Multi-Agent Systems on Sensor Networks:
A Distributed Reinforcement Learning Approach

Chen-Khong Tham *, Jean-Christophe Renaud 2
Dept of Electrical & Computer Engineering, National University of Singapore
! eletck@nus.edu.sg * jeanchristophe.renaud @nus.edu.sg

Abstract

Implementing a multi-agent system (MAS) on a wireless sensor
network comprising sensor-actuator nodes with processing ca-
pability enables these nodes to perform tasks in a coordinated
manner to achieve some desired system-wide objective. In
this paper, several distributed reinforcement learning (DRL)
algorithms used in MAS are described. Next, we present our
experience and results from the implementation of these DRL
algorithms on actual Berkeley motes in terms of communica-
tion, computation and energy costs, and speed of convergence
to optimal policies. We investigate whether globally optimal
or merely locally optimal policies are achieved. Finally, we
discuss the trade-offs that are necessary when employing DRL
algorithms for coordinated decision-making tasks in resource-
constrained wireless sensor networks.

1. INTRODUCTION

Reinforcement Learning (RL) ([1], [2]) is usually defined as
the problem faced by a learner of how to determine correct
behavior through trial-and-error interactions with a dynamic
environment in order to achieve a goal. In the standard RL
model, the learner and decision-maker is called an agent and
is connected to its environment via perception or sensing, and
action, as shown in Figure 1.

input: sensor readings

Agent

/,/4—‘"‘“"-‘~-
- rewrd
i - L
environment
‘\\

Fig. 1: Abstract view of an agent in its environment in RL

More specifically, the agent and environment interact at
each of a sequence of discrete time steps ¢. At each step of
the interaction, the agent senses some information about its
environment (input), determines the world state and then, on
that basis chooses and takes an action (output). The action
changes the state of the environment and of the agent. One
time step later, the value of the state transition following that
action is given to the agent by the environment as a scalar
called reward. The agent should behave so as to maximize
the received rewards, or more particularly, a long-term sum of
rewards.

0-7803-9399-6/05/$20.00 © 2005 IEEE

423

Let s; be the state of the system at time ¢ and assume that the
learning agent chooses action a;, leading to two consequences.
First, the agent receives a reward 7,41 from the environment
at time ¢ + 1. Second, the system state changes to a new state
St+1-

There are several ways to define the objective of the
learning agent, but all of them attempt to maximize the amount
of reward the agent receives over time. In this paper, we
consider the case of the agent learning how to determine the
actions maximizing the discounted expected return which is a
discounted sum of rewards over time: R; = ZZ‘;O 'y’“rt+k+1
where 7 is a discount factor in [0..1] used to weight near term
rewards more heavily than distant future rewards. We chose
the discounted reward since it is appropriate for continuing
tasks, in which the interaction with the environment continues
without limit in time.

A. Distributed Reinforcement Learning (DRL) and Multi-

Agent Systems (MAS)

‘We now turn our attention to multi-agent systems (MAS) made
up of a number of agents. Following the taxonomy of MAS
presented by Stone and Veloso [3], the MAS domain can
be divided along two dimensions: (i) degree of heterogeneity
of the agents, and (ii) degree of communication involved.
This paper considers two main combinations of heterogeneity
and communication: homogeneous non-communicating agents
(Section 2-B) and homogeneous communicating agents (Sec-
tions 2-C and 2-D). We focus on cooperative MAS where
agents share the same common goal.

From a particular agent’s point of view, multi-agent systems
differ from single-agent ones most significantly in that the
environment dynamics can be influenced by other agents. In
addition to the uncertainty (i.e. stochasticity) that may be
inherent in the environment, other agents can affect the envi-
ronment in unpredictable ways due to their actions. However,
the full power and advantage of a MAS can be realized when
the ability for agents to communicate with one another is
added, enabling learning to be accelerated, more information
to be gathered about the world state, and experiences of
other agents to be shared. Different methods can be designed
depending on the kind of information that is communicated,
e.g. sensory input, local states, choice of action etc.

ISSNIP 2005

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on September 24,2021 at 18:57:23 UTC from IEEE Xplore. Restrictions apply.

B. Wireless Sensors Networks (WSNs) and MAS

Wireless sensor networks is a recent development arising from
advances in wireless communications, microelectronics and
miniaturized sensors. The most general concept is to have
a large number of wireless sensor nodes spread out in an
environment for monitoring or tracking purposes. Most work
on sensor networks focus on methods to relay sensed infor-
mation in an energy-efficient manner to a command center.
In addition, methods for collaborative signal and information
processing (CSIP) [4] which attempt to perform processing in
a distributed and collaborative manner among several sensor
nodes have also been proposed.

Although there has been related work which adopt a multi-
agent perspective to sensor networks [5] and reinforcement
learning is a common technique employed in multi-agent
systems [6], [7], [8], our work is novel since it is the first
study and implementation of cooperative and coordinated
reinforcement learning algorithms in an actual sensor network.
The processing and communication capabilities of sensor
nodes enable them to make decisions and perform tasks in
a coordinated manrier to achieve some desired system-wide or
global objective. We also also consider the more general case
of sensor nodes which can actuate and cause changes to the
environment they operate in, i.e. sensor-actuator nodes.

A distributed approach to decision-making using WSNs
is attractive for several reasons. First, sensing entities are
usually spatially distributed, thus forming distributed systems
for which a decentralized approach is more natural. Second,
sensor networks can be very large, i.e. containing hundreds or
thousands of nodes; thus, a distributed approach would always
be more scalable than a centralized one. Finally, a distributed
approach is compatible with the resource-constrained nature of
sensor nodes. Actual commercialized motes such as Crossbow
Mica2 motes [9] are small devices with limited memory and
computational capabilities and are energy constrained since
they are battery-powered. Therefore, a distributed approach
to performing computation, i.e. using distributed algorithms,
and limiting the amount and distance of communication are
necessary design parameters in order to achieve an efficient,
energy-aware and scalable solution. Furthermore, the restricted
communication bandwidth and range in WSNs would exclude
a centralized approach.

In a distributed learning and decision-making system, the
system behavior is influenced by the whole team of simulta-
neously and independently acting agents. Thus, the dynamics
of the environment are likely to change more frequently than in
the single agent case. As a learning method that does not need
any prior model of the environment and can perform online
learning, RL is well-suited for cooperative MAS, where agents
have little information about each other. RL is also a robust
and natural method for agents to learn how to coordinate their
action choices.

In this paper, we focus on distributed RL algorithms for
cooperative decision-making implemented on actual wireless
sensor nodes ("motes’) and study how these algorithms behave

in real environmental conditions.

2. DISTRIBUTED REINFORCEMENT LEARNING (DRL)
ALGORITHMS

In [6], Schneider et al proposed an algorithm for DRL based on
distributing the representation of the value function among the
agents. Cooperative decision-making in the MAS is achieved
by the exchange of the value of the states each agent lands in
with its neighbors. Lauer and Riedmiller [7] also studied a dis-
tributed approach to RL in a cooperative MAS of independent
and autonomous agents. Their main idea is to reduce the action
space information needed by the agents to make a decision by
projecting it to smaller action spaces. These two techniques
appear promising for our distributed RL in WSN problem,
and we study them further in this paper (see Sections 2-C and
2-D).

In the next few sections, we describe the background theory
and algorithms for three DRL approaches that are studied in
detail in this paper.

A. Background concepts

1) General framework: Markov Decision Processes
(MDP): A RL problem that satisfies the Markov property, i.e.
future outcomes are based only on the current state, is called
a Markov Decision Process, or MDP. In this paper, we focus
on finite state discrete MDPs for which the state and action
spaces are both discrete and finite.

Definition 1: A Markov Decision Process (MDP) (as de-
fined in [1]) is a 4-tuple M = (S, A, P, R) where:

o S is a discrete set of states;
o A is a discrete set of actions available in each state;
e P:S8xA— Sis a mapping from the state-action
space to a probability distribution over the state space.
A function of P is called a transition probability and is
denoted Py, = Prob(s;+1 = s'|s; = s,a; = a);
e R:S8xA— Ris amapping of the state-action space
which returns the reward of taking a particular action in
a given state. R, = E[ri41|s441 = 8,8 = s5,a; = al.
2) Value functions: A policy m is defined as a rule by
which the agent selects its action as a function of states. It is
therefore a mapping from each state s € S and action a €
A to the probability of taking action a when in state s, i.e:
7 : 8 x A — [0..1]. Moreover, the value of a state s under a
policy , denoted V" (s), is the expected return the agent can
receive when in state s and following policy 7 thereafter. This
function, which is a mapping from the state space is called the
state-value function for policy . It is formally defined by:

V7(s,a) = E™{Ry|s; = s}
oo
= Eﬂ{z Yoresksr]s: = s}
k=0

Similarly, the value of taking action a in state s under
a policy m, denoted Q7 (s,a), is the return that the agent

424

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on September 24,2021 at 18:57:23 UTC from IEEE Xplore. Restrictions apply.

can expect while starting in state s, taking the action a, and
following policy 7 thereafter:

Q" (s,a) = E™{Ry|s; = s,a: = a}

o0
=E™{D Y ripksalse = s,0, = a}
k=0

The quantity Q™ is called the action-value function for
policy 7. The objective of the learning task can be expressed
with Q™ in the following terms: find a policy 7* such that the
expected value of the return is maximized, i.e find 7* such
that:

Q™ (s,a) = meQ"(s,a) V(s,a)eSxA

3) Q-Learning algorithm: Q-learning [10] is an algorithm
developed from the theory of dynamic programming for de-
layed RL that does not need a model of the environment and
can be used on-line. In Q-learning, the action values, Q™, are
represented by a two-dimensional lookup table indexed by the
state-action pairs.

The update rule at time step t+1 of the Q-learning algorithm
is given by:

Qi+1(5¢,01) = (1 —) Q¢ (s, a¢)+

a(Tt+1(3t+1) + v max Qy(S¢41, a))
a€A

ey

where v is the discount factor mentioned earlier, where v €
[0..1], and « € [0..1] is a learning rate parameter.

With this background, we now proceed to consider three
DRL approaches for performing cooperative decision-making
in wireless sensor networks.

B. Fully distributed Q-Learning (IndLearners)

This scenario is the simplest multi-agent case which involves
homogeneous non-communicating agents: all the agents have
the same internal structure such as states, available actions,
goals and reward functions. Agents rely on their own sensor
readings to perceive the environment they operate in, and
decide on their own actions using the Q-learning algorithm
shown in equation 1 above. We shall refer to this scheme as
the IndLearners scheme.

In recent years, several extensions to RL and Q-learning
for distributed systems have been proposed. The next two
subsections present two of them: Distributed Value Function
DRL [6] which we shall refer to as DVF in short, and another
DRL algorithm proposed by Lauer and Riedmiller in [7],
which we shall denote as OptDRL.

C. Distributed Value Function (DVF) DRL

1) Distributed approaches to RL: In [6], Schneider et al
tackled the problem of finding a distributed solution for RL in
a MAS. They proposed several methods according to the type
of information that is distributed. These are:

o Global Reward DRL: For this method, agents sense, act,

and learn locally. However, their decisions are based on
a global reward function. This implies communication

between the agents to spread the global reward among
the system, or a broadcast of global reward;

e Local DRL: This method is fully distributed since each
agent acts independently. The MAS is therefore the
concatenation of several single agent systems. This case
corresponds the IndLearners case described above. The
major drawback of this method is that the composite
action of all the independent agents is not guaranteed
to be optimal;

o Distributed Reward DRL: Nodes communicate and ex-
change information about the immediate rewards they
receive from the environment. Then, each node considers
a weighted average of its local reward and those of its
neighbors. In this scheme, the nodes try to optimize their
behavior and those of their direct neighbors;

o Distributed Value Function (DVF) DRL: In this method,
nodes communicate and exchange information about their
value functions. In this case, nodes cooperate not only
with their direct neighbors but with all the nodes of
the MAS since the value function captures information
about other nodes which are not direct neighbors as well.
Moreover, by choosing the weighting functions well, the
sum of the value functions over all the nodes can be
equal to an expected future weighted sum of rewards over
all the nodes. This is similar to the global reward DRL
approach but agents achieve this behavior with access to
only local rewards and communication of value function
information only between neighbors.

2) Distributed Value Function (DVF) algorithm: Usually,
in MAS, agents only have local state information since the
global state of the system is not fully observable from each
agent’s point of view. Hence, Schneider at al proposed a Q-
learning based algorithm for the DVF DRL case which allows
each node to compute its local value function based only on
available local information.

According to this version of the DVF algorithm, agents only
need to transmit the estimated value of the current state they
land in, i.e. V¥(s!) for agent i at time ¢ at each iteration.

The update rule at time step ¢ for agent i are given by:

Qisa(shhal) = (1 -)Qi(s} ai) + a(rig (i)

Y fOV)) O
L s
Vi (s0) = max QL (s},) ©)

where f%(j) are factors that weight the value functions of
the neighbors of agent ¢ in the computation of its own
value function. Several weighting factors are possible. In our
implementation, we defined them to be the simple case of:

C))

1, otherwise.

i) = {m if Neigh(i) # 0;

where j € Neigh(i), the set of neighbor nodes.

425

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on September 24,2021 at 18:57:23 UTC from IEEE Xplore. Restrictions apply.

D. Optimistic DRL (OptDRL)

1) General framework: Multi-agent MDP: For the analysis
of this distributed decision-making method based on RL, a
general framework which is close to the basic MDP case
described above (Definition 1) is used [7]. This framework
extends MDPs to the multi-agent case by taking into consider-
ation the state and action of every agent. A state and an action
therefore becomes a vector composed of all the elementary
states and actions of the different agents of the system. In
this paper, we assume that the system is a collection of m
agents that all have the same state and action spaces. There
is a close relationship between the single-agent MDP and the
multi-agent extension, defined as follows:

Definition 2: A cooperative Multi-Agent Markov Deci-
sion Process (MAMDP) of m agents is a 4-tuple M =
(S,A,P,R) where S = []", S" is the global state of the
system, A =[]/~ A° the global action space, P : S x S —
[0,1] a probability distribution function over the state space
and R : § x A — R the reward function.

2) Optimistic DRL (OptDRL) algorithm: The algorithm
presented by Lauer and Riedmiller in [7] focuses on distributed
RL for cooperative MAS. In this cooperative MAS formula-
tion, agents are given the same reward function.

The challenge of incomplete information with respect to
the choice of action was tackled in [7]. Every independent
learning agent only knows its local part of the action-vector
(its own local action) and cannot distinguish between several
action-vectors which have the same local action for the agent.
Therefore, the basic idea is to project the information of the
whole system (considered as a single-agent MDP) into smaller
tables available at each agent which depend only on local
actions. However, projecting this information leads to some
loss of information and there is no more guarantee that the
policies computed based in the distributed manner are optimal.
An additional mechanism of coordination between the agents
is then designed to overcome this problem.

The update rule at time step ¢t + 1 for agent ¢ is given by:

qz—l—l(St’ai) = max{qg(stvai)’ (1 - a)Qf(St,ai)"'
a(rt11(Se1) + v ggff ¢ (St+1,a))}

I, 1 (S:) = a; iff ggQé(St,a) % ané'cggqiﬂ(st,a) (6)

The central idea of equation (5) is that each agent chooses its
action assuming the other agents will act optimally. Equation
(6) specifies that the policy is updated only when there is an
improvement in the ¢'(-)-values, thus introducing coordination
between the agents.

Lauer and Riedmiller prove that the OptDRL algorithm finds
optimal policies in deterministic environments. However, these
results are not applicable in stochastic environments, since, for
such environments, it is difficult to differentiate between the
behavior of other agents in the successor state from the random
behavior of the environment itself.

Fig. 2: Representation of the room environment using a 10x10 grid. Grey
cells are not illuminated, yellow cells are illuminated by one mote and striped
cells are illuminated by two motes.

3. IMPLEMENTATION ON BERKELEY MOTES AND
TOSSIM SIMULATIONS

In order to study and compare the performance of the In-
dLearners, DVF and OptDRL algorithms, we implemented
them on actual Crossbow Mica2 sensor motes [9]) and used
the TOSSIM [11] simulation platform in order to evaluate
parameters of interest such as energy consumption. TOSSIM
is a discrete event simulator for TinyOS [12] sensor networks
that builds directly from the same TinyOS code written for
the actual motes. Energy measurements are obtained with
PowerTOSSIM [13], which is an extension to TOSSIM that
provides an accurate per node estimate of power consumption
of several mote components such as the radio and CPU.

A. Operating environment

The algorithms have been implemented for a lighting control
application of a room represented by a 10 x 10 grid as shown
in Figure 2). This room contains a group of five agents on
five motes with light sensing capabilities, labeled from M1 to
MS5. Each of them also has an embedded light source that it
can actuate to illuminate the part of the room surrounding the
agent. The objective is for the agents to learn to cooperate
with one another in order to completely illuminate the room
in an energy-efficient way, i.e. minimize the number of lights
turned on. We considered a deterministic environment with
deterministic state transitions and rewards.

B. State-action spaces

The area of an agent i, denoted as .A?, refers to the 5 x 5 grid
square centered on the agent 1.

1) Local agent states: Each mote i senses the light level
in its area. Its local state s® is the concatenation of the light
readings (bright or dim) of the 25 cells. Therefore, there are
225 possible states for each agent (see Table 2).

2) Local agent actions: Each mote has the ability to take
one of the following three actions in any state it lands in. The
action space A’ is:

o Action 0: Turn OFF the light;

426

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on September 24,2021 at 18:57:23 UTC from IEEE Xplore. Restrictions apply.

o Action 1: Turn on the light in LOW mode. This mode
illuminates nine cells around the agent, as shown by M1,
M3 and MS in Figure 2;

¢ Action 2: turn on the light in HIGH mode. This mode
illuminates the 25 cells around the agent, as shown by
M2 and M4 in Figure 2.

3) Global state of MAS: The global state of the five-agent
MAS, denoted by S, is the concatenation of the light level of
all the cells in the room. There are 21%° possible global states.

C. Reward functions

1) IndLearners and DVF algorithms: For these algorithms,
the agents use only information that is locally available to
make their decisions. The reward for agent i, denoted as 7,
is a function of its state s* and is defined by:

ri(s*) = G*(s*) — C* @)

where:

o Gi(s') is a function of the number of cells illumi-
nated in the area of agent i. We used Gi(s') =
nb_cells_bright(A') x GAIN_.CELL_BRIGHT;

« C'is afunction of the energy consumption resulting from
the previous action of agent i. We used:

0, if action=0;
C'={ COST_-LIGHT_LOW, if action=1;
COST_LIGHT_HIGH, if action=2.

2) OptDRL algorithm: This algorithm requires the global
state of the environment as well as a global reward function
in order to force cooperation between the agents. The global
reward is defined as:

Globrew(S) = G(S) — C(S) (8)

where:

e G(S) is a function of the number of cells illuminated
in the whole room. G(S) = nb_cells_bright_room x
GAIN_CELL_BRIGHT;,

o C(S) is a function of the energy consumption resulting
from the previous actions of all the agents, i.e. modes of
all the light sources.

The values of the parameters GAIN_ CELL_BRIGHT,
COST_LIGHT_LOW and COST_LIGHT_HIGH were
chosen such that the optimal policy is as follows: agents M2,
M3, M4 and M5 turn on their lights in HIGH mode, and M1
turns OFF its light.

D. Results

1) Convergence of the algorithms: Figures 3, 4, 5 show
the convergence of the Q-values for the three actions in the
state “All Bright” with respect to the number of learning iter-
ations for agents running the IndLearners, DVF and OptDRL
algorithms, respectively.

The figures show that this state is stable and that the MAS is
able to learn the optimal policy in the cases of the DVF and the
OptDRL algorithms. However, the final policy learned in the

IndLeamers: G-values for local state All Bright
T T T

Tum On High M1

-
AT
MM
v

4

; A M a % wee M A

P ey e
IJ

Tum OFf M1,

4

L L
200 20 k)

L L
1] 50 100

150
teration of the algorithm (x20)

Fig. 3: Convergence of the Q-values for agents running the IndLearners
algorithm

DVF Gevalues for local state All Bright
T T T

AL Sy V"”I_A‘ g VY, M wf ‘"\‘_‘ :"A‘M Al

Tum Off M1 |

35+ 1 Turn Low M1 4

L L L
0 50 100 150

200
teration of the algorthm (:20)

Fig. 4: Convergence of the Q-values for agents running the DVF algorithm

case of IndLearners where there is no cooperation between
agents is for all agents to turn on their lights in the HIGH
mode, thus incurring more energy than the case of the optimal
policy.

Finally, the OptDRL agents learn the optimal policy much
faster than DVF agents, i.e. 1,200 iterations for OptRL com-
pared to 4,400 for DVF). However, we note that the envi-
ronment in this study is deterministic. It is expected that, for
general stochastic environments, the OptDRL algorithm will
perform worse than what is shown here because it is unable
to distinguish between random noise and the behavior of other
agents.

2) Energy and memory considerations: Table 1 compares
the energy spent on communication and computation by the
entire MAS comprising the five agents on motes during
the learning phase (first 4,000 iterations) for the different
algorithms described above. The application-level performance
metrics, i.e. illuminating the entire room with the fewest
number of lights and the lowest setting, are also shown,
together with the cumulative rewards received.

Although the OptDRL algorithm converges quickly to the

427

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on September 24,2021 at 18:57:23 UTC from IEEE Xplore. Restrictions apply.

OptDRL: Q-values for global state All Bright
T T T

9
o On Fogn 1o OO Low M
sk \Tumoﬂm,mn&.mymz,m_w.us um igh 4
u LY
7+ B
I PP et
T
33 % I T b
L Tum Onff M2, M3
i M5
» 5k = i
H
=3 ne 4
3F =
1+ 4
Ly L L L L -
9 500 1000 1500 2000 2500 3000 30 4000

Iteration of the algorthm
Fig. 5: Convergence of the Q-values for agents running the OptDRL algorithm

TABLE 1: ENERGY CONSUMPTION (J) AND APPLICATION-LEVEL PER-
FORMANCE OF THE MAS WITH 5 MOTES DURING THE FIRST 4000 ITERA-
TIONS

Ind Learners DVF OptDRL

Communication 0 1648.4 1681.0
Computation 954.9 971.7 1187.8
Lights LOW 2404 3014 1393
Lights HIGH 12721 12192 12123

Cells Bright 318323 317674 | 321766
Cumulative Reward 17429 17466 19078

optimal policy as shown above, and it performs the best in
application-level performance metrics, i.e. highest degree of
illumination at the lowest light settings, as well as receiving the
largest cumulative reward, it also consumes the most energy
for communication and computation since global state-related
information needs to be exchanged. From Table 2, we can
also see that OptDRL requires significantly more memory
compared to the other algorithms. In our formulation, the size
of the global state and memory requirements increase expo-
nentially with the size of the environment under consideration,
and linearly with the number of actions of each agent and
the number of agents. In our experiments, we have assumed
that the global state can be broadcast to all agents and all
are within radio range. This means that the communication
cost for OptDRL will only increase exponentially with the
size of the environment under consideration. If the global state
needs to be relayed in a hop-by-hop manner, the amount of
communication is likely to increase further and be dependent
also on the number of agents.

The DVF agents have more modest energy requirements -

for communication and since they only communicate their
V-values with their neighbors. Furthermore, the memory re-
quirement of the algorithm is significantly less than the case
of OptDRL since only local state is constructed. Since the
DVF algorithm can achieve coordinated behavior and find
the optimal policy, it seems to be an appropriate choice
for performing cooperative distributed decision-making on
resource-constrained wireless sensor networks.

TABLE 2: MEMORY REQUIREMENTS OF THE ALGORITHMS

Expression Actual values
IndLearners |s*] x | 4% 2% x 3
DVF |s*] x |A*| + |s*| 2% x 4
OptDRL |S] x [A*] + |S| 2% x 4

4. CONCLUSION AND FUTURE WORK
A. Related work

In [8], Guestrin et al present several new algorithms for
multi-agent RL. The common feature of these algorithms is a
parameterized, structured representation of a policy or value
function. Their approach is to approximate the joint value
function as a linear combination of local value functions, each
of which relates only to the parts of the system controlled
by a smaller number of agents. Agents then use an efficient
linear programming algorithm to derive a rule-based value
function which is an approximation to the optimal joint value
function. Given this value function, the agents then apply a
coordination graph algorithm at each iteration of the process
to determine a joint action. This coordination structure can
change in different states and may provide a well-founded
schema for other MAS coordination and communication ap-
proaches. However, this approach requires extensive message
passing and may be incompatible with WSNs where we try to
minimize communication between agents for energy savings.

Besides the theoretical studies, several applications of dis-
tributed RL have been proposed. In [14], Ferreira and Khosla
used the Distributed Value Function algorithm [6] to reach col-
laboration in a MAS and applied it to two different distributed
applications: a mobile robot planning and searching task, and
an intelligent traffic system in an urban environment. However,
no comparison with other existing distributed algorithms was
provided. Packet routing is also a domain for which distribated
RL algorithms have been designed. For example, in [15],
Littman and Boyan described the routing task as a RL problem
and proposed a self-adjusting RL-based algorithm based only
on local information. Although their empirical studies and
simulations are promising, they are not realistic from the point
of view of actual computer networks.

B. Future work

Our work has highlighted several challenges that still need to
be tackled. First, the choice of the weighting factors in the
DVF algorithm influences its overall performance as the au-
thors suggested themselves [6]. Additional weighting functions
need to be studied. These should take into consideration the
major constraints of WSNs. For example, the choice of the
neighboring nodes an agent exchanges its V-value with can be
decided based on communication cost parameters, i.e. an agent
can decide to transmit its V-value to neighbors only when
the communication cost incurred is less than the expected
gain obtained by the exchange of the V-values. Second, in
a MAS, a particular agent cannot observe directly the local
state of other agents; instead, an agent can use communication
in order to share this information and determine the global

428

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on September 24,2021 at 18:57:23 UTC from IEEE Xplore. Restrictions apply.

state of the MAS needed in the OptDRL algorithm. However,
communication incurs a cost in terms of bandwidth and
energy.consumption, which are two scarce resources in WSNs.
Methods using partial observability can be applied to enhance
the studied algorithms. An agent should also decide if it
is worthwhile to perform a communication action at every
iteration. Thus, an agent’s policy may need to include agent
communication decisions in addition to action decisions. We
plan to study these aspects in greater detail in our future work.

Furthermore, we plan to deploy these studied algorithms on
sensor networks which form part of larger global architecture
which we term SensorGrid [16], [17]. This effort focusses
on integrating sensor and actuator networks, in particular, to
the Grid in order to perform real time decision-making on a
large scale. It uses a hierarchical architecture relying on sensor
nodes at the lower level, cluster heads and finally the Grid
at the upper level, comprising Grid clients and Grid servers.
All these entities are decision-makers at various levels, and
both network and application aspects of quality of service
(QoS) such as delay, accuracy of sensing, reliability of the
response, optimality of the decisions etc. need to be taken
into consideration.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning.

Cambridge, MA, USA: MIT Press, 1998.

L. Kaelbling, M. Littman, and A. Moore, “Reinforcement learning: A

survey,” Journal of Artificial Intelligence Research, vol. 4, pp. 237-285,

1996.

P. Stone and M. M. Veloso, “Multiagent systems: A survey from a

machine leamning perspective,” Autonomous Robots, vol. 8, no. 3, pp.

345-383, 2000.

F. Zhao, J. Liu, J. Liu, L. Guibas, and J. Reich, “Collaborative signal and

information processing: An information-directed approach,” Proceedings

of the IEEE, vol. 91, no. 8, pp. 1199-1209, August 2003.

[5] V. Lesser, J. Charles L. Ortiz, and M. Tambe, Distributed Sensor

Networks: A Multiagent Perspective. Netherlands: Kluwer Academic

Publishers, 2003.

J. Schneider, W.-K. Wong, A. Moore, and M. Riedmiller, “Distributed

value functions,” in Proc. 16th International Conf. on Machine Learning.

Morgan Kaufmann, San Francisco, CA, 1999, pp. 371-378.

M. Lauer and M. Riedmiller, “An algorithm for distributed reinforcement

learning in cooperative multi-agent systems,” in Proc. 17th International

Conf. on Machine Learning. Morgan Kaufmann, San Francisco, CA,

2000, pp. 535-542.

C. Guestrin, M. G. Lagoudakis, and R. Parr, “Coordinated reinforcement

learning,” in ICML '02: Proceedings of the Nineteenth International

Conference on Machine Learning. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., 2002, pp. 227-234.

Crossbow Technology Inc.: Motes, smart

SOrS, wireless sensor networks. [Online].

http://www.xbow.com/Products/productsdetails.aspx ?sid=3

[10] C. Watkins, “Learning from delayed rewards,” Ph.D. dissertation, Uni-
versity of Cambridge, UK, 1989.

[11] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: Accurate and

scalable simulation of entire TinyOS applications,” in SenSys '03: Pro-

ceedings of the Ist International Conference on Embedded Networked

Sensor Systems, 2003.

[12] TinyOS. [Online]. Available: http://www.tinyos.net/

[13] V. Shnayder, M. Hempstead, B. rong Chen, G. W. Allen, and M. Welsh,
“Simulating the power consumption of large-scale sensor network appli-
cations,” in SenSys '04: Proceedings of the 2nd International Conference
on Embedded Networked Sensor Systems. New York, NY, USA: ACM
Press, 2004, pp. 188-200.

[14] E. Ferreira and P. Khosla, “Multi agent collaboration using distributed
value functions,” in Proceedings of the IEEE Intelligent Vehicles Sym-
posium (IV 2000), October 2000, pp. 404 — 409.

2

—

13

—

[4

—

[6

—

[7

—

[8

[l

9 dust sen-

Available:

B

[15] M. Littman and J. Boyan, “A distributed reinforcement learning scheme
for network routing,” Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, Tech. Rep. CMU-CS-93-165, 1993.

[16] SensorGrid: Sensor networks integrated with grid computing. [Online].
Available: http://www.sensorgrid.org

[17] C.-K. Tham and R. Buyya, “SensorGrid: Integrating sensor networks and
grid computing,” CSI Communications, pp. 24-29, July 2005, invited

paper.

429

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on September 24,2021 at 18:57:23 UTC from IEEE Xplore. Restrictions apply.

