto Scaling + Machine 

Learning 
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Background Information

Autoscaling can be broken down into 2 categories

1. Reactive mode: thresholds can be statically predefined or 
dynamically updated and depending on the value you can 
scale (UP or DOWN). 
a. Main weakness is that it’s still a reactive solution, cannot prepare 

itself

2. Proactive mode: Let the system ‘learn and anticipate’ 
future needs based on scaling decisions. 
a. Where machine learning techniques become very useful
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Crash Course of 

machine learning.. 

Under the scope of 

this paper 

1. Problem description
2. Multi-layer 

Perceptron(MLP)
3. Modeling MLP in Keras
4. Feature Engineering(4 

parts)
5. Classification using 

Neural Networks
6. Model Evaluation 
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1. Problem Description

X (input) : traffic load statistics

Y (output): required number of VNFs to deploy without violating QoS SLA

X and Y will evolve over time with the main influences being

1. Mobile network traffic dynamics
2. Amount of active mobile users 

X,Y will evolve together and can be modelled as a time series, and that can be 
best modelled with a neural network  to estimate the parameters 

How to map the following
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2. MLP - Why a Neural Network? 

➔ Its proven effectiveness in evaluation time series 
problem

➔ Ability to learn new patterns or customized features when 
there isn’t a definite math function available to fit 
(eg: non linear activation functions) 

➔ This paper utilizes a Multilayer Perceptron(MLP - feed 
forward neural network of 3 parts)
◆ Input layer
◆ Hidden layer (one or more)
◆ Output layer

➔ All nodes are interconnected and fed forward to the next 
layer 
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3. Modeling MLP via Keras - Why?

➔ Specifically for neural network experimentation

➔ Can be run on top of other software (eg: Tensorflow, 

Theano, R, etc.

➔ Simple pre built functions

➔ Wide range of activation functions

➔ Has predefined layers

➔ Modular  
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4-2 Feature Engineering 

Feature Extraction & Class Definition 

a. Xdefault + Xconstructed 
 = Youtput

b. Default     => current information that can be accessed or calculated
c. Constructed => how features will evolve over time (proactive scaling)
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4-1 Feature Engineering 

Generally how data is collected, organized, 
cleaned/scrubbed, and separated 

Data collection: where data will be collected

a. 6 LTE Base stations
b. 10 cells per base station
c. 8 day period, with a hourly collection rate
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4-3 Feature Engineering 

Feature Subset Selection: Help eliminate redundant or 
unnecessary features 

Why? 
1. Reduce complexity
2. Reduce dimensionality of feature sets
3. Reduce computational overhead
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4-4 Feature Engineering 

Dataset Decomposition: how data is ‘split’ into test & 
training sets

Typical split is (75% training, 25% test)

MLP model will try to find a 
relationship between its 
features and classes 
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5. Classification using Neural Networks 

Hyperparameters: manually set parameters to get the estimations 
of regular parameters 

Following methods to find their hyperparameters 

1. Babysitting Search - Start with an initial value,watch
   the learning process and then manually tune it again, 100%
   manually done 

2. Grid Search - grid with ‘n’ dimensions, and each dimension
   maps to a different hyper parameter, then define range of
   possible values, then go through all combinations and pick
   the best one
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Experiment Breakdown

● 1 input layer with 12 nodes
● 3 hidden layers each with 12, 24, 12 nodes 

correspondingly 
● 1 output layer with 10 nodes
● Regularization Parameter = 0.01
● Optimizer: Stochastic gradient
● Learning Rate = .001 
● Batch Size = 100
● Number of epochs = 300 
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6. Model Evaluation/Results 

Experiment’s Assumptions and Set-up

● Bandwidth capacity (per node) = 20 Gbps
● Per VNF can process 200 Mbps without QoS degradation
● Horizontal scaling: each node can host 100 VNFs

○ Maximum of 10 VNFs per cell

● Setting: mobile data network 
● Number of Base Stations(LTE) = 6
● 10 cells per base station
● Data collection duration: 8 days at a hourly rate

The model was then trained with different types of 
classification algorithms
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Performance Results 

Accuracy: total number of correct predictions with total number
predictions

Precision: correct positive predictions to number of total
 positive predictions

Recall: actual number of positives that were caught by the
model by labelling it as positive 

F-Measure: weighted average of both precision and recall 
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OVERALL....

Multilayer perceptron model was the most accurate with: 
97% accuracy 97% recall
96% precision 97% f-measure

Experiments weakness: Hyperparameter tuning, the process was
  all manually or iteratively done

  Can be very time consuming 

- Could be a pathway for future work and research! 
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Figure displays 
MLP’s prediction 
power , for all 
6 nodes.

Blue: actual 
output

Red: Predicted 
VNF scaling 
decision

19



PART II
Integer Linear 

Programming(ILP) + 
Formulation
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Latency Optimal 

VNF Placement 

Problem in 

MEC-NFV 

Environment

1. System Modeling
2. Problem Formulation
3. ILP Model Evaluation 
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Recall...
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System Modeling

Goal: Minimize end to end 
latency by:
● placing VNFs on edge 

devices closes to end 
users

● Once VNFs run out of 
capacity then fall back 
to VNFs in the providers 
cloud data center 

Table: defines all 
parameters used in the 
formulation
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➔ Each VNF has its own:  CPU, Memory, and Network 
requirements

➔ VNF has an end to end delay threshold (dj) AND 
specifies a bandwidth requirement 

➔ Latency from a user to a VNF(dijk) 

➔ Decision variable(Xijk) binary variable where 1 
assign vj to node ni using path pk

System Modeling - Most important parameters 
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ILP model that takes in the following as input
-Set of users(U) -Set of VNFs hosts(N)
-Set VNFs (V) -Latency Array (d)

Then outputs optimal solution for VNF placement by 
minimizing the total end to end latency from all users 

Problem Formulation

Formulated Objective Function
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Constraints of Optimization Objective: all help ensure 
the following:

Problem Formulation

Constraint 9: ensures amount of 
hardware resources allocated to VNFs 
is within the available resources on 
the physical node

Constraint 10: end to end delay 
between user and VNF doesn’t exceed 
the max delay 

Constraint 11: each VNF is hosted by exactly one physical node

Constraint 12: none of the physical links becomes overloaded
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Model was evaluated using simulation experiments

Simulation Environment: Based on backbone network by a 
private Mobile Network Operator

➢ Edge nodes at all base stations and capable of 
hosting finite number of VNFs

➢ 1 Cloud data center capable of hosting several VNFs

ILP Model Evaluation
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VNFs were categorized into 3 categories depending on 
latency tolerance levels

1. Real Time
2. Near Time
3. Non-real Time

Used equal number of VNFs in all 3 categories 

ILP Model Evaluation
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Using IBM ILOG CPLEX:
● 1st scenario: all VNFs are assigned to cloud data 

center
● 2nd scenario: VNFs assigned to edge nodes first, 

then to cloud data center once capacity runs out
Had a fixed latency of 5ms from user to edge nodes
Number of VNF hosted on each node = 40 
Total edge capacity of network = 240 VNFS 

-Once over 240; automatically gets assigned to cloud
 data center 

ILP Model Evaluation
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ILP Model Evaluation

RED: Cloud only deployment; fixed latency of 20ms
BLUE: Edge + Cloud; lower latency times(avg: 5ms) increased when the edge nodes 
were exhausted

ILP model took 
6.25 seconds 
to place 335 
VNFs to help 
minimize 
aggregated 
user to VNF 
end to end 
latency
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IN CONCLUSION..

➔ MLP was the most effective model in predicting amount of 
VNFs to deploy
◆ Beneficial in proactive auto scaling 
◆ Helped minimize downtime and reduce operational 

costs 
➔ Proposed a optimal placement model that carefully 

selects where to place VNFs to reduce user  -> VNF 
latency
◆ Results averaged 75% reduction in end to end latency 

when all VNFs were placed at the network edges
➔ Future work potentially with federated learning 
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