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Paper Objective

o Godl
o Use distributed reinforcement learning (DRL) in sensor networks
o Decenftralized cooperation among independent sensors

o Introduce three DRL approaches
o IndLearners
o Distributed Value Function (DVF) DRL
o Optimistic DRL (OptDRL)
o Apply approaches in a simulation comparing:
o Policy convergence

o Energy consumption
o Memory consumption



Multi-Agent Systems (MAS) In
Wireless Sensor Networks (WSN)

o Mulfi-agent systems

o Independent agents each acting upon the
environment

o Frequently changing environment dynamics

o Wireless sensor networks
o Limited energy per sensor
o Sensors can communicate with one another
o Incurs energy costs

o May or may not have a central hub °
o Centralized or decentralized

o Decentralization
o Reduces energy consumption
o Scalable
o Natural implementation



Reinforcement Learning Overview
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M =(S,A,P,R)

S is a discrete set of states

P.:.SxA - S

A is a discrete set of actions

Pl = Prob(siy1 = s'|sy = s,a; = a)

R:SxA—-R
RS, = E[ri11|8t41 = 8,8 = 8, a4

Markov Decision
Process (MDP)

o Markov Property
o Future outcomes based only on current state
o MDP = RL problem that has Markov
property
o Defined as a 4-tuple



Policies and
Value Functions

Policy
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Discounted rewards
State-value function
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Action-value function
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Q™ (s,a) = E™{R|s; = s,a; = a}
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Policy convergence

Q™ (s,a) = max Q" (s,a) V (s,a) € S x A




Q-Learning

o Hold a 2D lookup table of [state, action] Q-values
o Update Q-values base on:

Qi+1(8¢,0a1) = (1 — a)Q(sy,a¢ )+

Q (Tt+1 (St+1) +7 I(?Eaf Qt(St+1, a,))



Fully Distributed Q-Learning
(IndLearning)

o Rudimentary approach
o Used as baseline comparison

o NOo communication among agents
o Each agent acts according to independent Q-learning

o Not guaranteed to converge on an optimal policy
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1, otherwise.

Distributed Value
~unction (DVL) DRL

o Agents communicate information about
value functions

o Communicates with all other nodes via
the value function

o Results in something like global reward but
decentralized

o Algorithm
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Multi-Agent
MDP (MAMDP)

o Extends the basic MDP from RL to
multiple agents

o Considers the state and action of every
agent

o MAS state and action = vector of
individual states and actions

o Similar 4-tuple to MDP
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Opftimistic DRL
(OptDRL)

o Uses two equations to ensure
convergence of optimal policy
o First equation
o Q-function
o Assumes other agents act optimally
o Second equation

o Updates the policy only when there is an
improvement

o Infroduces coordination among agents



Simulations
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5 stationary agents illuminating a 10x10 room

Goals
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o Fully illuminate a room

o Minimize energy consumption
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Agent actions
o Lights off (No energy)
o Lights low (Some energy)
o Lights high (High energy)

Agent states
o Light level of the 5x5 grid around the agent
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o All other agents turn on lights high




Results

o Converged policies
o IndLearners: all agents lights high (not optimal)
o DVF and OptDRL: optimal

o Convergence time
o DVF: 4400 iterations
o OptDRL: 1200 iterations

o Energy consumption
o OpfDRL uses more energy for communication and computation than DVF

o Memory requirements

Expression Actual values
IndLearners |s*] x |AY| 2% x 3
.~ DVF |s*| x |A*] + |s°] 2%° % 4
OptDRL S| x |A*| + | S| 2% x 4




