
Robust Machine Learning against Adversarial
Samples at Test Time

Jing Lin
ICNS Lab and Cyber Florida
University of South Florida

Tampa, FL. USA
jinglin@mail.usf.edu

Laurent L. Njilla
Cyber Assurance Branch

U.S. Air Force Research Laboratory
Rome, New York, USA
laurent.njilla@us.af.mil

Kaiqi Xiong
ICNS Lab and Cyber Florida
University of South Florida

Tampa, FL. USA
xiongk@usf.edu

Abstract—Though the performance of deep learning is remark-
able, recent works have shown that deep learning models are
vulnerable to adversarial samples that are close to their original
samples to human eyes but misclassified by Deep Neural Network
(DNN). This is a serious problem as many deep learning models
are used in physical infrastructures and critical application
domains such as medical diagnosis, self-driving cars, malware
detection, as well as digital assistants like Google Assistant, Alexa,
and Siri. Many researchers have attempted to secure neural
networks through techniques such as defensive distillation and
adversarial retraining. Nevertheless, many of these techniques
are ineffective to new or slightly strong adversarial attacks such
as the Carlini and Wagner (C&W)’s attack. In this paper, we
propose a robust adversarial retraining method to iteratively
retrain a given model so that it can not only detect the
adversarial examples but also maintain the prediction accuracy
for the normal dataset. Our experimental results show that the
prediction accuracy on the MNIST test set is maintained while the
accuracies under FGSM, C&W, and DeepFool attacks increase
from 29% to 91%, 7% to 70%, and 29% to 91%, respectively.

Index Terms—Machine Learning, adversarial examples, deep
learning (DL), deep neural network (DNN), security

I. INTRODUCTION

The performance of deep learning is remarkable in a variety
of domains such as image classification, natural language
processing, and machine translation. However, recent studies
have shown that machine learning algorithms can be easily
fooled by techniques such as Fast Gradient Sign Method
(FGSM) [1] and PGD attack [2]. For instance, Figure 1 shows
digit 0 through 9 from the MNIST dataset. The original images
correctly classified by a classifier are shown in the first row,
whereas the second and third rows contain the adversarial
images generated by the BIM attack (sometimes also called
the PGD attack [2]) and the C&W attack [3], respectively. The
predicted labels for those adversarial images are all wrong,
though images are similar to the original images (row 1).
This is a serious problem as many deep learning techniques
are used in security-sensitive and/or safety-critical applications
such as medical diagnosis, malware detection [4], self-driving
cars [5], as well as digital assistants like Google Assistant,
Alexa and Siri. For instance, PDFrate and Hidost are two
machine learning classifiers that are based on the random

DISTRIBUTION A. Approved for public release. Distribution unlimited.
Case Number 88ABW-2020-0836. Dated 01 Mar 2020

forest and support vector machine (SVM), respectively. Xu
et al. [4] used genetic programming to generate adversarial
examples that can bypass those malware classifiers at 100%
of the time. That is, they can modify the malware slightly
so that it can evade these classifiers with a 100% success
rate. The modification makes those PDF malware classifiers
useless. Similarly, an adversarial example can be generated
against the semantic segmentation task of a self-driving car
by hiding pedestrians. Without noticing the pedestrians on the
crosswalk, a self-driving car will not stop and can cause a
deathly accident [5]. This is a serious safety problem, which
must be addressed.

Fig. 1. Adversarial images illustration using MNIST dataset. The first
row shows the selected original images from the MNIST dataset and their
corresponding predicted labels. The second and the third rows show the
adversarial images generated by the BIM attack and the Carlini and Wagner
(C&W) attack, as well as their corresponding predicted labels, respectively.

Current defense methods against adversarial examples can
be broadly classified into two categories, proactive and reactive
defenses [6]. Proactive defenses make deep learning models
more robust against adversarial examples before an adversary
actually attacks it, whereas reactive defenses try to deal with
adversarial examples after a deep neural network (DNN) is
built. The proactive defenses can be further classified as
adversarial retraining [1], [7], defensive distillation [8], and
classifier robustifying [9]. Similarly, reactive defenses can be
further classified as adversarial detection [10], input recon-
struction [11], and network verification [12], [13]. However, all
defenses are shown to be either effective only for some attacks
or cannot be applied to large networks. For instance, defensive
distillation has been shown to be ineffective against the C&W
attack. Reluplex, a network verification technique for neural
networks with ReLU activation functions, is computationally
infeasible for large-scale networks. It only works for networks

978-1-7281-5089-5/20/$31.00 ©2020 IEEE

with a few hundred neurons and could only handle the L∞
norm as a distance metric. In this paper, we introduce a
proactive approach to iteratively retrain a classifier to predict
the correct label of the adversarial example while preserving
the classifier’s prediction accuracy for normal images.

Threat model

Machine learning techniques are increasingly used in
security-critical applications, such as adblockers [14] and
malware detection [4]. However, the existence of adversarial
examples limits the application of real-world machine learn-
ing, especially to security-critical domains. In this paper, we
consider the test time attack and assume that

• a powerful adversary has full access to our trained model,
but she/he has no ability to modify the parameters.
More precisely, we assume that an adversary has feature
knowledge and algorithm knowledge, as well as has the
ability to generate the adversarial examples and input
them to the classifier.

• An adversary’s goal is to inject adversarial inputs that can
bypass the classifier.

Mathematically, the threat model can be defined as follows.
Given the feature knowledge and algorithm knowledge of a
target DNN model F ∈ Γ and an input (x, y), the adversary
aims to generate an adversarial example x′ such that

• ||x − x′||22< ϵ, where ϵ is the small perturbation that is
not noticeable by human eyes.

• x′ ∈ [0, 1]
• F (x′) = y′, F (x) = y, and y ̸= y′, where y and y′ are

class labels.
In this paper, we propose an iterative approach to retraining

a model in order to robustify it and to reduce the effectiveness
of adversarial samples on it. More precisely, the retrained
model can identify the adversarial example with a high success
rate while maintaining the classifier’s prediction accuracy for
the natural instance. The key contributions of this paper are
in the following:

1) We propose an ensemble model that outputs the final
label based on the labels provided by two tests, one with
added small random noise and the other without it.

2) Different from other studies, we divide the adversarial
examples to two categories depend on the sizes of
their perturbation introduced. For smaller perturbation
η < η0 that is smaller than some application-specific
perturbation limit η0, we train our classifier to label the
instance with its original label. In this way, we force
DNN classifier to learn the most important features or
characteristics while ignoring the unimportant ones.

3) We propose an iterative process that is highly paral-
lelizable. The classifier will not only be robust against
adversarial examples but also maintains the accuracy of
the original classifier.

The remainder of this paper is organized as follows. In
section II, we provide necessary background information about
this research. Section III discusses existing defense methods

against adversarial examples. In section IV, we describe in
detail our proposed approach, followed by an evaluation in
section V. Section VI concludes this paper.

II. BACKGROUND

This section provides a brief introduction to neural networks
and adversarial examples. Existing defense methods are dis-
cussed in the related work section.

A. Neural Networks

Machine learning automates the tasks of writing rules for a
computer to follows. That is, giving an input and an desired
outcome, machine learning can find a set of rules needed
automatically. Deep learning is a subset of machine learning
that automates its feature selection process. That is, you do
not even need to specify features, and a neural network can
extract them from raw input data. For instance, in the image
classification, an image is an input to the neural network, and
the convolutional layers in the neural network will extract
important features from the image directly. The characteris-
tics makes deep learning desirable for many complex tasks,
such as image classification and natural language processing,
where software engineers have difficulty in writing rules for a
computer to learn.

The performance of the neural network is remarkable in
domains such as image classification, natural language pro-
cessing, and machine translation. By the Universal Approxi-
mation Theorem, any continuous function in a compact space
can be approximated by a feed-forward neural network with at
least one hidden layer and the suitable activation function to
any desired accuracy. [15]. This theorem explains the broad
applicability of deep neural networks. However, it does not
give any constructive guidelines on how to find such universal
approximator. In 2017, Lu et al. [16] established the Universal
Approximation Theorem for Width-Bounded ReLU Networks.
These Universal Approximation Theorems explain the ability
of a neural network to learn.

A feed-forward neural network can be written as a function
F : X → Y, where X is an input space or a sample space, and
Y is its output space. If the task is classification, Y is the set of
discrete classes. If the task is regression, Y is a subset of Rn.
For each instance x ∈ X, F (x) = fL(fL−1(...(f1(x)))), where
fi(x) = A(wi ∗ x + b); A(.) is an activation function, e.g.,
non-linear Rectified Linear Unit (ReLU), sigmoid, softmax,
identity, and hyperbolic tangent (tanh); wi is a matrix of weight
parameters; b is a bias unit; and L is the total number of layers
in a neural network. For classification, the activation function
for the last layer is usually a softmax function. The key to
the state of the art performance of the neural network is the
optimized weight parameters that minimize a loss function J ,
a measure of the difference between the predicted output and
its true label. A standard method used to find optimal weights
is the back-propagation algorithm. See, e.g., [17] and [18] for
an overview.

B. Adversarial Example

An adversarial example/sample x′ is an adversarially gen-
erated sample that is close to natural sample x to human eyes
but misclassified by a DNN model [19]. Adversarial attacks for
machine learning models can either be untargeted or targeted.
In an untargeted attack, an attacker does not have a specific
target label in mind when trying to fool a DNN model. On
the contrary, an attacker tries to mislead a DNN model to
classify an adversarial sample x′ as a specific target label t in
a targeted attack. In 2013, Szegedy et al. [19] first generated
such an adversarial example using Limited-memory Broyden
Fletcher Goldfarb Shanno (L-BFGS). Given a natural sample
x and a target label t ̸= F (x), they used L-BFGS method
to find an adversarial sample x′ that satisfies the following
box-constrained optimization problem:

min c||x − x′||22+J(x′, t) (1)

subject to x′ ∈ [0, 1]m and F (x′) = t,

where c is a constant that can be found by linear searching,
and m = hw if the image is gray scaled and m = 3hw if
the image is colored. Because of this computational intensive
linear searching method for optimal c, L-BFGS attack is time
consuming and impractical. In the course of the next few years,
many other adversarial attacks are proposed such as

• Fast Gradient Sign Method (FGSM)
FGSM is a one-step algorithm that generates perturba-
tions in the direction of the loss gradient; i.e.,

η = ϵsgn(∇xJ(x, y))

and so
x′ = x + ϵsgn(∇xJ(x, y))

where ϵ is an application-specific imperceptible pertur-
bation adversary intend to inject and sgn(∇xJ(x, y)) is
the sign of the loss function [1]. Basic Iterative Method
(BIM) is an iterative application of FGSM in which
a finer perturbation is obtained at each iteration. This
method is introduced by Kurakin et al. [20] for gener-
ating adversarial example in the physical world. BIM is
sometimes also called Projected Gradient Descent (PGD)
[2]. Iterative Least-likely Class Method (ILLC) [20] is
similar to BIM but uses the least likely class as a targeted
class to maximize the cross-entropy loss; Hence, this is
a targeted attack algorithm.

• DeepFool
Instead of loss gradient, DeepFool utilizes the decision
boundary of the classifier. More precisely, it searches
for the shortest distance to cross the decision boundary
using an iterative linear approximation of the classifier
and orthogonal projection of the sample point onto it [21].
This untargeted attack generates adversarial examples
with smaller perturbation compared to L-BFGS, FGSM,
and JSMA [3], [6]. For detail, see [21]. Universal Ad-
versarial Perturbation is an updated version of DeepFool
that is transferable [22]. It uses DeepFool method to

generate minimal perturbation for each image and find
the universal perturbation that satisfies the following two
constraints:

||η||p≤ ϵ

P (F (x) ̸= F (x + η)) > 1− δ

where ||∗||p is p-norm, ϵ specifies the upper limit for
perturbation, and δ ∈ [0, 1] is a small constant that
specifies fooling rate of all the adversarial images.

• Carlini and Wagner (C&W)’s Attack
C&W’s attack [3] is introduced as a targeted attack
against defensive distillation, a defense method against
adversarial example proposed by Papernot et al. [8].
Different from equation 1, Carlini and Wagner defined
an objective function f such that f(x′) ≤ 0 if and only
if F (x′) = t, and the following optimization problem is
solved to find the minimal perturbation η:

min||η||22+cf(x′)

subject to x′ ∈ [0, 1]m

Instead of looking for optimal c using linear searching
method as in the L-BFGS attack, Carlini and Wagner
just find the smallest value of c for which f(x′) ≤ 0.
To ensure that the box-constraint x′ ∈ [0, 1]m is satisfied,
they proposed three methods, projected gradient descent,
clipped gradient descent, and change of variable, to avoid
box-constraint. For detail, see [3]. C&W’s attack is not
only effective for defensive distillation but also effective
for many other existing adversarial detecting defenses.
For instance, in [23], Carlini and Wagner used C&W’s
attack against ten detection methods and showed the
current limitations of detection methods.

III. RELATED WORK

A recently published survey paper [24] summarized three
main proactive countermeasures for adversarial examples: net-
work/defensive distillation [8], adversarial (re)training [1], [7],
and classifier robustifying. Network distillation used distilla-
tion, a technique usually used to reduce the dimensionality,
to decrease the success rate of adversarial sample crafting
[8]. Basically, this approach suggests smoothing the softmax
output by training it twice. In the first time, a DNN model is
trained and its softmax output is smoothed by a temperature
parameter T > 0 using the equation

qi =
e

zi
T∑n

j=1 e
zi
T

,

where qi is the smoothed probability of class i that will be
input to the second DNN, zi is the probability of class i
output by the first DNN, and n is the total number of classes.
Then, the original hard labels are replaced by the soft labels
{qi}ni=1 when training the second DNN. This way the loss
function is smoother with soft targets, and so it robustfy the
model. Defensive distillation is shown to reduce the success
rate of JSMA attack by 98.6% and 81.36% on the MNIST

and CIFAR-10 dataset, respectively. An alternative method of
network distillation is label smoothing [25]. Instead of using
the first DNN to generate soft labels, they proposed just to
assign a high probability, like 0.9, to the right class and then
distribute the rest of probabilities among other n−1 classes if
there is a total of n classes. For our proposed approach, we also
use soft labels. However, we use soft labels not only to reduce
adversarial gradients and sensitivity to input perturbation but
also to prevent the network from becoming over-confident and
to improve generalization and model calibration [26].

Another countermeasure is adversarial (re)training, in which
an adversarial example is generated and injected into the
training set for retraining [1], [7]. Usually, a base model is used
to generate some adversarial samples using techniques such as
FGSM, JSMA, BIM, etc. Then, these adversarial samples with
the correct labels and the natural samples are mixed and used
to retrain the model. However, Grosses [27] proposed a variate
adversarial retraining by classifying adversarial examples as
the (n + 1)th class. Nevertheless, Tramèr et al. [28] showed
that an adversarially trained model using single-step attack
methods such as FGSM is still vulnerable to other simple
and powerful first-step attacks and transfer attacks. Hence, we
also check the accuracy of our robustified model under strong
attacks in the evaluation. The result shows the performance
of the model is significantly improved after retraining. The
obtained model is more robust due to better generalization
of the model using the soft labels and Gaussian noise for
training.

IV. METHODOLOGY

The performance of a deep learning model depends mainly
on data under studies, neural network architecture, and com-
puting power. Since a neural network learns the rule from raw
data, it requires a large amount of data to learn. In addition,
the data representation is also important. Consider the scenario
in which all data used to train a face recognition classifier are
the front face of a group of students; how could you expect the
classifier to perform well when a test image is a rear view of a
student? Hence, the dataset needs to be big and representative.
Furthermore, the neural network architecture is also essential
since it can affect your training time and performance. Last but
not least, it is the computation power that affects training and
testing time. A back-propagation algorithm is currently used
by most neural networks for training. However, it is slow and
often requires thousands of epochs to learn. If it is under-
trained, its performance would not be optimal. Therefore,
computational power also determines the performance of a
neural network model.

In this paper, we introduce an iterative approach to generat-
ing more data from the original dataset to train our proposed
model. Multiple data generating methods depicted in Figure 2
are used to generate a good data representation for the model.
In order to learn effectively, a model’s capacity is a crucial
factor. If a model is too simple, it will underfit. Hence, in the
evaluation, the model used to train has a high capacity. To

reduce overfitting, the dropout is added as well. Besides, we
will show that our proposed approach is highly parallelable.

Fig. 2. Iteratively retrain the Detector+Classifier model with data generated
from different techniques

As shown in Figure 2, our iterative approach is an adver-
sarial retraining technique. However, it is different from [1] in
that we use multiple strong attack techniques to generate the
adversarial examples. In the background section, several exist-
ing adversarial example crafting techniques are introduced and
can be used to generate adversarial examples for retraining.
The training process can be summarized as follows:

1) Generate adversarial examples using existing adversar-
ial example crafting techniques

2) Generate more adversarial like images by adding small
random noises to the normal images

3) Combine the normal training set with the adversarial
images generated in 1) and 2) to retrain the classifier.
Instead of hard labels for these images, the soft-labels
are used instead. For instance, hand-written ‘7’ and ‘1’
is similar in that both have long vertical line. Hence,
rather than label a hand-written digit as 100% ‘7’ or
100% ‘1’. We may say it is 80% ‘7’ and 20% ‘1’. This
shows the structure similarity between ‘7’ and ‘1’.

4) Use the combined training set to retrain the classifier
5) Repeat step 1-4 for k times, where k is the the maxi-

mum number of iteration specified. Note other types of
stopping criteria are possible.

One common problem of adversarial training and other
defense methods is the trade-off between the accuracy and
resilience against adversarial examples. This trade-off exists
because the network architecture of an original system and/or
the dataset size is fixed. However, our proposed approach
have larger network capacity with larger dataset generated by
multiple techniques. Hence, our proposed approach does not
have this trade-off, as shown in the evaluation section.

Another consideration is the training time. However, the
proposed approach is highly parallelizable to reduce training
time when multiple GPU resources are available. Due to the
transferability of adversarial examples, the adversarial example
does not have to be generated using the current model. Hence,
adversarial crafting and adversarial training can be performed

at the same time. That is, at iteration t, an adversarial example
can be generated based on the model generated at iteration
t′ < t, and adversarial training can be performed using the
adversarial example generated previously as well. Depend
on the memory and computation resource of a computer
server, we can store the generated adversarial examples at
each iteration and extract a random subset of the generated
adversarial examples when performing the adversarial training.
The sampling probability can be based on the performance
of the model at previous iterations. For instance, we initially
assign a probability of 1

n to each adversarial example. Then,
we increase its probability for the next iteration if the model
misclassifies it or it is not selected for the current iteration
of training and decrease its probability if the model correctly
classifies it.

At the testing time, random noise is added to the test
image. This small noise is aimed to distort the intentional
perturbation injected by the adversarial. Since our proposed
model is trained with random noise, it is robust against it.
Therefore, if the label of a given test image without added
random noise is different from that of the one with added
random noise, this is likely an adversarial image and the
system is alerted.

Fig. 3. Small random noise is added to the test image before it is input to
the Detector+Classifier. The small noise added to the natural image is not
likely to change the label of the image since we have trained our model
with small Gaussian noise. However, the small random noise added to the
adversarial image will disturb the carefully calculated perturbation injected
by the adversary.

V. EVALUATION

In this section, we empirically evaluate our proposed ap-
proach on the MNIST dataset [29]. The performance metrics
considered are the accuracy of the classifier under various
attacks.

A. Datasets and Models

In this paper, we consider the standard deep learning dataset,
MNIST, that is widely used in the field. The MNIST hand-
written digit recognition dataset is normalized, and each image
has 28 × 28 pixels. All the images are black and white. See
Table I for dataset summary.

B. Adversarial Crafting

We use the Adversarial Robustness Toolbox (ART v0.10.
0) [30] to generate adversarial examples for training and

TABLE I
DATASET SUMMARY

Dataset MNIST
Training Example 60,000
Testing Example 10,000
Classes 10
Image Size 28× 28
Original Accuracy 99%

testing. Due to the limited computing resource, we only use
C&W, PGD attack, and Gaussian noise to generate adversarial
images. Gaussian noise is added to the images to take care
of other potential attacks and for better data generalization.
The soft labels for those adversarial images are based on
the perturbation introduced by these adversarial examples. For
instance, under the C&W attack, we use soft a label of 0.41
if the perturbation limit is less than 0.026. 0.026 is selected
based on the observation that the perturbation within this limit
is hardly noticeable to human eyes. For a similar reason, the
perturbation limit of PGD and Gaussian noise is set to 0.15 and
0.25 with a soft label value of 0.41. The network architecture
for the MNIST dataset consists of two ReLU convolutional
layers, one with 32 filters of size 3 by 3 and follows by another
with 64 filters of size 3 by 3. Then, a 2 by 2 max-pooling layer
and a dropout with a rate of 0.25 is applied before a ReLU
fully connected layer with 1024 units. The last layer is another
fully connected layer with 11 units and a softmax activation
function for classification. The accuracy of the model is 99%,
which is comparable to the accuracy of the state-of-the-art
DNN.

At the testing time, we consider the strong white-box
attack against our proposed model. The adversarial images are
generated using FGSM, DeepFool, and C&W attack with the
assumption that an adversary has feature knowledge, algorithm
knowledge, and the ability to inject adversarial images. For the
FGSM attack, the perturbation of ϵ = 0.1 is considered. This is
a reasonable limit because a larger perturbation can be detected
by human and/or anomaly detection systems. Similarly, the
maximum perturbation for the PGD attack is also set to 0.1
and the attack step size is set to 0.1

3 . The maximum number
of iterations for PGD is 40. The setting of the C&W attack is
left as default in ART [30].

TABLE II
CLASSIFICATION ACCURACY ON MNIST TEST DATASET UNDER

WHITE-BOX ATTACK

Attack FGSM C&W DeepFool
Original 29% 7% 29%
Robust Classifier 91% 70% 91%

C. Result

We consider the accuracy of the classifier on the normal
MNIST test images and the accuracies of the classifier under
FGSM, C&W, and DeepFool attacks. The prediction accuracy
of the original classifier on the normal MNIST test images

is 99%. The prediction accuracy of the robust classifier on
the normal MNIST test images is also 99% after retraining.
Furthermore, the accuracies of the robust classifier under
FGSM, C&W, and DeepFool attacks are shown in Table II.
These results show that after retraining, the model performance
is improved dramatically under these attacks.

VI. CONCLUSIONS AND FUTURE WORK

Adversarial examples limit the applicability of machine
learning models, especially for security-sensitive or safety-
critical applications, such as malware detection and self-
driving cars. In this research, we proposed an iterative adver-
sarial retraining approach for defense against adversarial ex-
amples and evaluated the performance on the MNIST dataset.
The proposed approach is different from the adversarial re-
training approach proposed by [1] in several aspects. First,
we use soft-labels to prevent the network from becoming
over-confident and improving generation. Instead, using only
adversarial examples generated by adversarial sample crafting
techniques, we also included the images with random Gaussian
noise added. Last, to reduce the trade-off between the accuracy
and the resilience against adversarial examples, we used the
network with a larger capacity to train the model iteratively.
The dropout is also added to prevent an overfitting problem.
Since this iterative approach is independent of the DNN mod-
els, it can be applied to any machine learning models. Future
work should investigate the impact of other adversarial sample
crafting techniques on the proposed defense method. Besides,
we will evaluate the performance of parallel architecture for
iterative adversarial retraining methods.

ACKNOWLEDGMENT

We acknowledge the AFRL Internship Program to support
Jing Lin's work and National Science Foundation to partially
sponsor Dr. Kaiqi Xiong's work under grants CNS 1620862
and CNS 1620871, and BBN/GPO project 1936 through an
NSF/CNS grant. The views and conclusions contained herein
are those of the authors and should not be interpreted as
necessarily representing the official policies, either expressed
or implied of NSF.

REFERENCES

[1] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[2] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

[3] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 IEEE Symposium on Security and Privacy (SP).
IEEE, 2017, pp. 39–57.

[4] W. Xu, Y. Qi, and D. Evans, “Automatically evading classifiers,” in
Proceedings of the 2016 Network and Distributed Systems Symposium,
vol. 10, 2016.

[5] J. H. Metzen, M. C. Kumar, T. Brox, and V. Fischer, “Universal
adversarial perturbations against semantic image segmentation,” in 2017
IEEE International Conference on Computer Vision (ICCV), Oct 2017,
pp. 2774–2783.

[6] X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks and
defenses for deep learning,” IEEE Transactions on Neural Networks and
Learning Systems, 2019.

[7] R. Huang, B. Xu, D. Schuurmans, and C. Szepesvári, “Learning
with a strong adversary,” CoRR, vol. abs/1511.03034, 2015. [Online].
Available: http://arxiv.org/abs/1511.03034

[8] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation
as a defense to adversarial perturbations against deep neural networks,”
in 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 2016,
pp. 582–597.

[9] M. Abbasi and C. Gagné, “Robustness to adversarial examples through
an ensemble of specialists,” arXiv preprint arXiv:1702.06856, 2017.

[10] R. Feinman, R. R. Curtin, S. Shintre, and A. B. Gardner, “Detecting
adversarial samples from artifacts,” arXiv preprint arXiv:1703.00410,
2017.

[11] S. Gu and L. Rigazio, “Towards deep neural network architectures robust
to adversarial examples,” arXiv preprint arXiv:1412.5068, 2014.

[12] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Reluplex: An efficient smt solver for verifying deep neural networks,”
in International Conference on Computer Aided Verification. Springer,
2017, pp. 97–117.

[13] D. Gopinath, G. Katz, C. S. Pasareanu, and C. Barrett, “Deepsafe:
A data-driven approach for checking adversarial robustness in neural
networks,” arXiv preprint arXiv:1710.00486, 2017.

[14] U. Iqbal, P. Snyder, S. Zhu, B. Livshits, Z. Qian, and Z. Shafiq,
“Adgraph: A graph-based approach to ad and tracker blocking.”

[15] A. R. Barron, “Approximation and estimation bounds for artificial neural
networks,” Machine learning, vol. 14, no. 1, pp. 115–133, 1994.

[16] Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang, “The expressive power
of neural networks: A view from the width,” in Advances in Neural
Information Processing Systems, 2017, pp. 6231–6239.

[17] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[18] S. Raschka and V. Mirjalili, Python Machine Learning : Machine
Learning and Deep Learning with Python, Scikit-Learn, and TensorFlow
2, 3rd Edition. Packt Publishing, Limited, 2019.

[19] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[20] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the
physical world,” arXiv preprint arXiv:1607.02533, 2016.

[21] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple
and accurate method to fool deep neural networks,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 2574–2582.

[22] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Univer-
sal adversarial perturbations,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 1765–1773.

[23] N. Carlini and D. Wagner, “Adversarial examples are not easily detected:
Bypassing ten detection methods,” in Proceedings of the 10th ACM
Workshop on Artificial Intelligence and Security. ACM, 2017, pp.
3–14.

[24] X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks and
defenses for deep learning,” IEEE Transactions on Neural Networks and
Learning Systems, pp. 1–20, 2019.

[25] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 2818–2826.

[26] R. Müller, S. Kornblith, and G. E. Hinton, “When does label
smoothing help?” CoRR, vol. abs/1906.02629, 2019. [Online]. Available:
http://arxiv.org/abs/1906.02629

[27] K. Grosse, P. Manoharan, N. Papernot, M. Backes, and P. McDaniel,
“On the (statistical) detection of adversarial examples,” arXiv preprint
arXiv:1702.06280, 2017.

[28] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and
P. McDaniel, “Ensemble adversarial training: Attacks and defenses,”
arXiv preprint arXiv:1705.07204, 2017.

[29] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[30] M.-I. Nicolae, M. Sinn, M. N. Tran, B. Buesser, A. Rawat, M. Wistuba,
V. Zantedeschi, N. Baracaldo, B. Chen, H. Ludwig, I. Molloy, and
B. Edwards, “Adversarial robustness toolbox v0.10.0,” CoRR, vol.
1807.01069, 2018. [Online]. Available: https://arxiv.org/pdf/1807.01069

