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Abstract— We focus on sensor networks that are deployed in
challenging environments, wherein sensors do not always have
connected paths to a base station, and propose a new data
resilience problem. We refer to it as DRE2: data resiliency in
extreme environments. As there are no connected paths between
sensors and the base station, the goal of DRE2 is to maximize
data resilience by preserving the overflow data inside the network
for maximum amount of time, considering that sensor nodes
have limited storage capacity and unreplenishable battery power.
We propose a quadratic programming-based algorithm to solve
DRE2 optimally. As quadratic programming is NP-hard and
takes time to find the optimal solution, we design two time
efficient heuristics based on different network metrics. We show
via extensive experiments that all algorithms can achieve high
data resiliences, while a minimum cost flow-based is most energy-
efficient. Our algorithms tolerate node failures and network
partitions caused by energy depletion of sensor nodes. Finally we
study the feasibility of DRE2, asking under which circumstances
that data resilience is achievable. We put forward a maximum
flow-based algorithm to solve it. Underlying our algorithms are
flow networks that generalize the edge capacity constraint well-
accepted in traditional network flow theory.

Keywords – Data resilience, quadratic and linear program-
ming, network flows, wireless sensor networks.

I. INTRODUCTION

Background and Motivation. Data resilience refers to the
ability of any network to recover quickly and to continue
maintaining availability of data despite of disruptions such as
equipment failure, power outage, or malicious attack. Due to
resource constraints challenges of wireless sensor networks
such as unreplenishable battery power and limited storage
capacity of sensor nodes [35], link unreliability and scarce
bandwidth of wireless medium [41], and the inhospitable and
harsh environments in which they are deployed [5, 6], sensor
nodes are often prone to failure and vulnerable of data loss.
Therefore, how to ensure that collected data reaches the base
station reliably has been an active research topic since the
inception of sensor network research. This line of research
is usually named under the umbrella of data resilience [20],
reliable data transmission [27], or data persistence [23]. We
use data resilience throughout the paper.

However, all the existing data resilience research in tradi-
tional sensor networks assumes that a base station is always
available to collect data, and focuses on how to encode and

transmit data to the base station reliably. In this paper, we
instead study data resilience from a totally different angle –
from emerging sensor network applications wherein a base
station is not available to collect the data. Such applications
include volcano and seismic sensor networks [26], under-
ground sensor networks [31], underwater or ocean sensor
networks [9, 28], and volcano eruption monitoring and glacial
melting monitoring [11, 32]. These emerging sensor network
applications are designed and deployed to address some of
the most fundamental problems facing human beings, such
as disaster warning, climate change, and renewable energy.

Data nodes:
Storage nodes:

Destination nodes:
Data offloading:

Fig. 1. The network model.

One common character-
istic of these sensor net-
works is that they are all
deployed in challenging or
extreme environments such
as in remote or inhos-
pitable regions, or under
extreme weather, to con-
tinuously collect large vol-
umes of data for a long period of time. Consequently, it is not
practical to deploy data-collecting base stations with power
outlets in or near such inaccessible sensor fields. Sensory
data generated thus has to be stored inside the network for
some unpredictable period of time and then being collected by
periodic visits of data mules or mobile sinks [7, 30]. Due to the
lack of human intervention and the inadequacy of maintenance
in the extreme environments, these sensing applications must
operate more resiliently than traditional sensor networks.

Data Resilience Against Sensor Storage Overflow. In this
paper, we focus on data resilience against sensor storage
overflow, wherein storage spaces of some sensor nodes are
depleted therefore they can not store any newly generated data
[24, 35]. In our network model, shown in Fig. 1, there are some
sensor nodes that are close to the event of interest and generate
large amounts of sensory data. As those data cannot be relayed
back to base stations in a timely manner due to the extreme
environmental conditions, it must be stored locally and thus
exhausts the limited storage capacity of these nodes. We refer
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to the sensor nodes that have exhausted their storage spaces as
data nodes; the data that cannot be stored locally is referred
to as overflow data. Other sensor nodes that have available
storage are storage nodes (sensor nodes that generate data but
still have available storages are considered as storage nodes).

In order to prevent data loss (we assume that any data loss
means that the data resilience is not achieved), the overflow
data at the data node must be offloaded to the storage nodes to
be preserved, and then to be collected when above uploading
opportunities become available. The storage nodes that finally
store overflow data are destination nodes. We refer to this
process wherein overflow data is offloaded from data nodes to
destination nodes as data offloading in sensor networks. As it
is not known beforehand when the next uploading opportunity
arrives, it is preferred that the offloaded data being stored
in destination nodes for longest amount of time before they
run out of battery power. Assume that all the sensor nodes
have the same energy depleting rates, data thus should be
offloaded to destination nodes with high battery power. As
each sensor node has limited storage capacity and battery
power, the challenge is how to design data offloading scheme
that maximizes the survival time for the data packets.

Contributions. Our contributions are twofold. On the practical
side, we identify, formulate, and solve a new algorithmic
problem in sensor networks called DRE2: data resiliency in
extreme environments. We accurately quantify data resiliences
under limited storage capacity and unreplenishable battery
power of sensor nodes, and design a quadratic programming
(QP)-based algorithm to solve DRE2 optimally (Section III).
As QP is NP-hard and takes time for large scale networks,
we design a suite of time-efficient and fault-tolerant heuristic
algorithms (Section V). We show that all algorithms achieve
high data resiliences while a minimum cost flow (MCF)-based
algorithm is most energy efficient (Section VII). Finally we
study a relevant and important problem called feasibility of
DRE2 (Section VI). It asks under which conditions that all
the overflow data packets can be offloaded into the network
for preservation (i.e., achieving data resilience is feasible). We
design a maximum flow (MF)-based algorithm to solve it. Both
MCF and MF are formulated as integer linear programs (ILPs).

On the theory side, the underlying enabler of our techniques
is flow networks that are delicately converted from the sensor
network. These flow networks make possible to identify the
convoluted relationship between energy consumption of sensor
nodes and the flows of data offloading in DRE2. As such,
we find that in our flow networks, the relationship among
flows, capacities, and costs on network edges are significantly
different from those well-accepted in conventional network
flows. In particular, we generalize the well-known edge ca-
pacity constraint of flow networks, which mandates that the
number of flows on an edge is less than or equal to its capacity.
In our designed flow networks, however, we propose that the
capacity of an edge must be greater than or equal to the linear
combination (i.e., weighted sum) of the flows on this edge.
Such generalized edge capacity constraint uniquely arises in

our flow networks and generalizes aforesaid widely used edge
capacity constraint. With this generalization, we are able to
apply QPs and ILPs on the flow networks to solve DRE2 and
its related feasibility problem optimally.

II. RELATED WORK

Quadratic programming is the technique of optimizing a
quadratic objective function with linear equality and inequality
constraints [12, 13], and is one of the simplest forms of non-
linear programming. It has been used in sensor network re-
search to solve several important problems such as localization
[10, 22], variational data assimilation problem for Lagrangian
sensors [10], and optimized transmission for parameter estima-
tion [36]. In contrast, we use this technique to solve a totally
different problem. We believe our work is the first one to use
quadratic programming to achieve optimal data resilience in
sensor networks deployed in challenging environments.

Data resilience has been an active research since the incep-
tion of sensor network research. Ghose et al. [16] achieved
resilience by replicating data at strategic locations in the sensor
network. Ganesan et al. [14] constructed disjoint multipaths to
enable energy efficient recovery from node failures. Recently,
network coding techniques are used to recover data from
failure-prone sensor networks. Albano et al. [4] proposed in-
network erasure coding to improve data resilience to node
failures. Kamra et al. [21] proposed to replicate data compactly
at neighboring nodes using growth codes that increase in
efficiency as data accumulates at the sink. As wireless sensor
netowrks utilize sleeping mechanisms to conserve energy,
which causes data availability problem, Xu et al. [38] proposed
a dataset synchronization protocol in named data networking
to achieve data resilience. However, all these research adopts
the traditional sensor network model wherein base stations are
always available near the networks, therefore are not suitable
for the data resilience problem studied in this paper.

Some data resilience research has focused on how to
preserve data in disconnection-tolerant sensor network in the
absence of base stations. We are aware of two lines of work
in this direction. The first line is a sequence of system
research [25, 37, 40] that designed cooperative distributed stor-
age systems to improve the utilization of the network’s data
storage capacity. The other line work is our own research.
We took an algorithmic approach and designed a suite of data
offloading techniques to achieve different objectives in sensor
networks such as minimizing the total energy consumption
[5, 35], maximizing the total priorities of preserved data [39],
replicating data packets in the events of node failures [5,
34], as well as overcoming the overall storage overflow [33].
However, none of them addressed maximizing data resilience
levels and the related feasibility problem. The closest work to
ours is by Hou et al. [19], which achieves data resiliences by
maximizing the minimum remaining energy of the destination
nodes. Ours is to maximize the sum of the remaining energy
of the destination nodes weighted by number of data packets
stored on destination nodes, thus is different from their work.
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III. PROBLEM FORMULATION OF DRE2

Network Model. We model a sensor network as an undirected
graph G(V,E), where V = {1, 2, ..., n} is the set of n nodes,
and E is the set of m edges (two nodes are connected if their
distance is within the sensor nodes’ transmission range). There
are l data nodes in the network, denoted as Vd = {1, 2, ..., l}.
Data node i ∈ Vd has di number of overflow data packets, each
of k bits. The rest n− l nodes are storage nodes, denoted as
V −Vd = {l+1, l+2, ..., n}. We denote the total a =

∑l
i=1 di

overflow data packets as D = {D1, D2, ..., Da}. Let the data
node of Dj be dn(j) ∈ Vd. Let mj be the available free storage
space at storage node j ∈ V − Vd, meaning that j can further
store mj data packets. We assume naive feasibility condition
that a ≤

∑n
j=l+1mj always holds. Otherwise, data loss is

inevitable thus data resilience is not achieved.

Augmented Energy Model. We augment the well-known first
order radio model [18] for wireless energy consumption. When
node u sends a k-bit data packet to its one hop neighbor node v
over their distance lu,v meters, the transmission energy spent
by u is Etu(v) = εelec ∗ k + εamp ∗ k ∗ l2u,v , the receiving
energy spent by v is Erv = εelec ∗ k. Here εelec = 100nJ/bit
is the energy consumption per bit on the transmitter circuit
and receiver circuit, and εamp = 100pJ/bit/m2 is the energy
consumption per bit on the transmit amplifier.

However, this model does not take into account the energy
consumption of storing data packets. As write operation costs
13.2µJ amount of energy in Toshiba 128MB flash [3] and we
are dealing with large amounts of sensory data, we assume
that energy consumption for storing data is non-negligible and
augment above first order radio model with storing energy
cost. In particular, when storing a data packet, a storage
node v ∈ V − Vd costs Esv = εstore ∗ k amount of storing
energy. Here we assume that εstore = 100nJ/bit is the energy
consumption when writing one bit on the memory of a sensor
node. Let Eu,v = Etu(v) + Erv . We have Ev,u = Eu,v . Note
a data node not only transmits all of its own data packets,
but also can receive and transmit (i.e., relay) data packets for
other data nodes. Meanwhile, a storage node can receive data
packets from other nodes and then either transmits or stores
them. Table I shows all the notations.

Problem Formulation. We define offloading function as r :
D → V −Vd, indicating that data packet Dj ∈ D is distributed
from its data node dn(j) ∈ Vd to its destination node r(j) ∈
V − Vd. Let Pj : dn(j), ..., r(j), referred to as the offloading
path of Dj , be the sequence of distinct sensor nodes along
which Dj is offloaded from dn(j) to r(j). Let σ(i, j) denote
node i’s successor node in Pj . Let yi,j be node i’s energy cost
of offloading data packet Dj , then

yi,j =


Eti (σ(i, j)) i = dn(j),
Eri + Esi i = r(j),
Ei,σ(i,j) i ∈ Pj − {dn(j), r(j)},
0 otherwise.

(1)

When i is the data node of Dj , it costs transmission energy
Eti (σ(i, j)); when it is the destination node of Dj , it costs

TABLE I
NOTATION SUMMARY

Notation Description
V The set of n data nodes
Vd Vd = {1, ..., l} is the set of l data nodes, and

V − Vd = {l + 1, l + 2, ..., n} is the set of storage nodes
di Number of overflow data packets from data node i ∈ Vd
mj Storage capacity of storage node j ∈ V − Vd
D D = {D1, D2, ..., Da} is the set of a data packets
dn(j) The data node of Dj ∈ D
Ei Initial energy level of node i
E
′
i Remaining energy level of node i after data offloading

Et
u(v) Transmission energy spent by u to transmit a packet to v

Er
v Receiving energy spent by v to receive one packet

Es
v Storing energy spent by v to store one packet

r Data offloading function
Pj The offloading path of data packet Dj ∈ D
σ(i, j) Node i’s successor node in Pj

yi,j Node i’s energy cost of offloading data packet Dj

ξ(i) Number of data packets stored at storage node i
xi,j The amount of flows on edge (i, j) in flow networks for

QP and ILP
G′ G′(V ′, E′) is the flow network used for QP and MF ILP
G′′ G′′(V ′′, E′′) is the flow network for MCF ILP

both receiving energy Eri and storing energy Esi ; when it is a
relaying node of Dj , it costs both receiving and transmission
energy, the sum of which is Ei,σ(i,j). Otherwise, node i is not
involved in Dj’s offloading thus costs zero amount of energy.
Let Ei and E

′

i denote sensor node i’s initial energy level and
remaining energy after all the a data packets are offloaded,
respectively. Then, E

′

i = Ei −
∑a
j=1 yi,j ,∀ i ∈ V .

Definition 1: (Data Resilience Levels (DRLs).) Given a
sensor network G with a data packets to be offloaded, its
data resilience level (DRL), denoted as D(G), is defined as
the sum of remaining energy of the destination nodes of all
the a data packet, i.e., D(G) =

∑a
j=1E

′
r(j). It is also the case

that D(G) =
∑n
i=l+1

(
E
′

i × ξ(i)
)
, where ξ(i) is the number

of data packets that are finally stored at storage node i. �
D(G) indicates the network’s best achievable effort to

preserve all a data packets, as the more energy of a storage
node, the longer time its stored data can survive. The objective
of DRE2 is to find a offloading function r and a set of
offloading paths P = {P1, P2, ..., Pa} to offload the a data
packets to their destination nodes, such that the DRL of the
network is maximized after offloading, i.e., maxr,P D(G),
under the energy constraint of sensor nodes: E′i ≥ 0,∀ i ∈ V
and the storage capacity constraint of sensor nodes: |{j |r(j) =
i, 1 ≤ j ≤ a}| ≤ mi,∀ i ∈ V − Vd.

EXAMPLE 1: Fig. 2(a) shows a linear sensor network with
four nodes: 1 and 2 are data nodes, each has two overflow data
packets; 3 and 4 are storage nodes, each has storage capacity
of four. E4 � E3. To achieve maximum DRL, the optimal
solution is to offload all the four data packets to node 4, even
though it costs more energy than offloading to node 3. We use
this example to illustrate our QP and ILP solutions next. �

IV. QUADRATIC PROGRAMMING (QP) SOLUTION

To maximize the DRL of any given instance of DRE2, the
fundamental challenge is to find each data packet’s destination
node as well as the offloading path from its data node to this
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Fig. 2. (a) shows a linear sensor network G(V,E) with two data nodes 1 and 2, each having two data packets to offload, and two storage nodes 3 and
4, each having four storage spaces. (b) shows its converted flow network G′(V ′, E′) for QA (A) that maximizes DRLs and ILP (C) that finds maximum
number of data packets offloaded. (c) shows its converted flow network G′′(V ′′, E′′) for ILP (B) that finds the minimum energy cost of data offloading. As
E4 > E3 and node 4 has enough storage to store all the four data packets, the set of high-energy storage nodes Vh = {4}.

destination node. Then we are able to compute the number
of data packets each destination node stores as well as its
remaining energy level, therefore calculating the DRL. In
particular, we need to represent energy levels, data packets,
and storage capacities in a way that they can be computed –
network flow modeling [29] is particularly suitable for such
representation, as demonstrated below.

Graph Conversion. We first convert the sensor network graph
G(V,E) in Fig. 2(a) to a flow network G′(V ′, E′) in Fig. 2(b).
I. Replace each undirected edge (i, j) ∈ E with two directed

edges (i, j) and (j, i). Set the capacities of all the directed
edges as infinity.

II. Split node i ∈ V into two nodes: in-node i′ and out-node
i′′. Add a directed edge (i′, i′′) with capacity of Ei, the initial
energy level of node i. All incoming directed edges of node
i are incident on i′ and all outgoing directed edges of node
i emanate from i′′. Therefore the two directed edges (i, j)
and (j, i) in Step I are now changed to (i′′, j′) and (j′′, i′).

III. Add a super source node s, and connect s to the in-node
i′ of the data node i ∈ Vd with an edge. Set the capacity of
this edge as di, the number of data packets at data node i.

IV. Add a super sink node t, and connect out-node i′′ of the
storage node i ∈ V − Vd to t. Set its edge capacity mi, the
storage capacity of storage node i.
Hence, V ′ = {s} ∪ {t} ∪ {i′ : i ∈ V } ∪ {i′′ : i ∈ V } and

E′ = {(s, i′) : i ∈ Vd} ∪ {(i′, i′′) : i ∈ V } ∪ (i′′, j′) : (i, j) ∈
E} ∪ {(j′′, i′) : (i, j) ∈ E} ∪ {(i′′, t) : i ∈ V − Vd}. We
have |V ′| = 2n + 2 and |E′| = 2m + 2n. Above conversion
techniques are used in our previous work [19, 39] that solving
related data preservation problems in sensor networks.

Rationale of the Conversion. The rationale of above conver-
sion is fourfold. First, as the flows start from s and end at t
in flow network G′, and s connects to in-nodes of data nodes
while t connects to out-nodes of storage nodes, it “forces”
that overflow data packets are offloaded from data nodes to
storage nodes. Second, with the node-splitting and the initial
energy levels now being capacities of newly created edges, it
guarantees that each node cannot spend more energy in data
offloading than it has. Third, with the di and mi now being

“encoded” as the capacities of edges connecting s and i′ (for
data nodes) and i′′ to t (for storage nodes), it makes sure that
a data node cannot offload more than it has and a storage
node cannot store more than its storage allows. Fourth, and
most importantly, the energy consumption of each node can
be accurately computed using flows in G′, as shown below.

Computing Energy Consumptions of Nodes. Let xi,j be
the amount of flows on directed edge (i, j) in G′. Recall that
although both data nodes and storage nodes can receive data
packets from other sensor nodes, the difference is that of all
the received data packets, a data node must transmit all of
them whereas a storage node can store some of them as long
as its storage allows. Besides, a data node must transmit all of
its own overflow data packets to others. Fig. 3(a) and (b) show
the flows in G′ that go through a data node and a storage node
i respectively. We have below observations about the flows and
their incurred energy cost, and the flow conservations.
• Observation 1 (for both data and storage nodes). Given

any node i ∈ V and any of its neighboring node j (i.e.,
(i, j) ∈ E)1, the number of data packets i receives from
j is xj′′,i′ , the number of data packets i transmits to j
is xi′′,j′ . Thus, node i’s total receiving energy cost is
Eri ×

∑
j:(i,j)∈E xj′′,i′ and its total transmission energy

cost is
∑
j:(i,j)∈E(E

t
i (j)× xi′′,j′).

• Observation 2 (for data nodes). For any data node i ∈
Vd, the number of its own data packets that it transmits is
xs,i′ . As the data packets i transmits are either its own or
received from others, we have xs,i′+

∑
j:(i,j)∈E xj′′,i′ =∑

j:(i,j)∈E xi′′,j′ .
• Observation 3 (for storage nodes). For any storage node
i ∈ V −Vd, the number of data packets it stores is xi′′,t =
ξ(i) (recall ξ(i) is the number of data packets that are
finally stored at storage node i). As the data packets i
receives are either transmitted to other nodes or stored at
i, we have

∑
j:(i,j)∈E xj′′,i′ =

∑
j:(i,j)∈E xi′′,j′ + xi′′,t.

The total storing energy cost of i is Esi × xi′′,t.
Therefore the DRL can be represented as below:

1Note that it is not (i, j) ∈ E′, as all the data nodes, storage nodes, and
neighboring nodes are sensor nodes in G, not in G′.
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Fig. 3. (a) A data node transmits its own and relays data packets from others
and (b) a storage node relays or stores the data packets from others.

D(G) =
n∑

i=l+1

(
ξ(i)× E

′

i

)
=

∑
i∈V−Vd

(
xi′′,t ·

(
Ei − Eri ×

∑
j:(i,j)∈E

xj′′,i′−

∑
j:(i,j)∈E

(
Eti (j)× xi′′,j′

)
− Esi × xi′′,t

))
.

(2)

As D(G) is a concave quadratic expression, DRE2 can thus
be represented as below QP formulation (A):

(A) max D(G) (3)
s.t.
xs,i′ = di, ∀i ∈ Vd (4)
xi′′,t ≤ mi, ∀i ∈ V − Vd (5)

xs,i′ +
∑

j:(i,j)∈E

xj′′,i′ =
∑

j:(i,j)∈E

xi′′,j′ , ∀i ∈ Vd

(6)∑
j:(i,j)∈E

xj′′,i′ =
∑

j:(i,j)∈E

xi′′,j′ + xi′′,t,

∀i ∈ V − Vd (7)

Eri ×
∑

j:(i,j)∈E

xj′′,i′ +
∑

j:(i,j)∈E

(
Eti (j)× xi′′,j′

)
≤ Ei, ∀i ∈ Vd (8)

Eri ×
∑

j:(i,j)∈E

xj′′,i′ +
∑

j:(i,j)∈E

(
Eti (j)× xi′′,j′

)
+

Esi × xi′′,t ≤ Ei, ∀i ∈ V − Vd (9)

Eqn. 4 mandates that to achieve data resilience, data node
i must be able to offload all its di number of data packets
into the network (we will study the feasibility problem of
DRE2 in Sec. VI). Inequality 5 shows the storage constraint
of storage nodes. Eqn. 6 and 7 show the flow conservation
for data nodes and storage nodes, respectively (Observations
2 and 3). Inequalities 8 and 9 represent the energy constraint
of data nodes and storage nodes respectively.
Generalized Edge Capacity Constraint. Inequalities 8 and 9
need some special notes. In Fig. 2(b) and 2(c), the amount
of flows on edge (i

′
, i
′′
) (i.e., xi′,i′′ ) is not simply less than

or equal to the capacity of (i
′
, i
′′
) (i.e., Ei), as stipulated by

the edge capacity constraint in conventional network flows. In-
stead, the relationship between xi′,i′′ and Ei is more intricate,
as shown in Inequalities 8 and 9. We observe that for data node
i, xi′,i′′ equals to the amount of data packets i can offload (i.e.,
xs,i′ ) plus the amount of data packets it relays for other data

nodes (l.h.s of Eqn. 6). xi′,i′′ also equals to the total amount of
data packets it transmits (r.h.s of Eqn. 6). As such, the energy
cost of i can now be represented as a function of xj′′,i′ and
xi′′,j′ (l.h.s. of Inequality 8). In other words, the total flows on
(i′, i′′) are expressed as the linear combinations (i.e., weighted
sum) of its constituent sub-flows. Similar observations can be
made for storage node i, except the flow xs,i′ in data node is
now xi′′,t in storage node. We refer to Inequalities 8 and 9
as generalized edge capacity constraint, and formally define
it as below.

Definition 2: (Generalized Edge Capacity Constraint.)
In a flow network, given any edge (u, v), let f(u, v) and
cap(u, v) denote its flows and capacity respectively. The
generalized capacity constraint stipulates that

∑|f(u,v)|
i=1 ai ≤

cap(u, v) where ai is the weight for ith flow on the edge. �
When ai = 1 for all the flows, the generalized edge capacity

constraint becomes f(u, v) ≤ cap(u, v), the traditional edge
capacity constraint. By generalizing this widely used constraint
in flow network, we believe our work augments the network
flow model and can have an impact on its related theory.

Solving QP. QP can be solved by the classic Wolfe’s modified
simplex method [13], which is based on solving a system
of linear relations subject to complementarity conditions.
There are many production QP solvers such as CGAL [1]
and CPLEX [2]. We adopt CPLEX due to its performances.
Besides, CPLEX can improve the efficiency of QP by allowing
gap tolerance to find a feasible solution quickly (more in
Section VII). As QP is NP-hard [15], we design two time-
efficient heuristic algorithms below and show via experiments
that they perform close to the optimal QP solution.

V. HEURISTIC ALGORITHMS

To maximize DRLs, an intuitive solution is to offload data
packets to nodes with initial high energy levels, defined below.

Definition 3: (High-Energy Storage Nodes.) High-energy
storage nodes, denoted as Vh, are the set of storages nodes
with the highest initial energy levels that can store all the a
data packets. More formally, we sort storage nodes V − Vd
in non-ascending order of their initial energy: Ev1 ≥ Ev2 ≥
... ≥ Evn−l

. Then the top k+1 nodes {v1, ..., vk, vk+1} where∑k
i=1mvi < a ≤

∑k+1
i=1 mvi is Vh. �

Both below algorithms are centered around how to offload
data packets to Vh in an energy-efficient manner.

Network-Based Algorithm. For each storage node i ∈ Vh,
Algo. 1 finds mi data packets that are closest to i and offloads
them to i via the currently available shortest path (in terms of
energy consumption). Its time complexity is O(n2).

Algorithm 1: Network-Based Algorithm.
Input: A sensor network G with mi, Ei, data packets D;
Output: D(G);
1. Compute Vh = {v1, ..., vk, vk+1};
2. for (1 ≤ i ≤ k)
3. Find the mi data packets that are closest to vi and

offload them to vi via the current shortest path
between each data packet and vi;
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4. Update the energy levels of all the nodes on the path;
5. end for;
6. Offload each of the a−

∑k
i=1mvi data packets to vk+1

via shortest path and update the energy levels;
7. Compute D(G) =

∑n
i=l+1

(
E
′

i × ξ(i)
)
;

8. RETURN D(G).

Minimum-Cost-Flow (MCF)-Based Algorithm. Although
Algo. 1 saves energy by offloading data packets to their closest
nodes in Vh, it does not consider global energy minimization
in data offloading. Below we design Algo. 2 and prove that is
minimizes total energy consumption in data offloading. It is a
MCF-based algorithm applied on another properly converted
flow network G′′(V ′′, E′′) from the sensor network G(V,E).
In MCF, each edge in the flow network has a capacity and a
cost and the goal is to minimize the total cost of the flows.

We first present the conversion and then the MCF ILP. As
the first two steps of the conversion are the same as the one
in Section IV, we start with Step IIII below:

III. For directed edge connecting s to the in-node i′ of the
data node i ∈ Vs, set its capacity as di and its cost as zero.

IV. For directed edge (i′, i′′), set its capacity as Ei and cost
as zero.

V. For directed edge (i′′, j′), set its capacity as infinity and
cost as Ei,j = Eti (j) +Erj , the sum of node i’s transmitting
energy and node j’s receiving energy. For (j′′, i′), set its
capacity as infinity and cost as Ej,i = Etj(i) + Eri , the sum
of node j’s transmitting energy and node i’s receiving energy.

VI. For directed edge connecting the out-node i′′ of the high-
energy storage node i ∈ Vh to t, set its capacity as mi, the
storage capacity of i, and its cost as Esi , the energy cost of
storing one data packet by i.

With above transformation, the sensor network G(V,E) in
Fig. 2(a) is now converted to a flow network G′′(V ′′, E′′) in
Fig. 2(c). We next present the ILP formulation (B) for MCF.

(B) min
∑

(i,j)∈E′′
xi,j × ci,j (10)

s.t.
xs,i′ = di, ∀i ∈ Vd (11)
xi′′,t ≤ mi, ∀i ∈ Vh (12)

xs,i′ +
∑

j:(i,j)∈E

xj′′,i′ =
∑

j:(i,j)∈E

xi′′,j′ , ∀i ∈ Vd

(13)∑
j:(i,j)∈E

xj′′,i′ =
∑

j:(i,j)∈E

xi′′,j′ + xi′′,t, ∀i ∈ Vh

(14)

Eri ×
∑

j:(i,j)∈E

xj′′,i′ +
∑

j:(i,j)∈E

(Eti (j)× xi′′,j′) ≤ Ei,

∀i ∈ Vd (15)

Eri ×
∑

j:(i,j)∈E

xj′′,i′ +
∑

j:(i,j)∈E

Eti (j)× xi′′,j′+

Esi × xi′′,t ≤ Ei, ∀i ∈ Vh (16)

∑
j:(i,j)∈E

xj′′,i′ =
∑

j:(i,j)∈E

xi′′,j′ , ∀i ∈ V − Vd − Vh

(17)

Eri ×
∑

j:(i,j)∈E

xj′′,i′ +
∑

j:(i,j)∈E

Eti (j)× xi′′,j′ ≤ Ei,

∀i ∈ V − Vd − Vh (18)

In the objective function 10, xi,j and ci,j are the amount
of flows and cost on edge (i, j) ∈ E′′, respectively. The
Constraints 11-16 are similar to those in quadratic program-
ming (A), except that Constraints 12, 14, and 16 are now
applied on Vh, as only high-energy storage nodes Vh can
store data packets. Finally, we add two more constraints viz.
Equation 17 and Inequality 18 to respectively address the flow
conservation and energy constraint of all the storage nodes that
are not in Vh. Algo. 2 below calls ILP (B) as a subroutine:

Algorithm 2: MCF-Based Algorithm.
Input: A sensor network G with mi, Ei, and D;
Output: r : D(G);
1. Compute Vh = {v1, ..., vk, vk+1};
2. Convert G(V,E) to flow network G′′(V ′′, E′′);
3. Compute ILP (B) on G′′;
4. Compute D(G) =

∑n
i=l+1

(
E
′

i × ξ(i)
)
;

5. RETURN D(G).
Theorem 1: Algo. 2 achieves minimum energy consump-

tion in offloading a data packets to nodes in Vh.
Proof: The proof is omitted due to space constraint.
Sovling MCF. We implement MCF ILP using CPLEX [2].
MCF can also be solved efficiently and optimally by combi-
natorial algorithms such as scaling push-relabel proposed by
Goldberg [17]. Its time complexity is O(a2 · b · log(a · c)),
where a, b, and c are number of nodes, number of edges, and
maximum edge capacity in the flow network, respectively.

All QP, Network- and MCF-based algorithms are fault-
tolerant. Even with node failures and network partitions caused
by energy depletion of sensor nodes, they can still achieve high
DRLs and energy-efficiency as will be shown in Section VII.

VI. FEASIBILITY PROBLEM OF DRE2

Due to aforesaid node failures and the resulted network
partitions between data nodes and storage nodes, offloading all
the data packets into the network is not always possible. For
example, in Fig. 2(a), if E3 is small enough, node 3 does not
have enough energy to either store packets from nodes 1 and
2 or relay them to node 4, failing to achieve data resilience.
We thus tackle an important feasibility problem: Given any
instance of DRE2, can all the a data packets be offloaded?

We answer this question by finding the maximum number
of data packets offloaded, which is solved by below ILP (C)
on the flow network G′(V ′, E′) in Fig. 2(b).

(C) max
∑
i∈Vd

xs,i′ (19)

s.t.
xs,i′ ≤ di, ∀i ∈ Vd (20)
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Fig. 4. Small-scale comparison by varying di. mj = 5.

xi′′,t ≤ mi, ∀i ∈ V − Vd (21)

xs,i′ +
∑

j:(i,j)∈E

xj′′,i′ =
∑

j:(i,j)∈E

xi′′,j′ ,

∀i ∈ Vd (22)∑
j:(i,j)∈E

xj′′,i′ =
∑

j:(i,j)∈E

xi′′,j′ + xi′′,t,

∀i ∈ V − Vd (23)

Eri ×
∑

j:(i,j)∈E

xj′′,i′ +
∑

j:(i,j)∈E

(
Eti (j)× xi′′,j′

)
,

≤ Ei ∀i ∈ Vd (24)

Eri ×
∑

j:(i,j)∈E

xj′′,i′ +
∑

j:(i,j)∈E

Eti (j)× xi′′,j′+

Esi × xi′′,t ≤ Ei, ∀i ∈ V − Vd (25)

Objective Function 19 is to find the maximum flow; i.e., the
maximum number of data packets that can be offloaded. All
the constraints 20-25 are similar to those in QP (A), except
that Eqn. 4 is changed to Inequality 20, as now it is not
always possible to offload all the a data packets. We give
below theorem regarding the feasibility of DRE2.

Theorem 2: Given any instance of DRE2 in G, if∑
i∈Vd

xs,i′ = a in G′, then achieving data resilience is feasible.

Proof: We have
∑
i∈Vd

di = a. As xs,i′ ≤ di in G′, we have∑
i∈Vd

xs,i′ =
∑
i∈Vd

di ≤ a. When
∑
i∈Vd

xs,i′ = a, it must
be that xs,i′ = di for any i ∈ Vd, meaning each data node i
successfully offloads its di data packets. Therefore all a data
nodes are successfully offloaded.

Solving Maximum Flow. We implement maximum flow ILP
using CPLEX [2]. Meanwhile, there are also two kinds of well-
known combinatorial maximum flow algorithms viz. augment-
ing path and push-relabel [8]. Both algorithms are strongly
polynomial while push-relabel is in general more flexible and
efficient than augmenting path [29]. The time complexity of
push–relabel maximum flow algorithm is O(|V ′|2 · |E′|) for a
flow network G(V ′, E′).

VII. PERFORMANCE EVALUATION

We compare the performance of different algorithms viz.
QP-based (referred to as QP), Network-Based (referred to
as Network), and MCF-Based (referred to as MCF). We
consider both small scale networks of 50 sensor nodes (10
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Fig. 5. Small-scale comparison by varying mj . di = 10.

of them are data nodes) and large scale of 100 nodes (20
of them are data nodes). The sensor nodes are uniformly
distributed in a region of 1000m × 1000m. Each data node
generates some number of data packets, each of 512B, that
to be offloaded into the network. For initial energy levels,
we consider both varying model, where different sensors have
different initial energy, and uniform model, where all sensor
nodes have the same initial energy level. Transmission range
is 250m. In all plots, each data point is an average over ten
runs, in each of which a different sensor network is generated;
the error bars indicate 95% confidence intervals. For fair
comparisons, in each run different algorithms use the same
input including network topology, initial energy of each node
Ei, the data nodes and their numbers of data packets di,
and the storage nodes and their storage capacities mj . For
each sensor network, we first run feasibility checking – if not
feasible, we generate another one and check again. All QP,
MCF ILP and feasibility checking using maximum flow ILP
are implemented in CPLEX [2].

Small-scale Comparison. As QP takes long time to run,
we compare them in small scale of 50 nodes with 10 data
nodes. The initial energy levels are random numbers in
[2000µJ, 4000µJ ]. Fig. 4(a) varies di from 5, 10, 15, to 20
while setting mj as 5. It shows that with the increase of
di, the DRLs achieved by all algorithms increase, as more
data packets are now stored in storage nodes. QP always
achieves slightly higher DRLs than MCF, while MCF higher
than Network most of the time. As QP is optimal and all
three perform close, this demonstrates the efficacy of all three
algorithms in achieving data resilience. Fig. 4(b) shows the
total energy consumptions of three algorithms, among which
MCF has the smallest. QP costs the most energy, though,
as it sometimes detours (instead of the shortest energy path)
from sources to destinations in order to achiever high DRLs.
Fig. 5 varies mj while fixing di = 10. It shows again that QP
achieves highest DRLs with the cost of energy consumption.

Tolerance Gap (%) 2 3 5 10 30

Execution time (sec)
2014.91 826.3 11.98 13.44 15.92

788.8 182.53 8.27 7.89 7.98
1034.27 160.98 22.64 22.8 28.32

TABLE II
INVESTIGATING TOLERANCE GAP OF THE QP IN CPLEX.

Large-scale comparison. Next we compare the algorithms in
larger scale of 100 sensors, 20 of them are data nodes. As
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CPLEX [2] cannot finish computing an instance of QP after
more than 13 hours, we decide to resort to below technique.

Gap Tolerance of the QP. To improve the time efficiency of
QP, CPLEX [2] can be parameterized using a percentage value
called gap tolerance. CPLEX stops once it finds a feasible
solution within this percent of optimal. We thus investigate
the tradeoff between time-efficiency and solution quality of
different gap tolerances. Table II records the CPLEX execution
time for different tolerance gaps between 2% and 30%, for
three randomly generated networks. As 2% can take more than
half an hour, we choose the next value of 3% as the gap
tolerance for the QP; i.e., for the rest comparisons the QP
always achieves at least 97% of the optimal DRLs.

Fig. 6 compare the three algorithms by varying di from
50, 75, 100, to 125 with mj = 50 and Ei = 2500µJ . We
observe that even with fault tolerance, QP still outperforms
the Network and MCF in DRLs. However, Fig. 6 (b) shows
the energy cost of QP is much larger than those of the other
two, as its focus is on high DRLs and not on the energy
costs to achieve them. It also shows that the energy cost of
QP decreases when di increases from 100 to 125. This is
rather counter-intuitive, as offloading more data packets should
cost more energy. Our conjecture for QP is that if there are
multiple routes to offload a data packet without affecting the
DRL maximization, it randomly chooses one as long as the
gap tolerance level is met. When the network has more data
packets to store, however, choosing such a random path could
negatively affect the DRL maximization. As such, the QP
begins choosing more energy-efficient offloading paths thus
decreasing the energy cost. Fig. 7 varies mj and shows that
the performance differences of DRLs achieved by different
algorithms seem to increase when increasing the storage
capacity. As high energy nodes have more spaces to store data
packets, the QP, being optimal, does a better job of utilizing
the available spaces in order to maximize the DRL.
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Fig. 6. Large-scale comparison by varying di. mj = 50.
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Fig. 7. Large-scale comparison by varying mj . di = 100.
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Fig. 8. Fault-tolerance of three algorithms by varying Ei.
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Fig. 9. Fault-tolerance of three algorithms at Ei = 1200µJ .

Investigating Fault-Tolerance. Finally we investigate the
fault-tolerance capability of the three algorithms by finding
the number of dead nodes (i.e., nodes with depleted energy).
It randomly generates one sensor network of 100 nodes, 20
of them are data nodes with di = 50. It starts by setting the
initial energy levels Ei of all the nodes as 1200µJ , gradually
decreases them, and records the number of dead nodes along
the way for three algorithms. It stops until at least one of
them fails to offload all the data packets. Fig. 8(a) sets mj

as 50 and shows all algorithms can tolerate up to around 10
node failures. However, as QP focuses more on DRLs and
less on energy costs, it incurs more dead nodes than the other
two most of the time. Fig 8(b) decreases mj to 13, at which
the network is almost full after data offloading, and shows
that they can tolerate up to 6 and 8 node failures respectively
before data loss occurs (note that when Ei = 200µJ , Network
cannot offload all the data packets). With the decrease of
mj , more storage nodes participate in the data offloading
process (either storing or relaying), thus consuming more
energy compared to when mj is larger. Consequently, it allows
a smaller number of dead nodes to take place before failing
to offload all the data packets. Last, Fig. 9(a) and (b) study
the fault-tolerance of algorithms at Ei = 1200µJ by varying
di and mj respectively. It is interesting to notice that with the
increase of mj , the number of dead nodes increases for both
Network and MCF while decreasing for QP. For Network and
MCF, as the number of destination nodes gets smaller with
increase of mj , less number of them participated in the data
offloading process, depleting their energies more quickly. For
QP, with the increase of mj it can distribute data packets to
nodes more evenly, thus reducing the number of dead nodes.

VIII. CONCLUSION AND FUTURE WORK

We solved a new algorithmic problem called DRE2 that
achieved maximum data resilience inside sensor networks. It
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uniquely arises from emerging sensor network applications
that are deployed in extreme enviromnets. We designed a QP-
based optimal algorithm and two time- and energy-efficient
heuristic algorithms viz. Network and MCF. We also solved
the feasibility problem of DRE2 by designing a maximum
flow-based algorithm. Although sensor network research has
been around for more than two decades, we believe that
data resilience in our sensor network model for emerging
applications has not been thoroughly addressed in existing
literature. We uncovered a generalized edge capacity constraint
model, wherein the consumed capacity on an edge is the
linear combination of its flows. This generalizes the well-
accepted edge capacity constraint in traditional network flows.
As a future work, we will study if our heuristics can provide
any performance guarantees in terms of DRLs. We plan to
focus on a few specific topologies such as stars and trees, and
investigate if the optimal and time-efficient algorithms exist.
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