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Abstract—Large-scale spatial data can be collected using mobile robots with sensing and navigation capabilities. Due to limited

battery lifetime and scarcity of charging stations, it is important to plan informative paths so as to maximize the utility of data given a

limited travel budget, which is known as the informative path planning (IPP) problem. IPP isNP-hard, and existing solutions suffer fromhigh

complexity or low optimality. In this paper, we present a novel IPP solution based on reinforcement learning (RL). The basic idea is to learn

the structural characteristics of informative paths, so informative paths can be predicted. As such, when budgets change, we avoid solving

the problem from scratch and thus path planning efficiency can be improved dramatically. Among the 20 path planning experiments in two

areas, the proposedRL based solution achieves the best path utility in 15 experiments, compared with state-of-the-art algorithms. More

importantly, the inference complexity is linear with respect to the budget (equivalently, themaximumnumber of steps inRL), which is lower

than other solutions. Despite the NP-hardness, the path planning process can be finishedwithin a few seconds in our experiments on two

graphs of different sizes.

Index Terms—Informative path planning, mobile sensing, reinforcement learning

Ç

1 INTRODUCTION

LARGE-SCALE spatial data (e.g., temperature, humidity, air
quality, and location fingerprints) are essential for a

wide range of applications. One common characteristic of
these applications is that the data to be collected are location
dependent. However, it is usually time-consuming and
labor-intensive to collect those data manually. To reduce
human efforts and automate the data collection process, one
extensively investigated approach is to deploy wireless sen-
sor networks (WSN) [1], which is widely used as a means of
continuous environment monitoring. To exploit mobility,
WSN with mobile elements [2] has also been considered.
While individual sensing devices are typically at low costs,
deploying and maintaining a large-scale WSN incur high
capital and operational expenses.

For one-time or infrequent data collection, robotic tech-
nologies offer a viable and cost-effective alternative to fixed
deployments [3]. A robot equipped with sensing devices
can be controlled to traverse a target area and collect data
along its path. Although robots can significantly reduce
human efforts, they are battery powered and have limited
lifetimes. Given a travel budget constraint (e.g., maximum
travel distance or time), it is important to plan motion paths
such that the state of the target area can be accurately esti-
mated using the data collected.

One criteria for path planning is informativeness. In gen-
eral, stationary spatial processes with different degrees of
smoothness can be modeled as Gaussian Processes (GPs) [4]

with appropriate kernel functions. Based onGPs,mutual infor-
mation (MI) has been used to measure the informativeness of
sensor placement [5]. In [6], [7], [8], MI is also used tomeasure
the informativeness of a path formobile sensing. The problem
of finding the most informative path from a start location to a
terminal location subject to a budget constraint is called infor-
mative path planning (IPP). Usually, for scenarios where IPP is
beneficial, there are two salient characteristics. First, the infor-
mativeness is not uniformly distributed across the target field.
This situation can arise when some sites have past observa-
tions. Second, the travel budgets of mobile agents are limited.
Many real-world applications can benefit from IPP, such as
precision agriculture [9], environmental monitoring [10] and
location fingerprint collection [11].

IPP problems are generally formulated on graphs [7], [8],
with vertices representing way-points and edges represent-
ing path segments. The utility1 of a path can be associated
with the vertices, edges or both from the path. In the special
case where utility is limited to vertices and is additive, the
IPP problem degenerates to the well-known Orienteering
Problem (OP), which is known to be NP-hard [12]. Due to
its complexity, existing solutions to IPP mostly adopt heu-
ristics based search strategies such as greedy search [13]
and evolutionary algorithms [11], [14]. These solutions often
suffer from inferior performance. Furthermore, for the same
environment, start and terminal locations, these solutions
typically treat problem instances with different budgets as
independent, and thus need to re-compute from scratch
when the budget changes. Budget variations are not uncom-
mon in practice due to different battery capacities, charging
statuses or timing requirements.

In this work, we model IPP as a sequential decision prob-
lem. Given the start vertex on a graph, a path is constructed
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sequentially by appending the next way-point vertex. We
use reinforcement learning (RL) to learn the structural char-
acteristics of informative paths and maximize the total
future reward, which is equivalent to the utility of a path. In
the context of IPP, the path utility is mainly determined by
the landscape of the environment and locations of existing
observations. Using the learned RL model, informative
paths can be predicted given any input budget. The benefit is
two-fold. First, we avoid learning different models for dif-
ferent budgets. Second, by considering problem instances
with different budgets jointly, learning can be more efficient
due to shared structures.

Compared with conventional RL tasks, IPP poses a few
non-trivial challenges. IPP itself can be seen as a combinato-
rial optimization problem that consists of two NP-hard sub-
problems, i.e., which subset of vertices to visit and in which
order to visit them. In IPP, the reward of an action depends
on past actions. For instance, re-visiting a vertex can lead to
less but non-zero reward. In addition, eligible paths are con-
strained by budgets and also terminal locations. As a result,
RL needs to be tailored carefully to the problem setting. We
propose a general reinforcement framework for IPP based
on recurrent neural network (RNN). A novel action selec-
tion method is designed to accommodate path specifications
and improve learning efficiency.

To evaluate the proposed approach, we consider the task
of WiFi Received Signal Strength (RSS) collection in indoor
environments. WiFi RSS measurements are widely used in
fingerprint-based indoor localization solutions [15], [16],
[17]. In [11], it is shown that data collected along informa-
tive paths tend to achieve better localization performance.
In our experiments, real RSS data have been collected from
two areas to estimate the hyperparameters of GPs and set
up the environment of RL. In total, 20 different path specifi-
cations (different start/terminal vertices, or budget con-
straints) have been evaluated. Among them, the RL based
IPP algorithm outperforms state-of-the-art methods in 15
configurations with higher informativeness. More impor-
tantly, our RL based path planning method is much more
efficient than other solutions, and have a comparable run
time as the simple greedy algorithm.

The rest of this paper is organized as follows. In Section 2,
related work to IPP and a background of RL are introduced
briefly. The IPP problem is formulated in Section 3. We
present the proposed solution in Section 4. Experimental
results are shown in Section 5. Finally, we discuss and con-
clude our work in Section 6 and 7, respectively.

2 RELATED WORK AND BACKGROUND

In this section, we review some related studies on IPP and
give a brief introduction to RL.

2.1 Informative Path Planning

The goal of IPP is to plan a path such that the utility (infor-
mativeness) of data collected along the path is maximized.
The concept of informativeness comes from MI in informa-
tion theory. Originally, MI is adopted as a criteria of location
optimization for sensor placement [5] when static sensors
are deployed for spatial monitoring. When mobile agents
like robots are available to travel across the target area for

data collection, the criteria extends to path planning natu-
rally, known as informative path planning [6].

One major challenge of IPP is that the problem is a com-
binatorial optimization problem with NP-hard [11] com-
plexity. Thus, it is difficult to achieve optimality and
efficiency at the same time. A few conventional solutions to
IPP rely on the Recursive Greedy (RG) algorithm [18]. The
basic idea is to exhaustively consider all possible combina-
tions of intermediate vertices and budgets, and then apply
the algorithm recursively on the smaller sub-problems. IPP
with RG can be found in [6], [7]. Specifically, [7] also consid-
ers rewards from edges besides vertices. To reduce the high
computation complexity of RG, [6] proposes spatial decom-
position to create a coarse graph by grouping vertices into
cells. The algorithm is then applied on the cell-based coarse
graph. Unfortunately, doing so could compromise optimal-
ity compared with on the original graph. In [19], the authors
discuss the scenarios whether paths have start or terminal
restrictions and adopt greedy algorithms to schedule paths
since all the three scenarios are NP-hard.

Evolutionary strategies have been investigated for IPP.
In [11], a Genetic Algorithm (GA) based solution is pre-
sented, and experiments show that GA achieves a good
trade-off between computation complexity and optimality.
The authors in [20] model the path planning process as a
control policy and a heuristic strategy is proposed by incre-
mentally constructing the policy tree. In [21], [22], the
Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) is utilized to optimize paths in a continuous space. To
reduce the search space, paths are constrained using control
points and constructed with splines. After path planning, in
the robot deployment stage, they also consider re-planning
and adaptive sampling so as to focus on regions of interests.
The basic idea is to omit locations where the predicted
measurements (based on GP) are below a certain threshold.
When the objective of path planning is to detect abnormal
or extreme observations, Bayesian Optimization is also lev-
eraged [23]. In this work, we focus on the path planning
stage, and informativeness does not depend on specific
measurement values but only their locations. This is suitable
for applications where the goals are to explore the environ-
ments and map the scalar field, like to survey the RSS signa-
tures in indoor spaces for localization purpose or to map
the temperature of a target field. In addition, both [21], [22]
do not consider obstacles and assume the robots can travel
anywhere in the continuous space. By contrast, we follow
the graph based formulation [7], [8], which is advantageous
especially when the sensing area has road-maps or obstacles
since reachability could be constrained directly with edges.

Some works make further assumptions that each vertex
can be visited only once, and rewards can be obtained only
at the vertices. Under such assumptions, IPP can be decom-
posed to subset (vertices) selection and path construction.
Once the set of vertices are determined, a travelling sales-
man problem (TSP) solver can be utilized to construct a
path with the minimum cost. In [24], a randomized algo-
rithm is presented, where vertices are randomly added or
removed repetitively to track the best subset. Similarly,
in [25], way-points are added incrementally and the TSP
solver is utilized to generate paths. However, in practical
IPP scenarios, the aforementioned assumptions are not
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necessary, since i) vertices could be visited multiple times,
particularly when the graph is not complete; ii) rewards can
be obtained while the agent is moving along the edges
because sensors are recording the spatial data.

Due to the NP-hardness, most existing solutions suffer
from sub-optimal performance or incur a high computation
complexity. In addition, when budgets change, even with
the same start and terminal location, the path planning pro-
cess needs to be repeated from scratch, which further
degrades efficiency. In our previous work [26], we found
that transfer learning can mitigate this situation to some
extent. In this work, we aim to train models that can make
predictions when budgets change. Thus, path planning effi-
ciency can be greatly improved.

2.2 Reinforcement Learning

RL [27] is a type of learning approach in machine learning.
It is mainly used to solve sequential decision problems,
where an agent interacts with the environment. In each
step, the agent takes an action and receives a reward signal.
The ultimate goal is to learn a decision policy such that the
total reward received by the agent following the policy is
maximized.

There are two main types of approaches towards RL,
namely value-based and policy-based approaches. Repre-
sentative algorithms include Q-learning and policy gradi-
ent, respectively. Specifically, Q-learning aims to learn a
function mapping between state-actions and q-values. Once
the function relation is learnt, the corresponding policy can
be induced. On the other hand, policy gradient formalizes
and learns the policy directly through gradient ascent.
Researchers have also proposed to combine the value-based
approach and the policy-based approach, which is the
actor-critic [28] methods. A critic (value-based) is trained to
evaluate the actions selected by the actor (policy-based). In
many cases, actor-critic methods show better convergence
property compared with policy gradient methods such as
the reinforce algorithm.

In recent years, with the advancement of deep neural net-
works [29], deep reinforcement learning [30] emerged as an
effective RL paradigm, and it has been applied in a variety
of applications such as games, robotics and traffic signal
control. In particular, two works [31], [32] attempt to adopt
RL in combinatorial optimization. In [31], the authors focus
on the TSP and utilize a pointer network to predict the dis-
tribution of vertex permutations. Parameters of the network
are optimized using policy gradient with negative tour
lengths as reward signals. In [32], a Q-learning approach is
presented. Graph embedding techniques are leveraged for
graph representation, and the solution is evaluated through
Minimum Vertex Cover, Maximum Cut and TSP.

Both [31], [32] assume that the graphs are complete.
However, in the real world, presence of obstacles in spatial
areas implies that the corresponding graphs have limited
connectivity. In this work, our proposed solution allows the
graph to be an arbitrary graph. In addition, to solve the TSP,
it only needs to optimize the order of vertices. While in IPP,
besides the order, it also needs to consider which subset of
vertices to select together with other specifications such as
budget, start and terminal vertices. These conditions make

the problem even more challenging and solutions in [31],
[32] are not feasible for IPP. To the best of our knowledge,
this is the first time RL is investigated to solve the IPP
problem.

3 PROBLEM FORMULATION

The IPP problem operates on a graph. In practice, the graph
can be created with points of interests as vertices, and an
edge exists if two vertices are reachable. Another way is to
create a grid graph if the target area is open. Next, we first
define the general path planning problem and then extend
it to IPP.

3.1 General Path Planning With Limited Budget

We formalize a general path planning problem on a graph
with a five-tuple hG; vs; vt; fðPÞ; Bi. Specifically,

� G ¼ ðV; EÞ is the graph, with V and E representing
the set of vertices and edges, respectively. Each v 2
V is associated with a physical location x. Note that
we consider the target area is 2D shaped, thus x is a
2D coordinate. For each e 2 E, there is a correspond-
ing cost cðeÞ (e.g., the length of the edge) for travel-
ling along the edge.

� vs 2 V is the start location, and vt 2 V is the expected
terminal location. These locations could possibly be
the depot of the robot or a charging station.

� P ¼ ½vs; . . . ; vk; . . . ; vt� denotes a valid path2, and
fðPÞ represents the corresponding utility.

� B represents the budget available for the path. We
emphasize two scenarios: i) B is known and fixed; ii)
B can be variable, this can be the case when the robot
is not fully charged. Almost all the existing path
planning algorithms assume the budget is fixed.
When the budget changes, the natural solution is to
re-run the algorithm with the updated budget, which
is quite inefficient.

The cost of a pathP is the sum of edge cost along the path,

cðPÞ ¼
XjPj�1

i¼1

cðP½i�;P½iþ 1�Þ; (1)

where P½i� is the i-th vertex in P and ðP½i�;P½iþ 1�Þ repre-
sents the corresponding edge. The objective of path plan-
ning is to find the optimal path that satisfies

P� ¼ argmax
P2C

fðPÞ s.t. cðPÞ � B; (2)

whereC is the set of all paths in G from vs to vt.
One classic realization of the general path planning for-

mulation is the OP [12], [33], [34]. In OP, each vertex is asso-
ciated with a reward. Given a budget, the goal is to find a
subset of vertices to visit so as to maximize the total col-
lected reward, which is simply defined as the sum of
rewards from individual vertices.

2. In graph theory, a path is defined as a sequence of vertices and
edges without repeated vertices or edges. To be consistent with existing
IPP literature, we allow repetition of vertices on a path, the equivalent
of a walk in graph theory.
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3.2 Informative Path Planning

IPP is another realization of the general path planning prob-
lem by specifying the reward function with the informative-
ness of the data collected along the path. Next, we present
the details of fðPÞ for IPP based on GPs and MI. We recom-
mend [4] for more background on GPs.

Assume the data to be collected are modeled by a GP.
Thus, for each v 2 V at a physical location x , the corre-
sponding measurement yv (e.g., temperature or humidity) is
a Gaussian distributed random variable, and all the varia-
bles yV at locations of V follow a joint multivariate Gaussian
distribution,

N
mðx1Þ

..

.

mðxnÞ

2
64

3
75 ;

kðx1; x1Þ . . . kðx1; xnÞ
..
. . .

. ..
.

kðxn; x1Þ . . . kðxn; xnÞ

2
64

3
75

0
B@

1
CA;

where mðxÞ is the mean function, kð�; �Þ is the kernel, and
n ¼ jVj is the total number of vertices. For simplicity, we
also denote the multivariate Gaussian distribution with
NðmðXVÞ;SVÞ, where XV is a n� 2 matrix of the locations
of V, and SV is the n� n covariance matrix generated
through the kernel.

The differential entropy (also referred to as continuous
entropy) of yV is

HðyVÞ ¼
1

2
ln jSVj þ

n

2
ð1þ lnð2pÞÞ: (3)

Given P ¼ ½vs; . . . ; vk; . . . ; vt�, suppose data will be col-
lected by an agent along the path every d meter interval
(depends on travel speed and sample frequency). The sam-
ple locations can be easily calculated using the physical
positions of the vertices. We denote all the sample locations
as XS and the corresponding measurements as yS . The pos-
terior distribution of yV given yS isNðmm0;S0Þ, where

mm0 ¼ mðXVÞ þKðXV ; XSÞðKðXS; XSÞ þ s2
nIÞ

�1

yS �mðXSÞÞ;
(4)

S0 ¼ KðXV ; XVÞ �KðXV ; XSÞðKðXS; XSÞ þ s2
nIÞ

�1

KðXS; XVÞ:
(5)

Here sn represents the noise variance of the underlying GP,
and KðXV ; XSÞ is the kernel matrix generated by kð�; �Þ with
pair-wise entries in XV and XS . The conditional differential
entropy of yV given the observations yS is

HðyVjySÞ ¼
1

2
ln jS0j þ n

2
ð1þ lnð2pÞÞ: (6)

The MI based reward can then be calculated with

fðPÞ ¼ MIðyV ; ySÞ ¼ HðyVÞ �HðyVjySÞ: (7)

Note that since the differential entropy only depends on
the kernel matrix (i.e, the kernel function and P), reward
can be calculated analytically without travelling along the
actual path and taking real measurements. That is why
informative path can be planned in advance.

However, the kernel function kð�; �Þ usually has some
hyperparameters that need to be estimated. In some applica-
tion scenarios, such as wireless sensor networks with mobile
elements [1], the hyperparameters can be learned using
measurements from the existing static sensors. On the other
hand, in cases where no prior studies are available like in [5],
[7], [18], a pilot data collection round is conducted for hyper-
parameter estimation. Given a small set of pilot data
ðXD; yDÞ collected in advance at locationsXD with measure-
ments yD, the reward can then be calculatedwith

fDðPÞ ¼ MIðyV ; yS [ yDÞ ¼ HðyVÞ �HðyVjyS [ yDÞ:
(8)

In addition, although in our problem formulation we
assume the environment is 2D, it is straightforward to
extend to 3D environments. In a 3D environment, each ver-
tex in the graph is associated with a 3D coordinate. The GP
can be extended accordingly by assuming the locations of
observations are in 3D, and the entropy or mutual informa-
tion are still determined by the covariance matrices. Exam-
ples of using GPs in a 3D environment can be found in [21].
Given the input of IPP as < G; vs; vt; fðPÞ; B > , one naive
approach is to enumerate all the valid paths from vs to vt
and choose the path with the highest fðPÞ. However, since
the problem is NP-hard, brute force search is not computa-
tionally feasible in practice.

4 IPP SOLUTION WITH RL

In this section, we present an IPP solution framework based
on RL. RL concepts in the IPP context will be defined first,
followed by a solution overview and details.

It is straightforward to model IPP as a sequential decision
problem. Specifically, suppose an agent is exploring infor-
mative paths in G from vs to vt, with a budget B. As shown
in Fig. 1, we denote the vertices that have been traversed by
the agent up to the k-th step as the partial path �Pk. Initially,
�P1 ¼ ½vs� since the agent is at the start location. In subse-
quent steps, the agent decides which vertex to travel, and
the available vertices are the adjacent vertices of the last ver-
tex in �Pk, i.e., the current location. Once the the next vertex
is selected, the agent moves there and obtains an immediate
step reward signal. This decision process repeats until the
budget is exhausted or the agent successfully reaches vt.
Each round of path exploration is known as an episode.

Fig. 1. Sequential decision process for IPP.
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Formally, the decision process can be described by a
Markov Decision Process (MDP) [35] < S;A; T ;R > ,
where

� S is a finite set of states, which includes information
such as the partial path �P and budget status.

� A is a finite set of actions which is equivalent to V.
However, for each step, only a limited subset of
actions (adjacent vertices) are available.

� T is the state transition function3 defined as T :
S � A!S. The main effect of state transition here is
that the partial path extends by one vertex.

� R is the reward function defined as R : S � A!R,
where R is a real value representing the reward per-
ceived. The reward signal encourages the agent to
explore more informative paths, which will be dis-
cussed later.

To solve the MDP with RL, we define the decision mak-
ing policy as pðsÞ : S!A. At each time step t, the agent
takes an action at ¼ pðstÞ 2 A and perceives a reward rt.
The objective is to find a policy p such that the total future
reward

Rt ¼ rt þ grtþ1 þ . . .þ gT�trT ; (9)

is maximized, where g 2 ½0; 1� is a discount factor about the
priority of step reward and T is the last action time.

4.1 Solution Overview

Fig. 2 shows the overall architecture of the solution. For a
typical path planning scenario, the input is the target area
with a small amount of pilot data (or data collected from
existing static sensor nodes). The area is discretized and a
graph is created. As mentioned previously, the data to be
collected are spatially correlated and assumed to be gener-
ated from an underlying GP. With the pilot data, a GP
regression model is fitted and optimized to estimate the

hyperparameters. Once the hyperparameters are estimated,
the reward function fDðPÞ defined in (8) is determined,
which is used to evaluate the informativeness of paths and
calculate rewards.

One unique characteristic of IPP is that the reward of tak-
ing an action (visiting a vertex) depends on all the previous
actions. For instance, re-visiting a vertex that has been vis-
ited before is supposed to gain less reward than visiting an
new vertex. Thus, we incorporate the partial path into state
encoding and utilize a recurrent neural network (RNN) in
the architecture. To filter out vertices that are not adjacent to
the current position vk at each step, a connectivity mask vec-
tor m1 is added before the final output. Specifically, m1 has
a length of jVj and is defined as

m1½i� ¼
0 vi 2 adjðvkÞ
�1 else

;

�
(10)

where adjðvkÞ ¼ fv 2 V : ðvk; vÞ 2 Eg represents the adjacent
vertices of vk. Due to m1, the Q-values (for Q-learning) or
probabilities (in the policy network) of the non-adjacent ver-
tices are negligible by the policy.

Depending on how to interpret the output from the net-
work, different kinds of RL methods can be applied, such as
Q-learning, policy gradient and actor-critic. The respective
models can be trained accordingly using state transition
tuples. To ensure the agent can reach vt within the budget, a
novel action selection mechanism is designed, which may
differ depending on the RL method adopted. The reward of
the selected action can be calculated using fðPÞ. Next, we
give a detailed description of the key components.

4.2 State Encoding

Fig. 3 illustrates the state encoding scheme. Given the state
as h �Pk ¼ ½v1; v2; . . . ; vk�; vs; vt; Bi, it is encoded as a 5� k
matrix that can be fed into the RNN. For each vertex vi 2
�Pk, the corresponding RNN cell is ðxi; yi; xt; yt; bkÞT , where
ðxi; yiÞ represents the agent’s location, ðxt; ytÞ represents the
expected terminal location, and

Fig. 2. Solution overview with reinforcement learning.

3. In this work we consider deterministic transitions.
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bk ¼ B�
Xk
i¼2

cðvi�1; viÞ (11)

is the remaining budget. Since vs equals to v1 in �P, it is not
encoded separately like vt.

4.3 Action Selection

One naive action selection strategy is to select the next
action vertex from the adjacent vertices without any con-
straint, until the budget is exhausted. However, it cannot
guarantee that the agent will reach vt. In RL, one may signal
a penalty reward when the agent fails to reach vt, and expect
the agent to gain the knowledge of valid paths through the
reward signals. However, this simple solution will lead to a
large number of invalid paths that do not terminate at vt
and thus waste computation resources. Next, we present
our constrained action selection strategy that effectively
reduces the search space.

First, given �Pk ¼ ½v1; v2; . . . ; vk�, we define available
actions as

Að �PkÞ ¼ adjðvkÞ ¼ fv 2 V : ðvk; vÞ 2 Eg: (12)

Among Að �PkÞ, we further determine valid actions that have
chances to reach vt within B as

A0ð �PkÞ ¼ fv 2 Að �PkÞ : cðvk; vÞ þ LCPðv; vtÞ � bkg; (13)

where LCPðv; vtÞ denotes the Least Cost Path from v to vt
and can be solved using the Dijkstra algorithm. It can be
easily seen that if the agent selects an action from A0ð�PÞ for
every single step, it will reach vt eventually within the bud-
get constraint.

The action selection module needs to be customized for
the specific RL method adopted. We consider two types,
namely off-policy learning and on-policy learning. For off-
policy learning such as Q-learning, actions are usually
selected with the �-greedy policy. The output from the RNN
can be interpreted as Q-values, denoted by vector QV .
Actions can then be selected as

að �PkÞ ¼
random v 2 A0ð �PkÞ with probability �
argmaxv2A0ð �PkÞQV½v� with probability 1� �

:

�
(14)

For on-policy learning such as policy gradient, the output
of the neural network can be generally interpreted as the
probability distribution among actions, and actions are sam-
pled from this distribution. To incorporate the extra con-
straint information into the distribution directly, we
interpret the output from the RNN as the logits vector,
which is the output tensor without applying the softmax
operator. Then we define another mask vector as

m2½i� ¼ 0 vi 2 A0ð �PkÞ
�1 else

:

�
(15)

As such, the final distribution of actions can be computed as

pða j �PkÞ ¼ softmaxðlogitsþm2Þ; (16)

and actions can be sampled from this distribution. Invalid
vertices would not be selected due to their zero probability
resulted from the negative infinity.

4.4 Environment and Reward Mechanism

An environment for RL is designed based on the graph. For
each action, the agent receives an immediate reward signal
and extends the partial path to the next vertex. The reward
of taking an action a 2 A0ð �PkÞ is calculated as

rð �Pk; aÞ ¼ fð½ �Pk; a�Þ � fð �PkÞ: (17)

Therefore, the reward in each single step from a path P adds
up to the total reward of the path since

rðPÞ ¼ fðPÞ ¼
XjPj�1

k¼1

rð �Pk; aÞ: (18)

This is exactly the optimization goal as discussed in
Section 3.2, i.e., to maximize the informativeness of the
path. Finally, if the action equals to vt, the environment tran-
sits to the terminal state; otherwise the agent can repeat the
step to extend the partial path.

4.5 Reinforcement Learning Methods

The proposed architecture supports a variety of RL methods
such as Q-learning [36], policy gradient [37] and actor-
critic [38], withminor adaptations. RL itself is not considered
as a contribution in this work. Readers interested in RL can
consult [27] formore information. For completeness, we pro-
vide the basic steps of training typical RLmodels for IPP.

4.5.1 Q-Learning

For Q-learning, the RNN is interpreted as representing a
function Qu : S � A!R, with Quðs; aÞ being the total dis-
counted future reward by taking the action a from state s.
The policy given Qu can then be induced as pðsÞ ¼
argmaxaQuðs; aÞ.

At each time step t, let the state transition tuple be
hst; at; rt; stþ1i, namely, upon taking action at from state st,

Fig. 3. Input encoding for the states.
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the agent gets a reward rt and transits to stþ1. With the tran-
sition tuples generated from each episode, the network can
be optimized in an iterative way by minimizing the tempo-
ral difference using a loss function defined as

‘ðuÞ ¼
�
Quðst; atÞ � ðrt þ g max

a
Quðstþ1; aÞÞ

�2
: (19)

To stabilise the training process, advanced techniques
have been proposed in recent years like DDQN [39], Priori-
tized Experience Replay [40], which can be adopted directly
in the solution.

4.5.2 Policy Gradient

Q-learning models the Q-values to guide decision making
indirectly, while policy gradient directly models the action
probability. Let the probability distribution of actions given
the states as puða j sÞ, and we denote one episode of length T
as t ¼ ðs1; a1; r1; . . . ; sT ; aT ; rT Þ. The expected total reward is

JðuÞ ¼ Et	puðtÞ½rðtÞ� ¼ Et	puðtÞ
XT
t¼1

rt

" #
; (20)

where puðtÞ ¼ pðs1Þ
QT

t¼1 puðat j stÞ is the probability of t

given pu. For episode t, the gradient of JðuÞ is then given by

ruJðuÞ ¼ Et	puðtÞ
XT
t¼1

rulogpuðat j stÞ
 ! XT

t¼1

rt

 !" #
:

(21)

The reinforce algorithm is a policy gradient approach
that uses (21) to update the model. Usually, policy gradient
methods update the model when a whole episode is fin-
ished. Note that in implementation, the output from the
RNN is not the probability, but the logits, since the final
probability of actions needs to incorporate another mask
vector as discussed in Section 4.3.

4.5.3 Actor-Critic

One disadvantage of policy gradient is that the policy esti-
mator suffers from a high variance [41], and it has to wait
until the end of an episode to update the model. Actor-critic
methods address this issue by approximating the gradient
with

ruJðuÞ 

XT
t¼1

rulogpuðat j stÞAðst; atÞ; (22)

where Aðst; atÞ is the critic used to assess the utility of the
action. One typical option is the advantage actor-critic
(A2C) [42],

Aðst; atÞ ¼ rt þ Vfðstþ1Þ � VfðstÞ; (23)

where Vf is another neural network to estimate the state
value and can be trained by minimizing the temporal differ-
ence of ðrt þ Vfðstþ1Þ � VfðstÞÞ2. The original network is
called the actor network. The state value (S-value) network
only depends on the state, and does not need the vertex con-
nectivity mask as shown in Fig. 2. Both networks share the
RNN component for better efficiency.

4.6 Model Training and Path Inference

In our previous work [26], we considered the case when the
budgetB is given and fixed. As such, the agent learns to con-
struct informative paths gradually, and there is no separate
inference procedure required. The best path obtained during
the training stage is the final output path. However, when
the budget changes, like existing IPP solutions, the learning
process needs to be repeated, which can be time-consuming.
We proposed transfer learning to mitigate this issue to some
extent. In this work, we address this issue by trainingmodels
that can be used to predict informative paths with variable
budgets. Thus, the efficiency can be improved greatly since
only the inference process is required.

4.6.1 Model Training

Although the exact budget B is unknown in advance, we
assume it falls in a range depending on the deployed sys-
tem. The basic idea is to train a model using different budg-
ets such that it could make predictions for unseen budgets.
To differentiate from the case when B is fixed, we denote a
set of possible budgets sampled from the range as B, which
will be used as training budgets.

The model training procedure is described by Algorithm 1.
For each episode, a specific budget B is randomly sampled
from B and used for training. Meanwhile, for everyE episode,
a snapshot of the model is captured and stored in a snapshot
setM, which is the final output of the training procedure. Note
that Algorithm 1 only outlines the general steps involved and
updates the model after each episode. For Q-learning or actor-
critic training, models can be updated step-wise. Other details
such as training a value-network for actor-critic are omitted.

Algorithm 1.Model Training Procedure

Input: hG; vs; vt; fðPÞ;Bi, snapshot period E
Output:model snapshot setM

1 choose and instantiate a RL model M;
2 initializeM ¼ fg ;
3 for episode e ¼ 1; 2; . . . do
4 randomly sample B 2 B ;
5 initialize �P ¼ ½vs� ;
6 episode records = {} ;
7 for step t ¼ 1; 2; . . . ; T do
8 selection action at with (14) or (16);
9 execute at and calculate reward rt with (17);
10 add h�P; at; rt; ½�P; at�i to episode records;
11 �P ¼ ½�P; at� ;
12 end
13 encode the states with episode records, vt; B ;
14 /*refer to section 4.2*/;
15 calculate the loss of the specific RL model M ;
16 update M with gradient descent;
17 if emodE ¼ 0 then
18 take a snapshot of M and add it intoM ;
19 end
20 returnM

4.6.2 Path Inference

In the model training stage, a collection of snapshots of the
model are captured. Since the model is trained based on the
transition tuples from different budgets, different snapshots
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can have different inference performance with regard to a spe-
cific budget. In addition, it is known that RL models can be
unstable andmaynot converge to the optimal policywhenneu-
ral networks are used to approximate the value functions or
policies. Thus, we store a set of snapshots of the model during
training.

In the path inference stage, given the specific budget B, all
the snapshots M are loaded and jMj paths are generated
greedily using these snapshots. The path with the maximum
reward is the final output path. The path planning procedure
is outlined in Algorithm 2. With such a mechanism, the solu-
tion can accommodate variable budgets. For instance, when
robots are not fully charged, their battery performance
degrade, new robots introduced, or there are task deadlines.

Algorithm 2. Path Inference Procedure

Input: vs; vt; B, model snapshot setM
Output: best path P�

1 initialize a path set PM ¼ fg ;
2 forM 2 M do
3 create an environment with vs; vt; B ;
4 initialize �P ¼ ½vs� ;
5 for step t ¼ 1; 2; . . . ; T do
6 select at by the max Q-value (or probability);
7 execute action at and get reward rt ;
8 if episode terminates then
9 add �P to PM;
10 else
11 �P ¼ ½�P; at�;
12 end
13 end
14 return P� ¼ argmaxP2PMfðPÞ

5 EXPERIMENTAL RESULTS

In this section, as a practical IPP application, we consider
the collection of Wi-Fi RSS, which has been extensively
investigated for fingerprint-based indoor localization [15],
[16], [17]. We first evaluate the impacts of constrained action
selection in learning efficiency and also inspect the conver-
gence property. We then investigate the impact of training
budgets and different RL methods. Finally, we compare the
performance of the proposed algorithms with other IPP
algorithms in terms of utility and path planning efficiency.

5.1 Graph Setting and Implementation

Two real-world indoor areas with different shapes are
selected and discretized into grid graphs. The first area is an
open area and the second area is a corridor. To estimate the
hyperparamers of the underlying GP, a small amount of
pilot WiFi signals are collected. The two areas are illustrated
in Figs. 4 and 5, respectively. Note that the vertices are
indexed with numbers, and later we will refer to the vertices
using the numbers.

The environment is implemented in Python, and it tracks
all the necessary information for state encoding and reward
calculation, such as partial paths, remaining budgets and
graph structures. To accelerate computation, shortest paths
between all pairs of vertices are calculated and stored in
advance, since the agent needs access to shortest paths at

each step to filter out invalid actions. The APIs of the envi-
ronment are similar to those in the OpenAI Gym4, a rein-
forcement learning toolkit with a variety of environments.

The neural network is implemented in PyTorch, where
each RNN cell is an LSTM unit. We adopted a one-direction
one-layer RNN structure, with a hidden size of 128. After the
last RNN cell, a linear layer is used to produce the final out-
put. During training, the learning rate is set to 0.0001, and
gradient clipping technique is used to avoid gradient explo-
sion. Reward discount factor g is set to 0.9, and a snapshot of
the model is taken for every 1000 episode (E in Algorithm 1).

5.2 Comparison With Unconstrained Action
Selection

In addition to the proposed constrained action selection, an
alternative simple action selection scheme is implemented
that considers all adjacent vertices as potential next way-
points as mentioned in Section 4.3.

We trained a double Q-learning [39] model with priori-
tized experience replay [40] using the two action selection
schemes. In the experiment, the budget is fixed at a specific
value. Fig. 6 and Fig. 7 show the average episode reward
with the learning process in Area One and Two, respectively.

Similar to [36], each epoch is defined as 50 episodes of learn-
ing, and 100 epochs are run for each budget setting. It can be
seen clearly that the constrained action selection strategy
achieves higher rewards (MI) and higher efficiency. During the
initial episodes of the unconstrained action selection scheme,

Fig. 4. Graph generated from Area One. The size of the whole area is
approximately 12m � 13m. The X and Y axes show the dimensions
in meters, and the color represents the uncertainty (entropy) of the
predicted signals by fitting a GP with the pilot data. The grid graph has
26 vertices and are indexed with integers.

Fig. 5. Graph generated from Area Two. This area is a “T”shape corridor,
with 25m in height and 64m in length. The graph has 61 vertices as
shown by the green circles.

4. https://gym.openai.com
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the rewards are low since most generated paths are invalid, i.e,
failing to terminate at vt. Thus, the agent will receive a penalty
reward signal at the last step. The difference is more significant
in Area Two since the graph size is larger than that of Area
One. In a larger graph, blind searches have a smaller probabil-
ity to construct a valid path. As can be seen from Fig. 7, under
some budget setting (e.g., 100, 110, 140) the unconstrained
action selection strategy fails to improve in terms of average
rewards. In comparison, the constrained action selection strat-
egy shows promising results, with the average reward improv-
ing gradually until convergence under different budgets.

5.3 Convergence Using Different RL Methods

Next we inspect the training convergence property with differ-
ent RL methods. Specifically, we evaluate Q-learning, the rein-
force algorithm and the advantage actor-critic algorithm. In this
experiment, the budgetB is not known in advance. Themodels
are trained using a budget set B as described in Algorithm 1.
For Area One, B is set to be the sequence of [30.5, 31.5, ..., 50.5]
and for Area Two it is set to be the sequence of [100.5, 101.5, ...,
140.5]. The goal is to demonstrate that the model is capable of
making predictions using the trained model for a specific bud-
get during inference. Since the number of vertices in the first
graph is smaller than that of the second graph, the number of
epochs trained for the twographs are 400 and1000, respectively.

In addition, in later sections, we will consider two types
of paths, namely

� tour, the agent is required to return to its start loca-
tion after data collection, i.e., vs ¼ vt,

� non-tour, the terminal location is different from the
start location, i.e., vs 6¼ vt.

For illustration purposes, for each episode, vs in AreaOne is
set to vertex 0, and vt is randomly sampled from vertices [0, 26]
in instances of tour and non-tour cases. Thus, in the path plan-
ning stage, themodel can be used to infer paths given the corre-
sponding vs and vt. Similarly, vs in Area Two is set to vertex 0
and vt is randomly sampled fromvertices [0, 60].

Fig. 8 shows the average reward per episode for different
RL methods. For Q-learning, note that episodes are gener-
ated through the �-greed policy (14) with � starts at 0.9 and
decays to 0.1 gradually; while for the other two methods,
episodes are generated from the policy network directly (16).
In both areas, it can be seen that A2C has a faster conver-
gence speed. In Area One, the reinforce algorithm shows a
similar trend to Q-learning, and A2C performs slightly bet-
ter after convergence. In Area Two, the reinforce algorithm
has a competitive performance compared with A2C after
convergence, and both methods outperform Q-learning.

5.4 Path Inference Performance

Next we show the performance when the models are uti-
lized for path inference with Algorithm 2. We first show the
performance of each snapshot and then the impact of train-
ing budget selection.

5.4.1 Impact of Snapshots

Snapshots captured during training are used to infer paths in
the inference stage. Fig. 9 shows the inference rewards for two
budgets in the two areas with different RL methods. For Q-
learning and the reinforce algorithm, it can be seen that differ-
ent snapshots havedifferent inference performances.Although
themodels converge in later episodes, one single snapshotmay
still lead to a low inference reward. Since the probability of a
path is puðtÞ ¼ pðs1Þ

QT
t¼1 puðat j stÞ, even a minor change on

the neural network parametersmay affect the inferred path sig-
nificantly. In contrast, we observed that snapshots from A2C
are more stable and consistent than those of Q-learning or the
reinforce algorithm.

5.4.2 Impact of Training Budgets

Recall that in Section 5.3we trained themodelwith a set of bud-
get B that is uniformly sampled from a range since the exact
budget B is not known. Intuitively, the selection of B could
affect the inference performance given a specific budgetB.

We selected another set of training budgets to train differ-
ent models. These models are used to infer paths and the
results are compared with those from the first set of training
budgets. Figs. 10 and 11 show the rewards obtained in Area
One and Two, respectively. It can be seen that Q-learning and

Fig. 6. Average reward per episodewithQ-learning in the graph fromArea
One. The start and terminal vertices are set to 0, so the path forms a tour.
Experiments are run for different budgets (maximum distance) with
�-greedy policy with � ¼ 0:9 initially and decay to � ¼ 0:1 at the 50th epoch.
Each epoch means learning for 50 episodes, and the Y axis shows the
average reward. (a) shows the unconstrained action selection scheme
and (b) shows the constrained action selection with shortest path.

Fig. 7. Average reward per episode with Q-learning in the graph from
Area Two. The parameter settings are similar with Fig. 6.

Fig. 8. Average reward per episode during training with different RL
methods.
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A2C have a similar performance and are less sensitive to the
training budgets, while the reinforce algorithm is more sensi-
tive, particularly in Area Two. This could be attributed to that
the reinforce algorithm has a high variance in gradients.

5.5 Comparison With Other IPP Solutions

In this section,we compare the rewards achieved through rein-
forcement learningwith those from some other IPP algorithms.
As shown from previous experiments, the three reinforcement
learning methods have their own characteristics, and there is
no single best method for all budgets during inference. Thus,
we combine the three RL methods and select the best path
inferred among the threemethods given a specification. Specif-
ically, as can be seen from Fig. 9, many snapshots have the
same result and thus only a subset of those snapshots are
needed. We take snapshots from each RL method every 5000
episode andmerge them together. Thus, forAreaOne, the total
number of snapshots is 3� 4 ¼ 12 since there are 20000 epi-
sodes trained. Similarly, inArea Two, the total number of snap-
shots is 30. Given a path specification, the final path is the one
with the maximum reward among the paths generated using
these snapshots.

The following algorithms have been implemented for
comparison:

Brute Force Tree Search. The brute force tree search tries to
enumerate all the paths from vs to vt under the budget con-
straint and tracks the path with the highest reward. A stack
is maintained to store the partial paths and branches are
searched similar to the depth-first-search traverse. Here vs
can be seen as the root of the search tree. To improve effi-
ciency, a search branch is pruned when vt is encountered or
the budget is exhausted. The advantage of this approach is
that it can provide the optimal path. However, due to the
complexity, this method can only be applied on the graph of
AreaOnewith a small budget, given amaximumof 72 hours.

Recursive Greedy Algorithm. The Recursive Greedy (RG)
algorithm is adapted from [18]. Originally, RG is designed
for the orienteering problem. The basic idea is introduced in
Section 2. The overall algorithm logic remains the same, but
the reward function is defined as the informativeness of
paths as introduced in Section 3.2.

Greedy Algorithm. The greedy algorithm is implemented fol-
lowing [11]. Vertices are selected greedily based on themarginal
reward-cost ratio, and a Stainer TSP solver is implemented
based on [43] to generate paths since the graph is not complete.

Genetic Algorithm. The Genetic Algorithm is also imple-
mented according to [11]. Each valid path represents a chro-
mosome, and a set of individuals (paths) are initialized. For
each generation, a crossover and a mutation process are
implemented. After a number of generations, the path with
the maximum MI is considered as the final solution. The
population size is set to 100. The number of generations for
Area One and Two, are 50 and 100, respectively. Due to ran-
domness, we run five rounds of experiments independently
and take the average for each budget setting.

For each area, we consider both the tour case (vs ¼ vt)
and a non-tour case (vs 6¼ vt). For each different path specifi-
cation (vs; vt and B), all the other solutions are executed
from scratch. In contrast, in the proposed RL based solution,
only the path inference procedure (Algorithm 2) is executed
using the snapshots captured during training (Section 4.6.1).

It can be seen from Fig. 12 that RL achieves the best per-
formance compared with all the other algorithms. When the
budget is under 40 meters, the brute force approach man-
aged to return the optimal path with the maximum reward.
Thus, the paths found by RL is also optimal, since they coin-
cide with those from the brute force search (note it is over-
lapped in the figure). The rewards obtained by GA and RG
increase monotonically with budgets, while the rewards
from the greedy algorithm sometimes remain unchanged
even when the budgets increase.

The graph fromArea Two contains 61 vertices,with budg-
ets larger than that in Area One, which leads to exponential
increase in terms of search space. Fig. 13 shows the results
from RL, RG, GA and the greedy approach. In the tour case,
RL outperforms the other algorithms in four out of the five
budget settings. However, in the non-tour case in Fig. 13b,
the greedy approach achieves better performance than other
solutions when budget is less than 130. Meanwhile, the RG
shows a limited performance under this scenario.

Overall, RL achieved the best performance in 15 cases out
of 20 test cases. For path planning, besides the optimality,

Fig. 9. Rewards of paths inferred using the snapshots. The snapshots
are captured every 1000 episode. For Area One, the path specification is
given as vs ¼ 0; vt ¼ 0; B ¼ 30, and for Area Two, it is
vs ¼ 0; vt ¼ 0; B ¼ 100.

Fig. 10. Rewards of paths generated through the models trained with dif-
ferent B in area one. The X-axis represent the specific B during infer-
ence, and vs; vt are set to 0 for a tour case. B in (a) is [30.5, 31.5, ...,
50.5], and B in (b) is [30, 31, ..., 50].

Fig. 11. Rewards of paths generated through the models trained with dif-
ferent B in area two. The X-axis represent the specific B during infer-
ence, and vs; vt are set to 0 for a tour case. B in (a) is [100.5, 101.5, ...,
140.5], and B in (b) is [100, 101, ..., 140].
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another important aspect is computation efficiency, which is
demonstrated next.

5.6 Path Planning Efficiency

RG suffers from a high computation complexity with
Oðð2nBÞI � TfÞ [18], where n is the number of vertices and
Tf is the maximum time to evaluate the reward function on
a given set of vertices, and I is the recursion depth. In our
experiments, I is set to two in both cases. A larger recursion
depth will increase the run time dramatically. The Greedy
algorithm relies on the TSP solver to generate paths, and the
complexity can be expressed as OðBn � tðnÞÞ, where tðnÞ is
the complexity of the adopted TSP solver. GA is an evolu-
tionary algorithm, and the complexity is dominated by the
defined number of generations and population size.

For RL, we mainly focus on the inference time, since the
training can be done offline before path planning. The infer-
ence complexity using the snapshots of models is OðT �
jMjÞ, where jMj is the number of snapshots used and T is
the number of steps in an episode.

The path planning time on an iMac desktop computer
(4 GHz Intel Core i7, 16 GB RAM, without GPU) is shown in
Fig. 14. In both areas, RG takesmuchmore time than other solu-
tions. GA takes approximately 20 and 100 seconds in the two
areas, respectively. Both the greedy algorithm and the RL solu-
tion are quite efficient (finish within seconds). In Area One, the
greedy algorithm is faster, while in Area Two the run time is
similar. This is because the greedy algorithm involves a TSP
solverwith aworst case exponential complexitywhile the com-
plexity of RL is linearwith respect to T or jMj.

6 DISCUSSION

We observed that in the smaller graph, RL works well for both
the tour and non-tour cases. While in the larger graph for the
non-tour case, the performance degrades under some budget

settings. In this section, we discuss three possible reasonswhen
the RL based IPP fails to achieve the best performance.

The first reason is that the RNN is difficult to train with
gradient descent when the sequence is longer, and may not
converge to the global optimal policy. Thus, the path gener-
ated according to the policy network can be suboptimal.

Second, since themodels are trained using a set of estimated
budgets, the resultingmodel is expected to have different infer-
ence performance for a specific budget. It would be challenging
to train amodel thatworks best under all different conditions.

Third, the underlying true path reward function is actu-
ally a discontinuous function [44] with respect to the budget.
Depending on the graph and edge lengths, the budget needs
to increase to a certain level so that the optimal path can
change. Fig. 15 illustrates a simple example. An RNN can be
used to represent continuous functions. When using them to
approximate a step-wise function, the results may differ
from the ground truth. Thismay lead to inaccurate Q-values.

7 CONCLUSION

In this paper, we presented a RL framework for informative
path planning. To address the unique challenges posed by path
constraints, a novel action selection module is designed with
the assistance of shortest paths. Compared with the uncon-
strained action selection strategy, it has a better efficiency and
optimality. Under the framework, we implemented Q-learning,
actor-critic and the reinforce algorithm, and compared with
other state-of-the-art algorithms. The RL based solution
achieves better path utility inmost cases, and ismuchmore effi-
cient since it only needs to run the inference process using the
neural network. Our future research direction is to investigate
the IPPproblem formultiple cooperative robots.
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