
DeepMigration: Flow Migration for NFV with Graph-based
Deep Reinforcement Learning

Penghao Sun1, Julong Lan1, Zehua Guo2, Di Zhang3, Xianfu Chen4, Yuxiang Hu1, Zhi Liu5
1National Digital Switching System Engineering & Technological R&D Center 2Beijing Institute of Technology

3Zhengzhou University 4VTT Technical Research Centre of Finland 5Shizuoka University

Abstract—Network Function Virtualization (NFV) enables flex-
ible deployment of network services as applications. Network
operators expect to use a limited number of Network Function
(NF) instances to handle the fluctuating traffic load and provide
network services. However, it is a big challenge to guarantee
the Quality of Service (QoS) under the unpredictable network
traffic while minimizing the processing resources. One typical
solution is to realize NF scale-out, scale-in and load balancing
by elastically migrating the related traffic flows with Software-
Defined Networking (SDN). However, it is difficult to optimally
migrate flows since many real-time statuses of NF instances
should be considered to make accurate decisions. In this paper,
we propose DeepMigration to solve the problem by efficiently and
dynamically migrating traffic flows among different NF instances.
DeepMigration is a Deep Reinforcement Learning (DRL)-based
solution coupled with Graph Neural Network (GNN). By taking
advantages of the graph-based relationship deduction ability
from our customized GNN and the self-evolution ability from
the experience training of DRL, DeepMigration can accurately
model the cost (e.g., migration latency) and the benefit (e.g.,
reducing the number of NF instances) of flow migration among
different NF instances and generate dynamic and effective flow
migration policies to improve the QoS. Experiment results show
that DeepMigration requires less migration cost and saves up to
71.6% of the computation time than existing solutions.

Index Terms—Network Function Virtualization, Flow Migra-
tion, Deep Reinforcement Learning, Graph Neural Network

I. INTRODUCTION

Network Function Virtualization (NFV) has been proposed
to virtualize Network Functions (NFs) from dedicated hard-
ware middleboxes (e.g., intrusion detection system, firewall,
and load balancer) to general-purpose hardware (e.g., x86
servers). Thus, network operators can save their Capital Ex-
penditure (CAPEX) and Operational Expenditure (OPEX) [1],
[2] and improve their service quality by efficiently deploying
new functions and providing flexible, agile services [3]–
[5]. One critical benefit of NFV is elastic control, which
flexibly deploys NF instances to accommodate the varying
traffic [6], [7]. NFV elastic control relies on Software-Defined
Networking (SDN) [8] to dynamically steer the network
traffic. In this case, the network can accommodate the varying
network traffic with NF scaling and load balancing [9], [10].
During the traffic steering process, the processing flows should
be migrated among different NF instances. Existing works [9],
[11]–[13] consider the scalability and efficiency of the data

This paper is supported by the National Key Research and Development
Plan under Grant Number 2017YFB0803204, the National Natural Science
Fund of China under Grant Numbers 61521003 and 61872382, and the Beijing
Institute of Technology Research Fund Program for Young Scholars. The
corresponding author is Zehua Guo.

plane for flow migration. However, during the flow migration,
these works may degrade the Quality of Service (QoS) of
migrated flows. For example, the buffer of the destination NF
instance may be overflowed. OFM [10] takes into account the
impact of migration on the QoS and formulates the migration
problem as an Integer Linear Programming (ILP) problem.
However, its proposed solution is heuristic-based and cannot
realize a good performance concerning the migration cost
under different migration scenarios.

To ensure both the efficiency of the migration policy and
the QoS of the migrated flows, in this paper, we propose
DeepMigration to address the flow migration problem with
machine learning. To better process the graph-structured work-
load in the network topology, DeepMigration models the flow
migration problem as a graph input for the Graph Neural
Network (GNN). Then, DeepMigration employs the self-
evolution ability of Deep Reinforcement Learning (DRL) to
train the GNN. In this way, we can combine the advantage
of the graph-based relationship deduction ability of GNN and
the self-evolution ability of DRL to dynamically generate near-
optimal flow migration policies. To the best of our knowledge,
our work first proposes to address the flow migration problem
for elastic control in NFV by combining GNN and DRL. The
contributions of this paper are summarized as follows:

• We design a scalable GNN-based neural network struc-
ture that directly takes the topological information of
the network as the input to flexibly handle the flow
distribution.

• We propose a DRL-based training framework to auto-
matically train the GNN and improve the flow migration
policy.

• We implement DeepMigration on a POX controller and
conduct experiments to validate the effectiveness of
DeepMigration on a hardware environment. The ex-
periment results show that DeepMigration requires less
migration cost and saves up to 71.6% of the computation
time compared to existing solutions.

II. BACKGROUND AND RELATED WORKS

A. Flow Migration in NFV

NFV aims to replace dedicated and specialized middleboxes
with virtualized NFs. Under the fluctuating network traffic, the
workload distribution among a group of NF instances could
change, and the flows are typically migrated among different
NF instances under the following three scenarios:
1) Scale-out: When the workload of some NF instances

978-1-7281-5089-5/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on August 08,2020 at 00:03:26 UTC from IEEE Xplore. Restrictions apply.

exceeds a certain threshold, such instances cannot efficiently
handle their received traffic flows. In this case, new NF
instances can be created, and some flows need to be migrated
to the newly created instances.
2) Scale-in: When one or more NF instances are underloaded,
some NF instances can be shut down for better OPEX and
the flows on these instances should be migrated to the active
instances.
3) Load balancing: When there are hot spots and cold spots
among current NF instances, some flows need to be migrated
from hot spots to cold spots for better QoS.

Flow migration can bring benefits such as an improvement
of the QoS and a reduction of the OPEX, but it also comes with
some cost. Assume migrating a flow from a source instance
nfs to a destination instance nfd. For nfs, a flow migration
can reduce the queueing delay in this instance. For nfd, a
migrated flow needs to be temporarily stored in the buffer
of the instance before processing, which increases the queue
of the buffer of nfd. In addition, the migration operation
itself also incurs a latency (migration cost). The optimal flow
migration policy, on the other hand, needs to be designed
to maximize the overall benefit while reducing the overall
migration cost.

B. Related works

Existing studies in [9]–[11], [14] have shown the im-
portance of state migration in the elastic control of NFV.
OpenNF [9] concentrates on the safety and efficiency of flow
migration and E2 [15] proposes a strategy named migration
avoidance to realize elastic control. These two works omit
the migration cost and cannot guarantee the QoS of existing
flows. Lin et al. [16] propose to transfer all the states in
the NF instances for flow migration efficiency and scalability.
However, it does not consider the fine-grained migration cost.
Sun et al. [10] model the flow migration problem as an ILP
problem and propose a heuristic method to solve this problem
with reduced migration cost and low computation complexity.
However, the heuristic-based method cannot ensure near-
optimal migration costs under different migration scenarios.

III. FLOW MIGRATION PROBLEM FORMULATION

In this section, we formulate the flow migration problem.
Suppose that we have N instances of the same type and the

workload on instance j (j ∈ [1, N]) is lj . We use Thhigh,
Thlow, and Thvar to denote the threshold of peak load,
bottom load, and the variance of traffic load, respectively.
Then, the three scenarios scale-out, scale-in and load balancing

can be formulated as
N∑
j=1

lj ≥ Thhigh,
N∑
j=1

lj ≤ Thlow, and

var(l1, l2, ..., lN) ≥ Thvar, where var(·) denotes the variance.
We use the Service Level Agreement (SLA) to evaluate the

performance of the flow migration policy [17], [18]. Specif-
ically, we use latency as the main SLA metric. Considering
that there are m flows, the processing latency of flow f in
NF instance i is la_pfi , the queueing delay in NF instance i is
la_qfi , the migration latency from NF instance i to instance j
is lafij , and the SLA latency constraint for this flow is LAf . In

order to ensure the SLA, the migration operation of f should
satisfy:

lafij ≤ LAf − la_pfj − la_qfj , ∀f ∈ [1,m] (1)

where la_pfj is a constant and la_qfi is influenced by the
queue length in the buffer.

In this case, we can formulate the migration cost of f as
follows:

Cf
ij =

{
β(lafij + la_pfj + la_qfj − la_qfi), (1) holds
δ + β(lafij + la_pfj + la_qfj − LAf), else

(2)

where δ is a basic penalty for violating of SLA and β is a
penalty weight for the exceeded value of the SLA.

In NFV elastic control, the number of NF instances may
change due to the scale-out and scale-in operation. We thus use
Ne to denote the number of NF instances before the migration,
and Nn the number of NF instances after the migration. In
addition, we assume that adding/deleting an NF instance brings
a constant resource cost/benefit, which is denoted as R. We
use xf

ij as a binary variable to indicate whether flow f is
migrated from instance i to instance j, sizef as the size of
flow f , ΔN = Nn − Ne, CR = R × ΔN and Bufj as the
buffer size of instance j.

For the scale-out/scale-in scenario, as the number of NF
instances changes, the resources used on the hardware also
change. This change of the resource cost can be evaluated
with CR = R×ΔN . When Nn equals Ne, CR is a constant.
Then, the optimization problem of flow migration in any of
the three scenarios can be formulated as:

min
x

Ne∑
i=1

Nn∑
j=1

m∑
f=1

xf
ijC

f
ij (3)

s.t.
Ne∑
i=1

Nn∑
j=1

xf
ij = 1, ∀f ∈ [1,m] (4)

Ne∑
i=1

m∑
f=1

(xf
ij ∗ sizef) ≤ Bufj , ∀j ∈ [1, Nn] (5)

xf
ij ∈ {0, 1}, ∀i ∈ [1, Ne], ∀j ∈ [1, Nn], ∀f ∈ [1,m] (6)

Constraint (4) ensures that each flow is assigned to only one
NF instance, constraint (5) ensures that the flow size on each
NF instance should not exceed the buffer size and constraint
(6) sets the range of value of each variable. The objective
function of flow migration defined above is an Integer Problem
(IP) and piecewise due to Cf

ij . Existing solutions cannot solve
this problem within an acceptable time [10]. In this paper,
we propose an online algorithm based on DRL and GNN to
generate flow migration policies without human experience.

IV. OVERVIEW OF DEEPMIGRATION

In our scheme, DeepMigration is established based on a
controller of SDN, as shown in Fig. 1. DeepMigration mainly
includes three functional modules: State Collection module,
DRL Framework module, and Policy Translator module.

In DeepMigration, the network status and flow migration
performance metric are collected periodically by the State

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on August 08,2020 at 00:03:26 UTC from IEEE Xplore. Restrictions apply.

���
�����	�
�

������������ �	����
��
��������		�����

��
���		��
��	�������
�	����

������
�������� �����

������� ����!
���"
�
�	����

#��
������!

���
����
$��

Fig. 1: Architecture of DeepMigration

Collection module and taken as the input to a DRL module,
which uses GNN to perform the induction of the relationship
between NFs and the distribution of the traffic flows. After a
certain calculation process, the GNN produces a graph with
different properties (Section V.B), where the node values de-
note the traffic load distribution on NF instances and the values
of directed edges between two nodes denote the migrated
traffic load between two NF instances. The traffic migration
information is sent to the Policy Translator module, where
the traffic load migration information is translated to concrete
flow migration operation. When the flows are migrated, the
controller collects the performance metric of the migration
action as a policy reward to update the parameters of the GNN
for neural network evolution (Section V.A). An example of
the policy generation process is shown in Fig. 2. The GNN
calculates the original workload distribution in the input graph
and generates an output graph. In the output graph, the edge
values denote the migration workload.

DeepMigration gets trained offline. After training, the DRL
agent of DeepMigration will learn enough knowledge and then
can be formally deployed in the network for flow migration.

V. DESIGN DETAILS OF DEEPMIGRATION

In this section, we introduce the detailed design and working
mechanism of DeepMigration.

A. Training Framework

DeepMigration uses a DRL framework to generate dynamic
flow migration policies. A DRL framework utilizes neural
networks as the function approximators of Reinforcement
Learning (RL), of which the training process in the network
environment is modeled as a Markov Decision Process (MDP)
[19] [20] [21]. In the MDP, state s is the network status which
is the input of the neural network; a is the action, which
corresponds to the output of the neural network and is used
for the generation of flow migration policy; r is the reward
of a flow migration operation, which is used to evaluate the
performance of the DRL policy and adjust the neural network
parameters. An action a is chosen under state s according
to a policy μ(s) (i.e., the function of the neural networks),
so a = μ(s) as illustrated in [22] and the policy can be
denoted with a probability function μθ(s, a), where θ denotes
the parameters in the neural networks.

The training process of DeepMigration takes place in
episodes, and each episode consists of multiple action steps.
The overall aim of the agent is to maximize the cumulated

�������	
��

����
����
���
������
����	�
�����

���	
�����
������

���	
������	���
�
��

��

��
��

��
�

!�������	
��

����
�
����
����

Fig. 2: A calculation example of GNN

reward R =
∑T

t=0 r(t)/T in each episode, where T denotes
the total number of steps in an episode. After each episode,
the DRL agent evaluates the performance of the policy with
the cumulated reward R. Then, in DeepMigration, we use
policy gradient methods to polish the neural networks in the
DRL agent. In policy gradient methods, the gradient descent
is used for the evolution of the neural network parameters θ

following θ′ = θ + α
T∑

t=1
∇θ logμθ(st, at)Qt [23], where α

denotes a learning rate that controls the evolution speed of the
θ during each episode, and Qt denotes the quality evaluation
of the policy in the current episode. In DeepMigration, we

use Qt =
T∑

t′=t

rt′ − bt to calculate Qt, where t denotes the

time and bt is used as a baseline value to limit the variance of
the policy gradient [24]. In this way, the neural networks are
corrected towards the gradient direction based on the intuition
that the action a = μ(s) with a larger average reward should
get a better chance to be selected under state s. At the early
stage of the training, since the performance of the policy is
not good, the DRL agent should do more exploration than
exploitation. Therefore, we use short episode lengths for the
initial episodes, and gradually increase the episode length [25].

B. GNN-based Function Approximator

As mentioned in the aforementioned section, DRL uses
a set of neural networks as the function approximator. The
role of the function approximator in DRL is to analyze the
characteristics of the input data, and calculate an abstract infor-
mation as the output action. However, the resource and traffic
load distribution are graph-like structured data. Information
processing of the graph-like structured data is hard for a series
of prevalent neural networks such as Convolutional Neural
Network (CNN) [26] since these neural networks can only
operate on regular Euclidean data (e.g., 2D image data and 1D
text sequence) [27]. Therefore, we use GNN in DeepMigration
to process the graph-like structured network status data.

Unlike other types of neural networks, GNN directly op-
erates on graph data. There are various versions of models
in the GNN family, and in DeepMigration we use one of
the most popular version Graph Network (GN) [28]. The GN
framework uses a directed graph named GN block for graph
message processing. A GN block G is defined with three
attributes G = (V,E, u), where V denotes the node attributes,
E denotes the edge attributes and u denotes a global attribute
that describes an overall feature of the graph. Each of the

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on August 08,2020 at 00:03:26 UTC from IEEE Xplore. Restrictions apply.

��������	

������

�������	
���

��������	
���

������
���������	

���	������ ������

Fig. 3: Double GNN for NF variation in the DRL module

attributes can be expressed with an attribute vector that defines
a series of elements considered in that attribute. GN uses three
update functions denoted with φ (i.e., φe, φv and φu for edge,
node and global attributes, respectively) and three aggregation
functions denoted with ρ (i.e., ρe→v ,ρe→u and ρv→u) to carry
out the information computation for the edge, node and global
attributes.

The computation contains six consecutive operations and we
use an apostrophe (′) to denote the value of next time step:

1) e′k = φe(ek, vrk , vsk , u) is calculated per edge, which
reflects a type of edge information, where rk/sk denote
the receiving/sending node of edge k, respectively.

2) e′i = ρe→v(E′
i) aggregates the edge information and

binds such information with the node information, where
E′

i = {(e′k, rk, sk)}rk=i,k=1:|E|.
3) v′i = φv(e′i, vi, u) is carried out per node, which calcu-

lates a type of node-based information.
4) e′ = ρe→u(E′) aggregates all the edge information,

where E′ = ∪iE
′
i.

5) v′ = ρv→u(V ′) aggregates all the node information,
where V ′ = {v′i}i=1:|V |.

6) u′ = φu(e′, v′, u) updates the global attribute.

The intersected computation of edge and node related in-
formation in the aforementioned six operations is a reflection
of the induction process of the GNN. The edge attributes
denote the migration latency and influence the traffic load
redistribution among NF instances. The node attributes denote
the traffic load distribution and NF status, which in return
influence the amount of traffic load to be migrated through
edges. Besides, the global attributes also reflect an overall
traffic load level on the NF instances and can be used to decide
whether a scale-in or scale-out operation should be conducted.
In DeepMigration, the six functions are implemented with six
different neural networks, among which we use one simple
Recurrent Neural Network (RNN) for each of φ (i.e., φe, φv

and φu), and use one two-layer Feedforward Neural Network
(FNN) for each of ρ (i.e., ρe→v ,ρe→u and ρv→u). All of the
neural network parameters can be denoted as θ as defined in
Section V.A and updated by the training process of DRL.

For the scenario of scale-in and scale-out that introduces
a variation of the NF instance, the DRL module employs a
double GNN structure, as shown in Fig. 3. The traffic load
Judgment submodule compares the overall traffic load with
a threshold to decide the number of active NF instances.
Then, the network status is sent to two GNNs: one with the
current graph topology and the other one with a modified graph
topology. The modified GNN modifies the structure of the
current GNN by adding a vertex connected to the currently

Algorithm 1 Training process of the DRL agent
Input: network status and flow information;
Output: traffic load migration;

1: for iteration = 1 to MAX do
2: Episode length l=linit;
3: Run episode series i=1,...,N in the simulator and get:

(si1, a
i
1, r

i
1, ..., s

i
l, a

i
l, r

i
l) ∼ μθ;

4: Compute the total reward Ri
t =

∑l
t′=t r

i
t′ ;

5: Δθ = 0;
6: for t = 1 to l do
7: Compute the baseline value bt =

1
N

∑N
i=1 R

i
t;

8: for i = 1 to N do
9: Δθ = Δθ +∇θ logμθ(s

i
t, a

i
t)(R

i
t − bt);

10: end for
11: end for
12: l = l + ε, θ = θ + αΔθ;
13: end for

highest loaded NF instance for the scale-out scenario and
deleting a vertex of the least loaded NF instance for the scale-
in scenario. Then, the action generated by the two GNNs will
be sent to an Action Comparison submodule, which compares
the cost of two migration actions and chooses the one with
lower cost as the final action of the DRL module.

C. Training Process

In DeepMigration, we define the state, action and reward of
the DRL framework as follows:

State: The state information is represented with the network
status. The network status includes NF processing capability,
current traffic load on NF instances, migration latency between
NF instances and queueing length on NF instances, all of
which mapped into a graph representation.

Action: The action in DeepMigration is denoted with a list
of migrated traffic load among the NF instances. Based on the
action, the policy translator converts the traffic load value to
exact flows on each NF instance as the flow migration policy.

Reward: We use the overall evaluation of the migration
quality as the reward function for the DRL agent, which is
the sum of the cost defined in equation (2) and CR. Also, we
set a penalty coefficient ω and penalty calculating equations
for the violation of the threshold Thhigh and Thlow with ω×
(L− Thhigh) and ω× (Thlow −L), respectively. The reward
value is calculated after each action is executed.

The training process is shown in Algorithm 1. In line 1,
we set the total number of iterations of the training process.
Lines 2-4 run a series of experiment episode for the DRL
agent and obtain the reward data. Lines 5-11 calculate the
update value for the parameters of the neural networks based
on the obtained reward data. Line 12 regulates the episode
length and updates the neural networks of the DRL agent.

VI. EVALUATION

A. Experiment Setup

In our experiment, the functional modules of DeepMigration
are implemented as modules on a POX controller with Ten-

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on August 08,2020 at 00:03:26 UTC from IEEE Xplore. Restrictions apply.

��� ���
�������	�	
�������
������������ �������	�	
�������
������������

Fig. 4: Performance in the scale-out scenario

���
�������	���
��
�	���

����������

���
�������	���
��
�	���

����������

Fig. 5: Performance in the scale-in scenario

sorFlow. The network testbed is built with eight servers and
one work station. The eight servers run NF instances, and the
work station runs the POX controller. Each server is equipped
with two Intel Xeon E5-2600 CPUs, 128G RAM, two 10G
NICs, and Ubuntu 16.04. The work station has one Intel Xeon
W2145 CPU, 256G RAM, one TITAN V GPU, and one 10G
NIC. All the servers are connected to a PICA8 switch, and
the work station is connected to the PICA8 switch through the
controller port. We use a real-world traffic pattern LBNL/ICSI
trace [29] to evaluate the performance of DeepMigration. In
our experiment, we train the model with 40000 iterations. The
learning rate α is set with an initial value of 5 × 10−3 and
declines to a final value of 1×10−3 as the number of iteration
increases.

B. Comparison Algorithms

We compare the performance among the following schemes:

1) OFM [10] uses one three-step heuristic algorithm for
the scale-out scenario, one three-step heuristic algorithm
for the load balancing scenario, and solves the optimiza-
tion problem to get an optimal solution for the scale-in
scenario.

2) Size-greedy picks the largest flow from the hot spot to
migration flows to other NF instances. It maximizes the
size of flows placed on current existing instances and
minimizes the required number of new NF instances in
the scale-out scenario.

3) Pairwise iteratively picks an overloaded and an under-
loaded NF instance as a pair and then migrates the flows
between each pair of instances for load balancing.

4) Random picks an underloaded NF instance to another
instance randomly in the scale-in scenario.

5) DeepMigration (DM) In DeepMigration, use a set of
GNNs to calculate the flow migration policy. The GNNs
are trained through a DRL framework.

Fig. 6: Performance in the load balancing scenario

6) Optimal solves the optimization problem (3)-(6) and
gets an optimal solution for each scenario.

C. Performance

In this section, we compare the performance of DeepMi-
grationwith other schemes in the following aspects: migration
performance in scale in/scale out/load balancing scenarios, and
the migration policy calculation time.

Scale-out. In this scenario, we implement ten NF instances
of the same resource allocation with the type of Prads [10],
and set the number of overloaded instances as 4,6,8. The traffic
pattern follows the LBNL/ICSI trace. When the number of
overloaded instances increases, the addition of NF instances
is more likely to be required. The threshold Thhigh is also set
to 55% and 60% respectively to test the performance under
different trigger requirements. We compare the performance
of DeepMigration with OFM, the optimal solution and a size-
greedy algorithm, and the result is shown in Fig. 4. As the
figure shows, compared to size-greedy and OFM, DeepMi-
gration induces less migration cost and the performance is
closer to the optimal solution. When the Thhigh is set to
60%, DeepMigration has 63.3% less migration cost than OFM
(2.2× 105 compared to 6.0× 105). This is mainly due to the
advantage of GNN in the analysis of graph-structured data.

Scale-in. When there are underloaded NF instances, we can
migrate the flows of such instances to others and reduce the
overall number of instances, which brings a scale-in benefit. To
test the performance under this scenario, we implement totally
50 instances, and set the number of underloaded instances to
5, 10, and 15, respectively. The LBNL/ICSI trace is scattered
to generate a low traffic load on NF instances. We also set
Thlow to 10% and 15% to test the performance under different
trigger conditions. The result is shown in Fig. 5. As shown in
the figure, DeepMigration shows similar performance with the
optimal solution. Both DeepMigration and OFM perform far
better than the random algorithm.

Load Balancing. In the load balancing scenario, the migra-
tion policy aims to reduce the variance of the traffic load a-
mong all NF instances. In our experiment, we vary the number
of NF instances from 10 to 40 to test the performance under
different network scale. We use varori to denote the original
variance of traffic load and varlb to denote the traffic load
variance after a load balancing operation, then we can evaluate
the load balancing performance with ratio = varori/varlb. As
shown in Fig. 6, DeepMigration achieves an obvious higher
variance reduction ratio (2.23, 2.42, 2.87 and 3.36) than OFM

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on August 08,2020 at 00:03:26 UTC from IEEE Xplore. Restrictions apply.

�

��

���

���

���

�� �� �� ���	

�

��
�	

���
�

���

�

�

��
����	�������������

��� ���!��� "�

Fig. 7: Computation time

(1.63, 1.76, 2.15, and 2.32) and Pairwise (1.02, 1.21, 1.22,
and 1.23), and the ratio is approximate to the optimal solution
(2.75, 2.82, 3.21, and 3.57) when the number of NF instances
is 40.

Computation Time. The computation time is used to reflect
the scheme’s scalability. We pick flows from LBNL/ICSL trace
to generate similar traffic patterns for different numbers of
NF instances. Moreover, we use the load balancing scenario
to test the computation time of DeepMigration. The average
number of flows on each instance is set to 40, and the number
of instances varies from 10 to 40. As shown in Fig. 7,
DeepMigration can significantly reduce the computation time
compared to Pairwise and OFM. Furthermore, as the scale of
the network expands from 10 to 40, the computation time
of DeepMigration increases by 104% (from 24 ms to 49
ms), which is much less than the Pairwise (277%) and OFM
(312%). Specifically, when the number of NF instances is 40,
the computation time of DeepMigration is only 28.4% of OFM
and 41% of Pairwise. Therefore, DeepMigration has a better
scalability performance than Pairwise and OFM.

VII. CONCLUSION

In this paper, we propose DeepMigration to efficiently solve
the flow migration problem and improve the QoS in NFV
elastic control. DeepMigration combines GNN and DRL to
generate dynamic flow migration policies based on the varying
network traffic. DeepMigration is deployed online and adjusts
the flow migration policy based on continuously monitoring
the network status. The results shows that DeepMigration can
reduce the flow migration cost compared to existing schemes.
The advantage of DeepMigration validated in this paper proves
the potential of GNN and DRL in solving the control problems
in networks.

REFERENCES

[1] V. Eramo, E. Miucci, and et al., “An approach for service function
chain routing and virtual function network instance migration in net-
work function virtualization architectures,” IEEE/ACM Transactions on
Networking, vol. 25, no. 4, pp. 2008–2025, 2017.

[2] R. Mijumbi, J. Serrat, and et al., “Network function virtualization: State-
of-the-art and research challenges,” IEEE Communications Surveys &
Tutorials, vol. 18, no. 1, pp. 236–262, 2015.

[3] B. Yi, X. Wang, and et al., “A comprehensive survey of network function
virtualization,” Computer Networks, vol. 133, pp. 212–262, 2018.

[4] F. Z. Yousaf, M. Bredel, and et al., “NFV and SDN-Key technology
enablers for 5G networks,” IEEE Journal on Selected Areas in Commu-
nications, vol. 35, no. 11, pp. 2468–2478, 2017.

[5] Z. Xu, F. Liu, and et al., “Demystifying the energy efficiency of network
function virtualization,” in IEEE/ACM 24th International Symposium on
Quality of Service (IWQoS). IEEE, 2016, pp. 1–10.

[6] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement. ACM, 2010, pp. 267–280.

[7] A. Roy, H. Zeng, and et al., “Inside the social network’s (datacenter) net-
work,” in ACM SIGCOMM Computer Communication Review, vol. 45,
no. 4. ACM, 2015, pp. 123–137.

[8] N. McKeown, T. Anderson, and et al., “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[9] A. Gember-Jacobson, R. Viswanathan, and et al., “OpenNF: Enabling
innovation in network function control,” in ACM SIGCOMM Computer
Communication Review, vol. 44, no. 4. ACM, 2014, pp. 163–174.

[10] C. Sun, J. Bi, and et al., “Enabling NFV elasticity control with optimized
flow migration,” IEEE Journal on Selected Areas in Communications,
vol. 36, no. 10, pp. 2288–2303, 2018.

[11] Y. Wang, G. Xie, and et al., “Transparent flow migration for NFV,” in
2016 IEEE 24th International Conference on Network Protocols (ICNP).
IEEE, 2016, pp. 1–10.

[12] B. Kothandaraman, M. Du, and P. Sköldström, “Centrally controlled
distributed VNF state management,” in Proceedings of the 2015 ACM
SIGCOMM Workshop on Hot Topics in Middleboxes and Network
Function Virtualization. ACM, 2015, pp. 37–42.

[13] S. Woo, J. Sherry, and et al., “Elastic scaling of stateful network
functions,” in 15th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 18), 2018, pp. 299–312.

[14] A. Gember-Jacobson and A. Akella, “Improving the safety, scalability,
and efficiency of network function state transfers,” in Proceedings of
the 2015 ACM SIGCOMM Workshop on Hot Topics in Middleboxes
and Network Function Virtualization. ACM, 2015, pp. 43–48.

[15] S. Palkar, C. Lan, and et al., “E2: a framework for NFV applications,”
in Proceedings of the 25th Symposium on Operating Systems Principles.
ACM, 2015, pp. 121–136.

[16] Y. Lin, U. C. Kozat, and et al., “Pausing and resuming network flows
using programmable buffers,” in Proceedings of the Symposium on SDN
Research. ACM, 2018, p. 7.

[17] M. Alhamad, T. Dillon, and E. Chang, “Conceptual SLA framework
for cloud computing,” in 4th IEEE International Conference on Digital
Ecosystems and Technologies. IEEE, 2010, pp. 606–610.

[18] L. Wu, S. K. Garg, and R. Buyya, “SLA-based resource allocation for
software as a service provider (SaaS) in cloud computing environments,”
in 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing. IEEE Computer Society, 2011, pp. 195–204.

[19] A. Sadeghi, G. Wang, and G. B. Giannakis, “Deep reinforcement learn-
ing for adaptive caching in hierarchical content delivery networks,” IEEE
Transactions on Cognitive Communications and Networking, vol. 5,
no. 4, pp. 1–10, Dec. 2019.

[20] G. Wang, B. Li, and G. B. Giannakis, “A multistep lyapunov ap-
proach for finite-time analysis of biased stochastic approximation,”
arXiv:1909.04299, 2019.

[21] X. Chen, C. Wu, T. Chen, H. Zhang, Z. Liu, Y. Zhang, and M. Bennis,
“Age of information-aware radio resource management in vehicular
networks: A proactive deep reinforcement learning perspective,” IEEE
Transactions on Wireless Communications, pp. 1–1, 2020.

[22] D. Silver, G. Lever, and et al., “Deterministic policy gradient algorithm-
s,” 2014.

[23] R. S. Sutton, D. A. McAllester, and et al., “Policy gradient methods
for reinforcement learning with function approximation,” in Advances
in neural information processing systems, 2000, pp. 1057–1063.

[24] E. Greensmith, P. L. Bartlett, and J. Baxter, “Variance reduction tech-
niques for gradient estimates in reinforcement learning,” Journal of
Machine Learning Research, vol. 5, no. Nov, pp. 1471–1530, 2004.

[25] H. Mao, M. Schwarzkopf, and et al., “Learning scheduling algorithms
for data processing clusters,” in Proceedings of the ACM Special Interest
Group on Data Communication. ACM, 2019, pp. 270–288.

[26] H. Hu, Z. Liu, and J. An, “Mining mobile intelligence for wireless
systems: A deep neural network approach,” IEEE Computational Intel-
ligence Magazine, vol. 15, no. 1, pp. 24–31, 2020.

[27] J. Zhou, G. Cui, and et al., “Graph neural networks: A review of methods
and applications,” arXiv:1812.08434, 2018.

[28] P. W. Battaglia, J. B. Hamrick, and et al., “Relational inductive biases,
deep learning, and graph networks,” arXiv:1806.01261, 2018.

[29] “LBNL/ICSI enterprise tracing project,” http://www.icir.org/
enterprise-tracing, accessed October 4, 2019.

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on August 08,2020 at 00:03:26 UTC from IEEE Xplore. Restrictions apply.

