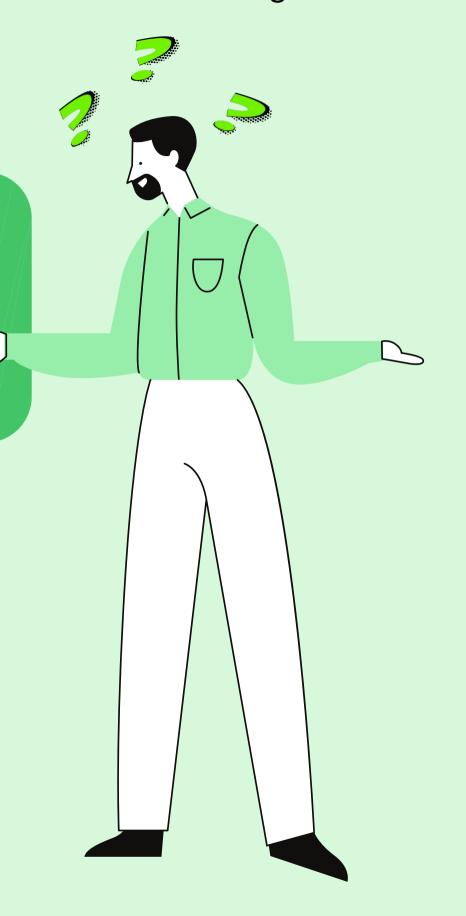
Multi-Agent Systems on Sensor Networks: A Distributed Reinforcement Learning Approach

A further breakdown on:

- Distributed Value
 Function DRL
- Optimistic DRL



Today's Breakdown

Distributed Value Function

- General
- DVF Algorithm
- Optimistic DRL
 - General
 - DVF Algorithm
- 3 Simulation
- 4 Results
- 5 Future Work

Distributed Value Function

Let's start with the general idea behind DVF DRL

Generally...

- Nodes communicated by exchanging information about their value functions
- Sum of the individual node value functions

- Total of future weighted reward sums from all of the nodes
- Nodes have access to the local rewards and can communicate their values functions with their neighbors

DVF Algorithm

- discount factor
- learning rate

land in, i.e. $V^{i}(s_{t}^{i})$ for agent i at time t at each iteration. The update rule at time step t for agent i are given by:

$$Q_{t+1}^{i}(s_{t}^{i}, a_{t}^{i}) = (1 - \alpha)Q_{t}^{i}(s_{t}^{i}, a_{t}^{i}) + \alpha \left(r_{t+1}^{i}(s_{t+1}^{i}) + \gamma \sum_{j \in Neigh(i)} f^{i}(j)V_{t}^{j}(s_{t+1}^{j})\right)$$

$$V_{t+1}^{i}(s_{t}^{i}) = \max_{a \in A^{i}} Q_{t+1}^{i}(s_{t}^{i}, a)$$

$$(3)$$

Reward function /per agent

$$r^i(s^i) = G^i(s^i) - C^i$$

Optimistic DRL

Let's start with the general idea behind Optimistic DRL

Generally...

- All agents are given the same reward function
 - Project all information about the whole system as a 'single agent'
- Finds optimal policies in deterministic environments
 - Deterministic is very predictable, your next state is completely dependent on your current state
- Not so great in Stochastic environments
 - Continuous variable -> not exactly predictable

OptDRL Algorithm

Global State

$$S = \prod_{i=1}^{m} S^i$$

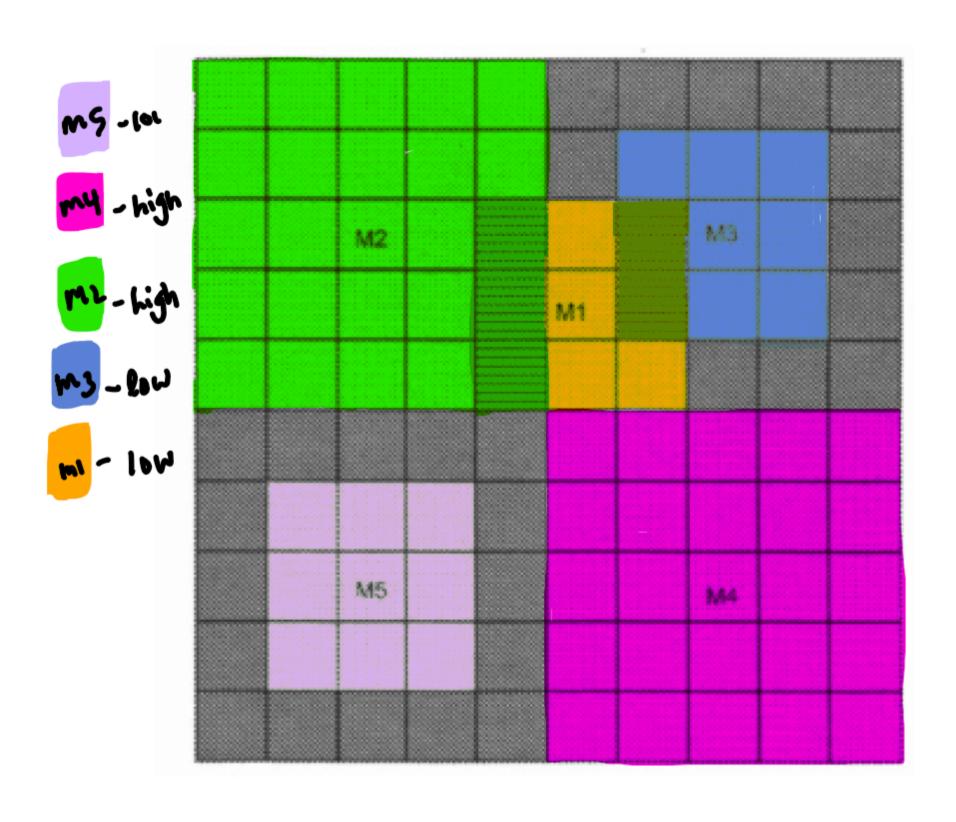
$$q_{t+1}^{i}(S_{t}, a_{t}^{i}) = \max\{q_{t}^{i}(S_{t}, a_{t}^{i}), (1 - \alpha)q_{t}^{i}(S_{t}, a_{t}^{i}) + \alpha(r_{t+1}^{i}(S_{t+1}) + \gamma \max_{a \in A^{i}} q_{t}^{i}(S_{t+1}, a))\}$$
(5)

$$\Pi_{t+1}^{i}(S_{t}) = a_{t}^{i} \text{ iff } \max_{a \in A^{i}} q_{t}^{i}(S_{t}, a) \neq \max_{a \in A^{i}} q_{t+1}^{i}(S_{t}, a)$$
 (6)

Reward function

$$Glob_rew(S) = G(S) - C(S)$$

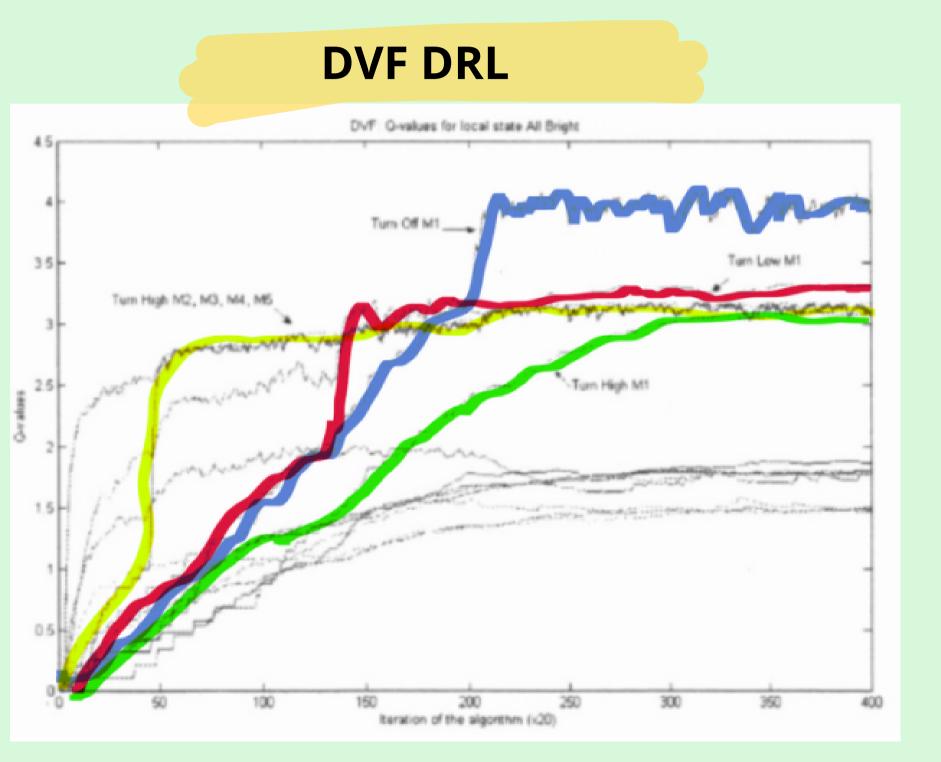
Simulation

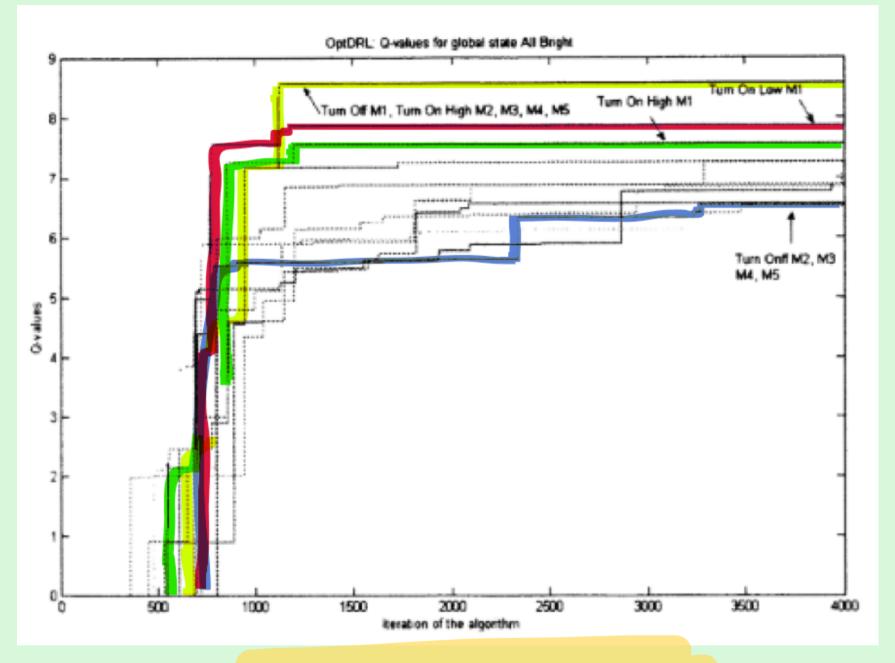


Setting

- 10x10 Grid
- 5 Agents
 - Off no lights
 - o low 9 squares
 - high 25 squares
- Goal: light up ALL 100 squares as efficiently as possible

Simulation Results





OPT DRL

Simulation Results

TABLE 1: ENERGY CONSUMPTION (J) AND APPLICATION-LEVEL PE FORMANCE OF THE MAS WITH 5 MOTES DURING THE FIRST 4000 ITER. TIONS

	Ind Learners	DVF	OptDRL
Communication	0	1648.4	1681.0
Computation	954.9	971.7	1187.8
Lights LOW	2404	3014	1393
Lights HIGH	12721	12192	12123
Cells Bright	318323	317674	321766
Cumulative Reward	17429	17466	19078

TABLE 2: MEMORY REQUIREMENTS OF THE ALGORITHMS

	Expression	Actual values
IndLearners	$ s^i imes A^i $	$2^{25} imes 3$
DVF	$ s^i \times A^i + s^i $	$2^{25} \times 4$
OptDRL	$ S imes A^i + S $	$2^{100} \times 4 \mathcal{Q}$

Integrating it with Current Project

- The use of multi agent to converge to an optimal policy does seem promising
 - Could use multiple agents to help converge to the reach the lowest communication cost
- A potential issue is looking for real live coding examples
 - different terms
 - perhaps only present in theoretical studies
 - requires further digging for resources

Works Cited

Chen-Khong Tham and J. -. Renaud, "Multi-Agent Systems on Sensor Networks: A Distributed Reinforcement Learning Approach," 2005 International Conference on Intelligent Sensors, Sensor Networks and Information Processing, 2005, pp. 423-429, doi: 10.1109/ISSNIP.2005.1595616.

ANY QUESTIONS, COMMENTS, CONCERNS?

