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Abstract—Recently, vehicular crowd sensing (VCS) that lever-
ages sensor-equipped urban vehicles to collect city-scale sensory
data has emerged as a promising paradigm for urban sensing.
Nowadays, a wide spectrum of VCS tasks are carried out by
for-hire vehicles (FHVs) due to various hardware and software
constraints that are difficult for private vehicles to satisfy.
However, such FHV-enabled VCS systems face a fundamental
yet unsolved problem of striking a balance between the order-
serving and sensing outcomes. To address this problem, we
propose a novel graph convolutional cooperative multi-agent
reinforcement learning (GCC-MARL) framework, which helps
FHVs make distributed routing decisions that cooperatively op-
timize the system-wide global objective. Specifically, GCC-MARL
meticulously assigns credits to agents in the training process
to effectively stimulate cooperation, represents agents’ actions
by a carefully chosen statistics to cope with the variable agent
scales, and integrates graph convolution to capture useful spatial
features from complex large-scale urban road networks. We
conduct extensive experiments with a real-world dataset collected
in Shenzhen, China, containing around 1 million trajectories
and 50 thousand orders of 553 taxis per-day from June 1st
to 30th, 2017. Our experiment results show that GCC-MARL
outperforms state-of-the-art baseline methods in order-serving
revenue, as well as sensing coverage and quality.

I. INTRODUCTION

Timely, accurate, and comprehensive sensing of urban met-
rics (e.g., air quality, traffic congestion, infrastructure strain)
plays an important role for monitoring a city’s health. Tradi-
tionally, urban sensing has been carried out with stationary
sensors, including loop detectors [1], surveillance cameras
[2], and many others. However, these stationary sensors are
oftentimes difficult to be scaled up to cover the whole city,
because of their prohibitive deployment costs, inconvenient
maintenance processes, and limited sensing ranges. To address
this issue, vehicular crowd sensing (VCS) that uses sensors
dedicatedly installed on crowdsourced vehicles or inherently
integrated on-board drivers’ smartphones arises as a promising
sensing paradigm, because it enables the sensors to cover the
broad urban areas visited by their hosts.

Nowadays, for-hire vehicles (FHVs), such as taxis and
those operated by ride-hailing platforms, are actually the most
desirable forces for many VCS systems. One reason is the
requirement of specialized hardwares for a wide spectrum of
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sensing tasks. For instance, air pollution sensing [3] inevitably
requires participating vehicles to carry specialized air quality
sensors, and networked dashcams [4] with the functionality
of streaming recorded videos to servers have to be equipped
before collecting front-view driving videos that help monitor
real-time traffic conditions. Clearly, a fleet of FHVs managed
by a centralized ride-hailing platform or taxi company is much
more convenient for the deployment and maintenance of these
sensing devices than private vehicles. Even without specialized
hardware requirements, software restrictions could also create
a barrier that prohibits vehicles other than FHVs from carrying
out certain VCS tasks. For example, a ride-hailing platform’s
navigation service can only rely on its own FHVs for reporting
traffic condition updates, as it is exclusively used by those
vehicles rather than private ones.

Though promising, today’s FHV-enabled VCS (FVCS) sys-
tems still face a fundamental unsolved problem of how to
balance the conflicting objectives of order-serving and sens-
ing. In practice, FHVs tend to concentrate in commercial,
business, and tourist areas, where they usually encounter
significantly more passenger orders than socio-economically
disadvantaged neighborhoods. However, a majority of the VCS
tasks inherently requires vehicles to distribute evenly both
spatially and temporally, so that enough sensory data could be
collected continuously from every corner of the city. There-
fore, in this paper, we aim to address the above imperative
problem of achieving satisfactory order-serving revenue, as
well as sensing coverage and quality in FVCS systems via a
mechanism that helps FHVs make appropriate route selection
decisions. Making such routing decisions for FHVs is naturally
a sequential decision-making task, which aims to maximize
the system-wide long-term cumulative reward that integrates
both order-serving and sensing outcomes. In what follows, we
elaborate on the challenges of design such mechanism, as well
as our approaches that address them.

The first challenge comes from the huge scale of a real-
world FHV fleet, which could usually contain hundreds of
vehicles even in a single city. Under such scenario, cen-
tralized sequential decision-making mechanisms (e.g, single-
agent reinforcement learning) will become infeasible due to
the exponential explosion in the state and action spaces. To
address this challenge, we leverage the framework of multi-
agent reinforcement learning (MARL), which treats each FHV
as an agent, and trains a distributed decision module for each
agent that is able to generate his own routing decisions without
any coordination from the system manager.



However, the above distributed decision-making framework
further poses the challenging task of aligning each agent’s
local decision with the global objective of the whole FVCS
system. We thus devise a credit assignment mechanism, which
carefully tailors the reward signals that drive agents towards
autonomously learning the routing decisions that coopera-
tively maximize the global reward. Specifically, we utilize the
difference reward technique to filter out the noises brought
by other agents from the long-term global reward, which is
approximated by a central critic in the training process.

In practice, however, the number of FHVs that make routing
decisions usually varies over time. Such variable agent scales
inevitably cause the undesirable variation of the critic’s input
dimension. We resolve such challenge by meticulously explor-
ing the semantics of the action space, and using the statistics
of actions which is invariable to the agent scale as the input
of the critic, instead of agents’ raw actions.

Meanwhile the large-scale road network of a modern city
typically has a rather complicated topology, making it difficult
to extract useful spatial features that are necessary to help
the FHVs make appropriate routing decisions. To tackle this
challenge, inspired by the recent success of graph covolutional
networks (GCNs) on capturing graph-structured correlations,
we propose to empower our MARL framework with the ability
to effectively extract spatial features from complex real-world
road networks by carefully integrating it with GCNs.

Overall, we fuse the above components into an integrated
graph convolutional cooperative MARL (GCC-MARL) frame-
work, which jointly addresses the aforementioned challenges.

In summary, this paper makes the following contributions.
• As far as we know, this work is the first one that jointly

optimizes order-serving and sensing outcomes in FVCS
systems through a distributed route selection mechanism.

• Technically, we design a novel graph convolutional coop-
erative MARL framework, which integrates (i) our care-
fully designed credit assignment mechanism that effectively
shapes each agent’s reward so as to facilitate cooperation,
(ii) our statistic-based action representation that copes with
the variable agent scales, and (iii) the graph convolution
operation that captures useful spatial features from large-
scale urban road networks.

• We conduct extensive experiments with real-world dataset
containing 1 million trajectories and 50 thousand orders of
553 taxis per-day from June 1st to June 30th, 2017. The
experimental results show that our approach outperforms
state-of-the-art baseline methods.

II. PRELIMINARIES
A. System Overview

We consider an FVCS system in a city, where a cloud-based
platform manages a set N = {1, 2, · · · , N} of FHVs for both
order-serving and sensing. That is, during their daily practices
of serving orders, the FHVs also utilize either pre-installed
dedicated sensors or simply those on-board drivers’ smart-
phones to carry out urban sensing tasks. Naturally, an FHV
in FVCS system is either on-service if it is currently serving

Figure 1: Interactions between the platform and FHVs, where the central
intersection is denoted as I2.

orders, or idle, otherwise. We discretize the entire time horizon
into T equal-length time slots, denoted as T = {1, 2, · · · , T},
and construct the road network described in Definition 1 as
the spatial representation of a city.

Definition 1 (Road Network). We define a city’s road network
as a tuple (I,D), where I is the set of all road intersections
and D is the set of all road segments1 that the city has.

Fig. 1 demonstrates an example of a road network with I =
{I1, I2, · · · , I5} and D = {D1, D2, · · · , D6}, and illustrates
the interactions between the platform and FHVs, which we
explain in detail as follows.
• At the beginning of each time slot, the platform allocates

the passenger orders that have not yet been served to idle
FHVs by calling the order dispatch algorithm [5–7]. After
picking up passengers, idle FHVs will become on-service
ones and start heading to the passengers’ destinations.

• When an idle FHV reaches an intersection, the platform
sends the information of the surrounding road segments
(e.g., distribution of orders and FHVs) to it. Such infor-
mation is then used by the FHV’s local decision module to
decide which way to go in the next time slot.

• The FHVs carry out sensing tasks continuously, and will
upload the collected sensory data to the platform at the end
of each time slot.
In this paper, we focus on designing and training local

decision module for each FHV, which helps it make routing
decisions. Therefore, tasks such as order dispatch are not the
main focus of this paper. In fact, our model is compatible with
any existing algorithms to handle these tasks.

B. Problem Description

In this paper, we take the perspective of the platform and
aim to achieve both satisfactory order-serving and sensing
outcomes. As commonly used in practice, the platform uses
the gross merchandise volume (GMV) defined in Definition 2
to evaluate FHVs’ performance of serving passenger orders.

1In our model, a road segment is the piece of a road between two adjacent
intersections, and it is directional that the opposite directions of a two-way
road are treated as different elements in D.



Definition 2 (GMV). LetMt be the set of orders served by the
FHVs in time slot t. The order-serving revenue of the platform
in time slot t is rot =

∑
ei∈Mt

p(ei), where p(ei) denotes the
price of each order ei ∈ Mt. The overall GMV is defined as
the sum of rot along the whole time horizon, i.e.,

GMV =
∑
t∈T

rot =
∑
t∈T

∑
i:ei∈Mt

p(ei). (1)

Next, we define the metric utility of sensing (UoS) which
measures the system-wide sensing performance.

Definition 3 (UoS). Let njt be the number of FHVs that
traverse the road segment Dj ∈ D during time slot t and
lj be the length of Dj . The sensing utility of the platform in
time slot t is defined as rst =

∑
j:Dj∈D lj ln(njt + 1). The

overall UoS is defined as the sum of rst along the whole time
horizon, i.e.,

UoS =
∑
t∈T

rst =
∑
t∈T

∑
j:Dj∈D

lj ln(njt + 1). (2)

As indicated by Definition 3, UoS jointly captures the
sensing quality of road segments and spatio-temporal sensing
coverage to comprehensively evaluate the sensing performance
of FHVs. Intuitively, the sensing quality of a piece of road
segment is monotonically increasing with the number of FHVs
going through it, since a larger number of FHVs will collect
more sufficient sensory data. However, when there are already
adequate sensory data, further increase of the data volume will
bring only minor gain to the sensing quality. The ln(njt + 1)
term in Equation (2) helps capture the above properties and
represent the sensing quality for one unit length of road
segment, as the ln(·) function is non-decreasing and concave.
Furthermore, by multiplying ln(njt +1) with the length lj of
road segment Dj and summing it over all the road segments
and time slots, we ensure that the UoS defined by Equation
(2) covers the sensing quality of every inch of a city’s road
segments over the entire time horizon.

Next, we integrate the GMV and UoS into the system utility
as given in Definition 4, which unifies both the order-serving
and sensing performances of the entire FVCS system.

Definition 4 (System Utility). The system utility J is defined
as the weighted sum of the GMV and UoS, i.e.,

J = GMV + λUoS =
∑
t∈T

(
rot + λrst

)
, (3)

where λ ≥ 0 denotes the importance ratio for UoS and can
be set by the platform flexibly.

To obtain satisfactory system utility, FHVs should take
reasonable routing choices to appear in a timely manner at
the road segments where order-serving and sensing demands
exist. Specifically, we choose to optimize the routing decisions
for idle FHVs rather than on-service ones for the following
two reasons. On one hand, on-service FHVs are supposed to
deliver the passengers to their destinations as soon as possible
and any explicit deviation from the fastest route will jeopardize

passengers’ experience. In contrast, the routes of idle FHVs are
much more flexible and have a greater potential to be further
optimized. On the other hand, a city-scale FHV fleet could
usually contain a huge number2 of idle FHVs at any time
instance, whose routing decisions will influence the system
utility significantly. Therefore, we aim to design models and
algorithms which could help idle FHVs in an FVCS system
make appropriate routing decisions that maximize the overall
system utility.

III. FVCS-POMDP FORMULATION

Real-world FVCS systems usually operate in highly
stochastic environments, where future arrivals and cancella-
tions of passenger orders follow a priori unknown patterns.
Consequently, it is infeasible to perform a one-shot calculation
of the optimal routing choices for all the FHVs and time slots.
Under such environments, the platform will have to follow
a sequential decision-making process that optimizes FHVs’
routing choices at each time slot to maximize the expected
long-term system utility from the current time slot onwards.

An intuitive approach to address such sequential decision-
making problem is to formulate it as a single-agent centralized
decision framework, in which the platform is the only agent
that decides all the FHVs’ routes. However, such framework is
infeasible in practice due to the explosion of the state and ac-
tion spaces caused by the large scale of FHVs. Consequently,
we adopt a decentralized decision paradigm that implements
an agent at the side of each FHV, who works cooperatively
with the other agents to maximize the system utility. We then
formulate such multi-agent decision problem as a decentral-
ized partially observable Markov decision process [8] (referred
to as FVCS-POMDP) as presented in Definition 5.

Definition 5 (FVCS-POMDP). The FVCS-POMDP is a de-
centralized partially observable Markov decision process de-
fined by following components.
• Agent: An agent is a local decision module implemented

by the platform at an FHV that makes its routing decisions
when it is idle. We use N to represent the agent set.

• State: A state st consists of the current time slot t, and the
features of each road segment. We construct the feature vec-
tor of each road segment Di ∈ D as f it = (n1t, n2t, n3t, li),
where li denotes Di’s length, and n1t, n2t, and n3t denotes
respectively the number of orders waiting to be served, the
number of on-service FHVs, and the number of idle FHVs
on the road segment i in time slot t.

• Observation: At every time slot t, each agent i ∈ N receives
a local observation oit, which contains the features of its
current road segment and those that can be reached within
m steps of routing actions3 by agent i.

• Action: At every time slot t, each agent i ∈ N that is leaving
its current road segment takes an action ait that indicates the
road segment it will enter at the next time slot. We denote

2As is shown in our experiments, more than 40% FHVs are idle on average
at each time slot.

3We will discuss the details of m in Sec. IV-C.



the set of such agents as Nt, agents’ joint actions as at =
(ait)i∈Nt

, and agent i’s action space as Ait at time slot t.
• Policy: Given observation oit, agent i’s policy πi specifies

a probability πi(ait|oit), with which it takes each action
ait ∈ Ai. We denote the joint policy of the agents as
π = (π1, π2, · · · , πN ).

• State Transition Probabilities. Given state st and agents’
joint actions at, the current state st transits to state st+1

according to the probability P (st+1|st,at).
• Reward. At every time slot t, the platform receives an

immediate reward Rt = rot+λr
s
t , which consists of two parts

of team rewards that are decided by agents’ joint actions
and the current state. The platform aims to maximize the ex-
pected long-term cumulative reward J(π) = E[

∑
t∈T Rt].

Under FVCS-POMDP model, each agent uses its own
policy to generate actions in a fully decentralized manner. Fur-
thermore, the team rewards rot and rst are non-decomposable
among agents, because they are generated by agents’ joint
actions, and are affected by the cooperation among agents.

As the state transition probabilities of the FVCS-POMDP
are usually a priori unknown, we propose to train agents’
policies via our novel multi-agent reinforcement learning
framework elaborated in Sec. IV.

IV. PROPOSED GCC-MARL FRAMEWORK

A. Framework Overview
Our graph convolutional cooperative multi-agent reinforce-

ment learning (GCC-MARL) is an actor-critic-based multi-
agent reinforcement learning framework with centralized train-
ing and decentralized execution [9]. On one hand, a central
critic is shared by all agents in the training phase. Specifically,
the critic can access the global state and the agents’ joint
actions, which enables it to capture the mutual influences
among agents in a global view and evaluate their cooperation
in the system level. On the other hand, each agent possesses a
local actor to generate routing actions. As the central critic is
not used in the execution phase, agents take actions in a fully
decentralized manner in our GCC-MARL framework.

The design details of the actor and critic module in GCC-
MARL are given in the following Sections IV-C and IV-D.

B. Reachability Graph
An FHV’s current route selection inevitably affects the set

of road segments it can reach in the future, and influences
the long-term system utility. It is thus critical for the FHVs
to know the reachability relationships among road segments.
However, a city’s road network (I,D) itself does not explicitly
represent the reachability among roads. As a result, we con-
struct a reachability graph Ct = (V, E ,Ft) at each time slot
t, which effectively captures such reachability information.

Reachability Graph Construction:
• Node Set (V): For each road segment Di ∈ D, we construct

a corresponding node vi ∈ V .
• Edge Set (E): If FHVs leaving road segment Di are able

to enter road segment Dj directly, we construct a directed
edge eij ∈ E from node vi to vj .

Figure 2: The GCC-MARL framework.

• Node Features (Ft): We set the feature vector of each node
vi ∈ V as Di’s feature vector f it.
In Fig 3, we show an example of converting a road net-

work into a reachability graph. Clearly, the reachability graph
constructed via the above procedure not only captures the
reachability relationships among road segments by its edges,
but also concentrates meaningful features that characterize the
road segments on its nodes. Such property naturally makes
the reachability graph conform with the input format and
working principles of Graph Convolutional Networks (GCNs),
which are expert in extract expressive latent features in graphs.
Therefore, in the following Sec. IV-C and IV-D, we use GCNs
as the basic building blocks of the actor and critic module.

(a) Road network (I,D). (b) Reachability graph Ct.

Figure 3: An example of transforming road network into reachability graph.

C. Actor Design

In our GCC-MARL framework, each agent possesses a local
actor that generates the routing action. As shown in Fig. 2, at
each time slot t, the actor module of an agent i that is about
to take an action uses the observation oit as the input to its
policy network πi(·|·), and generates a probability distribution
πi(·|oit) over its action space, from which the actor module
samples the routing action ait.

As aforementioned, the reachability among road segments
is essential for an agent to make far-sighted routing actions.



However, feeding the entire reachability graph to the actor
module will bring excessive computational overheads. In fact,
as will be shown our experiments, letting the actor know the
set of road segments that it will reach in a few time slots later is
enough for making satisfactory routing decisions. At each time
slot t, we use the n-hop subgraph of the reachability graph Ct
centered at the road segment Da where agent i locates, denoted
as Ca,nt = (Va,n, Ea,n,Fa,nt ), as agent i’s local observation oti.
n-Hop Subgraph Construction:

• Node Set (Va,n): We firstly add the node va ∈ Ct that
corresponds to road segment Da to Va,n. Next, we perform
a Breadth First Search (BFS) starting from va along the
directed edges of Ct for n times, and add the nodes that are
met in the BFS process into Va,n.

• Edge Set (Ea,n): We construct the edge set Ea,n as the set
of edges in Ct that are met in the above BFS process.

• Node Features (Fa,nt ): We set the feature vector of each
node vi ∈ Va,nt as Di’s feature vector f it.
The n-hop subgraph Ca,nt constructed above records the

features of all the road segments that agent i may enter in n
time slots in the future. Thus, aggregating the features of the
nodes in Ca,nt can help comprehensively evaluate the agent’s
possible routing choices at the current road segment Da.

To implement the aggregation process, we stack m = n−1
layers of graph attention networks (GATs) [10], which are a
variant of GCNs that can process directed graphs. Specifically,
the input graph G1 of the 1st GAT layer is the n-hop subgraph
Ca,nt , and each layer l ∈ {2, 3, · · · ,m} takes the output Gl of
the (l−1)th layer as its input and outputs another graph Gl+1.

We show an example of the computation process of one
GAT layer in Fig. 4. For each layer l, the input Gl and output
Gl+1 have the same graphical structure but different values for
the node features. We let hlp ∈ R4 be the feature vector of each
node vp in the graph Gl, and we thus have h1

p = fT
pt. Then,

GAT layer l calculates the attention coefficients αpq between
node vp and each of its 1-hop neighbor node vq in Gl as

αpq =
exp

(
LeakyReLU

(
uT [Whlp‖Whlq]

))∑
q′∈Vp,1 exp

(
LeakyReLU

(
uT [Whlp‖Whlq′ ]

)) , (4)

where ‖ denotes the concatenation operation of two vectors.
Both W ∈ RF×4 and u ∈ R2F×1 are linear transformation
matrices. Equation (4) adopts the nonlinearity activation func-
tion LeakyReLU(·) commonly used in neural networks.

Using the attention coefficients as weights, GAT layer l
calculates the latent features hl+1

p of node vp in Gl+1 by
aggregating the features of its 1-hop neighbor nodes as

h
l+1
p = LeakyReLU

( ∑
q∈Vp,1

αpqh
l
p

)
. (5)

After the above operations of one GAT layer, the features of
each node is broadcast to its 1-hop neighbors. Thus, through m
GAT layers, each node of the input graph is able to aggregate
the features of all of its m-hop neighbors. Note that the input
of the 1st GAT layer is the n-hop subgraph Ca,n with n = m+
1 and all the candidate routing road segments are the neighbors

Figure 4: The computation process of the lth GAT layer on node v3. The
input graph is C3,1t based on the reachability graph in Fig. 3b.

of Da. Such parameter choice enables us to aggregate features
of the roads that are m-hops away from each candidate road
segment in once computation.

After we get the output graph of the mth GAT layer, a
selector is applied to pick the latent features of each candidate
routing road segment of agent i’s action set Ait. These features
are then fed into multi-layer perceptrons (MLP), which map
them into scalars. Furthermore, a softmax(·) function is applied
to generate the stochastic policy that specifies the probability
of choosing each candidate routing road segment Dr ∈ Ait as

πi(Dr|oit) =
exp

(
d
(
hm+1
r

))∑
r′:Dr′∈Ai

t
exp

(
d
(
h
m+1
r′

)) , (6)

where d(·) denotes the MLP function. When interacting with
the environment, agent i takes action ait according to the
probability distribution πi(·|oit). It is worth noting that the
actor is able to output the routing action even if the size of its
action set varies in different time slots.

D. Critic Design

Our centralized training and decentralized execution frame-
work implements a central critic which accesses the global
state st and joint actions at in the training process, and
aims to approximate the state-action value function Q(st,at) =

Eπ [
∑T
τ=tRτ |st,at] under the current joint policy π.

A widely applied approach is to use neural networks as
the approximator of Q(st,at). However, simply representing
agents’ joint actions at as a vector that concatenates each
agent’s action is infeasible in our problem setting. Clearly, the
dimension of at is huge and could vary significantly across
time slots due to the variation of the sets of agents that take
actions. Such vector-based representation of at is impractical
to be processed by neural networks. Hence, it is imperative
to represent at in a compact but informative data structure.
At each time slot t, we construct a novel action graph Cat =
(Vat

, Eat
,Fat

) which effectively embeds at as follows.
Action Graph Construction:

• Node Set (Vat ): We set the node set Vat to be the same as
the node set V of the reachability graph Ct.

• Edge Set (Eat
): We set the edge set Eat

to be the same as
the edge set E of the reachability graph Ct.

• Node Features (Fat
): The feature fit of each node vi ∈ Vat

captures the statistics of at, and is set to be the number of



times that the corresponding road segment Di is picked in
the joint actions at.
The action graph Cat

has a fixed graphical structure, which
is adaptive to the varying and high dimension of at. Further-
more, Cat

captures the spatial properties of at by inheriting the
structure of the reachability graph, which enables the critic to
evaluate more accurately the cooperation among agents from
the spatial view of the system.

As shown in Fig. 2, at each time slot t, the critic con-
catenates the features correspond to the same nodes in the
reachability graph Ct and action graph Cat

, and gets a con-
catenated graph C′t. The critic takes C′t as the input to m
stacking GAT layers. Next, a feedforward MLP g(·) maps the
outputs of the final GAT layer into scalars. Finally, an average
operation aggregates the outputs of the MLP and yields the
approximation of the Q function, i.e.,

Q(st, at) ≈
1

|D|
∑

i:Di∈D
g
(
z
m+1
i

)
, (7)

where zm+1
i denotes the latent features of road segment Di

output by the final GAT layer.

V. PROPOSED TRAINING METHOD

A. Difference Reward-Based Credit Assignment Approach

In the training process, we aim to learn agents’ policies
that can achieve full cooperation and maximize the system
utility. However, the non-decomposability of the team rewards
make it difficult for the training algorithm to distinguish the
contribution of each individual agent to the system utility,
and thus hinders the effective learning of agents’ policies. In
order to solve such problem, we utilize the difference reward
technique to perform credit assignment among agents. Such
technique shapes the reward signals by filtering out noises
brought by other agents from the team reward, and thus helps
better assess each agent’s contribution. Specifically, we use a
simple yet effective difference reward called Wonderful Life
Q-function (WLQ) [11], which is defined as

Ait(st, at) = Q(st, at)−Q(st, a
−i
t ), (8)

where a−it refers to the joint actions without agent i. Both at,
and a−it are implemented using the action graphs proposed
in Sec. IV-D. Clearly, the WLQ Ait(st,at) measures the
contribution of agent i to the expected system utility, if it
takes action ait. We thus use it as the advantage function in
the training algorithm described in the following Sec. V-B.

B. Overall Training Algorithm

The overall training algorithm of GCC-MARL is presented
in Algorithm 1. At first, the algorithm randomly initializes the
parameters of each agent’s actor and the critic (line 1). As long
as the training has not converged, the algorithm collects and
stores the experiences in replay buffers (line 2-12). At each
time slot t, each agent i who need to make a routing decision
gets observation oit, and takes action ait generated by its actor
(line 6). The joint actions at for agents are then collected,

ALGORITHM 1: Training Algorithm of GCC-MARL
1 Randomly initialize the parameters of each agent i’s actor θi

and the central critic φ;
2 while training not finished do
3 Initialize replay buffers U , and Bi for each agent i as ∅;
4 foreach time slot t ∈ {1, 2, · · · , T} do
5 foreach agent i ∈ Nt do
6 Actor takes oit as input and generates action ait;

7 Collect the joint actions at and team reward Rt;
8 The critic calculates Q(st,at);
9 Store tuple (Q(st,at), Rt) into replay buffer U ;

10 foreach agent i ∈ Nt do
11 The critic calculates the advantage function

Ait(st,at) by Equation (8) ;
12 Store tuple

(
πi(ait|oit), ait, Ait(st,at)

)
into

replay buffer Bi;

13 foreach agent i ∈
⋃
t∈T Nt do

14 Sample K experiences from Bi;
15 Update agent i’s actor using Equation (9);

16 Sample all the Q(st,at) and Rt from U ;
17 Update the critic Equation (10);

based on which the critic calculates the Q(st,at) (line 7-8).
The algorithm then stores the tuple et = (Q(st,at), Rt) into
buffer U (line 9). Next, the critic calculates the advantage
function Ait(st,at) for each agent i that takes action, who
then stores the tuple bit = (πi(ait|oit), ait, Ait(st,at)) in its buffer
Bi (line 11-12). After that, the algorithm enters the parameter
updating processes (line 13-17). For each agent i, we sample
K experiences from Bi and update the parameters of its actor
(line 15) using policy gradient ∇θiJ(π), i.e.,

∇θiJ(π) = Ebit∼Bi

[
∇θi log πi(ait|oit)Ait(st, at)

]
, (9)

where θi represents the parameters of agent i’s actor. Finally,
we sample the experiences from the replay buffer U and update
the parameters of the central critic (line 17) by the TD(1)
method to minimize the mean square error loss

L(φ) = Eet∼U
[(
Q(st+1,at+1) +Rt −Q(st,at)

)2]
, (10)

where φ denotes the critic’s parameters. Moreover, it is also
worth noting that the joint actions at is only used by the critic
in the training process. As long as training is completed, only
the actor of each agent is employed in the execution process,
which operates with only the agent’s local observation.

C. Proof of Convergence

Let θ = {θ1, θ2, · · · , θN} be the parameters of all agents’
policies. Next, we rigorously prove the convergence of Algo-
rithm 1 by firstly proving the following Lemma 1.

Lemma 1. The WLQ policy gradient of our GCC-MARL
algorithm is equivalent to the standard single-agent actor-
critic policy gradient which treats at as the action of one
single agent, i.e., we have

∇θJ(π) =Eπ
[ ∑
i∈Nt

∇θi log π
i(ait|oit)Ait(st,at)

]
=Eπ

[
∇θ logπ(at|st)Q(st,at)

]
.

(11)



Proof. As the the advantage function of our GCC-MARL
algorithm is defined as Ait(st,at) = Q(st,at) − Q(st,a

−i
t ),

the WLQ policy gradient in our algorithm satisfies

∇θJ(π) =Eπ
[ ∑
i∈Nt

∇θi log π
i(ait|oit)Ait(st,at)

]

=Eπ
[ ∑
i∈Nt

∇θi log π
i(ait|oit)Q(st,at)

]
−

Eπ
[ ∑
i∈Nt

∇θi log π
i(ait|oit)Q(st,a

−i
t )

]
.

(12)

Let dπ(st) be the ergodic state distribution defined in [12]
and π(a−it |st) be the probability that the joint actions a−it is
taken by the agents excluding agent i at state st. Then, the
second term in the right-hand-side of Equation (12) satisfies

Eπ
[ ∑
i∈Nt

∇θi log π
i(ait|oit)Q(st,a

−i
t )

]
=
∑
st∈S

dπ(st)
∑
i∈Nt

∑
a−i
t

π(a−it |st)

∑
ait

πi(ait|oit)∇θi log π
i(ait|oit)Q(st,a

−i
t )

=
∑
st∈S

dπ(st)
∑
i∈Nt

∑
a−i
t

π(a−it |st)
∑
ait

∇θiπ
i(ait|oit)Q(st,a

−i
t )

=
∑
st∈S

dπ(st)
∑
i∈Nt

∑
a−i
t

π(a−i|st)Q(st,a
−i
t )∇θi1 = 0,

(13)

where S denotes the state space. As the policy parameters for
each agent are independent, the first term on the right-hand-
side of Equation (12) satisfies

Eπ
[ ∑
i∈Nt

∇θi log π
i(ait|oit)Q(st,at)

]
=Eπ

[ ∑
i∈Nt

∇θ log πi(ait|oit)Q(st,at)
]

=Eπ
[
∇θ log

∏
i∈Nt

πi(ait|oit)Q(st,at)
]

=Eπ
[
∇θ logπ(at|st)Q(st,at)

]
,

(14)

where the last equality comes from the fact that π(at|st) =∏
i∈Nt

πi(ait|oit) which holds due to the independence
of each agent’s policy. By substituting Equations (13)
and (14) into Equation (12), we have that ∇θJ(π) =

Eπ [∇θ logπ(at|st)Q(st,at)], which proves Lemma 1.

It is worth noting that treating independent actors as a
single-agent actor that learns joint actions is key for this proof.
Next, we show the following Theorem 1, which states the
convergence property of our GCC-MARL algorithm.

Theorem 1. Let ∇θJk(π) be the derivative of J(π) w.r.t. to
θ at each training iteration k. Then, we have

lim
k→∞

inf
k
||∇θJk(π)|| = 0,w.p. 1. (15)

That is, after enough training iterations, the GCC-MARL
training algorithm converges to a local maximum of J(π).

Proof. According to Lemma 1, we have that the WLQ policy
gradient of our GCC-MARL algorithm is equivalent to the

standard single-agent actor-critic policy gradient given in
Equation (11). A single-agent actor-critic algorithm following
such gradient is proved to converge to a local maximum of the
expected return J(π) in [13]. Thus, the GCC-MARL training
algorithm converges to a local maximum of J(π).

VI. PERFORMANCE EVALUATION

A. Simulation Settings

1) Dataset: Our experiments are conducted with around
1,000,000 trajectories and 50,000 orders per-day of 553 taxis
from June 1st to June 30th, 2017. We plot the trajectories
of all the taxis running in Shenzhen within each 5-minute
time period on Shenzhen’s road map, and show the result of
two representative intervals in Fig. 5. We can easily observe
that taxis primarily concentrate on the bottom half of the city
where more commercial and business areas exist, but appear
much less in the top half which mostly consists of suburban
areas. Such observation validates our motivation of helping
FHVs make appropriate routing decisions so as to achieve
both satisfactory order-serving and sensing outcomes.

2) Simulator Design: To train and evaluate of our GCC-
MARL algorithm, we build a simulator for the dynamic
urban environment based on a large-scale real-world dataset.
Our simulator uses 174 roads, 101 intersections in Nanshan
District, Shenzhen, China as the road network, and sets the
length of each time slot as 1 minute. The 24 hours from 0:00
to 24:00 in one day is one episode. In the simulator, orders
emerge by bootstrapping from dataset and get cancelled if
unserved for 3 time slots. As order dispatch is not the focus
of this paper, our simulator adopts the simple algorithm that
allocates the orders to the idle FHVs on the same road segment
uniformly at random. Note that our simulator is compatible
with any other sophisticated order dispatch algorithms. After
picking up passengers, FHVs will head to destinations through
the fastest route. To evaluate the robustness of GCC-MARL in
different scenarios, we sample orders with different ratios from
our dataset and construct three environment settings, denoted
as setting 1, 2 and 3, each of which consists 11109, 33327
and 55545 orders correspondingly.

(a) 9:00 to 9:05 (b) 12:00 to 12:05

Figure 5: Taxi trajectories in Shenzhen in two time periods.

B. Baselines and Metrics

We compare GCC-MARL with following strong baselines.
• Rule-based: With such method, an FHV always chooses

from the candidate road segment that has the maximum
average order-serving revenue (i.e., the total order prices
divided by the number of idle FHVs).



(a) Improved GMV in setting 1. (b) Improved UoS in setting 1.

(c) Improved GMV in setting 2. (d) Improved UoS in setting 2.

(e) Improved GMV in setting 3. (f) Improved UoS in setting 3.

Figure 6: Improved GMV and UoS of different algorithms.

• IAC: IAC is similar to Independent Q-Learning [14] except
that it adopts an actor-critic method. An FHV’s reward under
IAC consists of its order-serving reward (i.e., total prices of
the orders it serves), and its sensing reward (i.e., average
sensing reward of all FHVs) multiplied by an importance
ratio. IAC maintains a decentralized critic for each FHV to
evaluate its own long-term reward that it aims to maximize.

• Central-V: Central-V [15] learns a centralized critic with a
decentralized actor for each agent without filtering out the
contributions of other agents in the reward signal.

• LIIR: LIIR [16] is a state-of-the-art multi-agent reinforce-
ment learning method for credit assignment, where each
agent learns a parameterized intrinsic reward function, and
uses the sum of the system utility and intrinsic reward to
stimulate each agent to generate cooperative actions.
We define the improved GMV of an algorithm as the relative

improvement of its performance on GMV compared with the
rule-based algorithm, and define the improved UoS in the
same manner. These two metrics are used to measure the
performance of GCC-MARL and the above algorithms.
C. Experiment Results

1) Comparison with Baseline Methods: Fig. 6 shows that
our GCC-MARL algorithm outperforms all the baselines in
both GMV and UoS in all settings. Specifically, our reasoning
of GCC-MARL’s superior performance compared with IAC is
as follows. Firstly, under IAC all agents aim to maximize their
own received rewards, which incurs unnecessary competition
among agents that decreases the system utility. Moreover,

(a) Improved GMV in setting 1. (b) Improved UoS in setting 1.

(c) Improved GMV in setting 2. (d) Improved UoS in setting 2.

(e) Improved GMV in setting 3. (f) Improved UoS in setting 3.

Figure 7: Improved GMV and UoS of GCC-MARL with m ∈ {0, 1, 2, 3}.

(a) Normalized WLQ with different DSG. (b) Normalized WLQ with different SR.

Figure 8: Visualization of Normalized WLQ.

IAC’s equal allocation of the overall sensing reward to each
agent cannot precisely measure its contribution to the non-
divisible team sensing reward.

Compared with GCC-MARL that learns the state-action
value function, Central-V only learns the state value func-
tion, which makes it unable to discriminatively credit the
agents based on their diverse actions. We observe that the
performance of Central-V degrades sharply with the increase
of the order number. Such observation further implies the
inapplicability of Central-V in city-scale FVCS systems.

Although LIIR has been shown to be fairly effective with a
small number (e.g., less than 10) of agents [16], it performs
worse than GCC-MARL in the setting with hundreds of agents
due to the difficulty of learning each agent’s intrinsic reward.
In contrast, the credit assignment mechanism in GCC-MARL
captures the contribution of each agent to the system utility
more precisely than the learnt intrinsic reward in LIIR.

2) Impact of the Number of GAT Layers in GCC-MARL:
We now evaluate the impact of the number of GAT layers



on the performance of GCC-MARL. Fig. 7 shows the perfor-
mances of GCC-MARL in different settings with the number
of layers m ∈ {0, 1, 2, 3}. From these figures, we observe that
setting m = 1 yields the best performance. The model with
zero GAT layer cannot capture any spatial correlation among
the road segments and thus performs worse than that with one
GAT layer. Interestingly, we observe that m = 2 and m = 3
yield the worst performances in GMV and UoS among most
cases. Reasons behind such observation are as follows. On one
hand, the increase of the number of convolutional layers will
make GCNs more likely to generate over-smoothed features,
which will cause the loss of necessary spatial information and
eventually hinder the generation of satisfactory policies. On
the other hand, although more GAT layers would propagate
features of roads in further expanded neighborhoods, the
information from roads that are overly distant may become
useless or even noisy for generating policies due to rapidly
changing real-world road conditions.

3) Evaluation of Our Credit Assignment Method: As our
credit assignment method represented by Equation (8) is the
core for training each agent’s actor module, we now turn
to evaluate its effectiveness. Given the feature vector f it =
(n1t, n2t, n3t, li) of road segment Di in time slot t, we define
the demand-supply gap (DSG) as DSG = max{n1t − n3t, 0}
where n1t−n3t represents the difference between the number
of orders and idle FHVs, and define the sensing ratio (SR) as
SR = li

n2t+n3t
where n2t+n3t represents the total number of

FHVs on the road segment during the time slot.
Intuitively, a higher credit should be assigned to an FHV,

if it drives to a road segment with a larger DSG, since it is
more likely to serve orders. Similarly, FHVs driving to a road
segment with a larger SR will contribute more to the sensing
outcome, and thus should also be assigned a higher credit.
In Fig. 8, we show the average normalized WLQ w.r.t. both
the DSG and SR with λ ∈ {1, 2, 4, 8}. The general increasing
trend of the curves conforms with the above intuition, and
validate the correctness of our credit assignment method.

VII. RELATED WORK

Mobile crowd sensing (MCS) [17], which leverages humans
or vehicles equipped with smartphones or dedicated sensors,
has become a promising paradigm for large-scale sensing
tasks. Recently the research community devoted much effort
[3, 18–25] to design and analyze MCS systems. Among them,
[18–20, 26, 27] designed incentive mechanisms to stimulate
participation, [28, 29] proposed user-interaction networks to
enable smooth interaction between users and MCS system,
[30–32] focused on preserving users’ privacy, and [24, 25] tai-
lored MCS for various application scenarios. Compared with
these works that mostly utilized optimization or algorithmic
methods, we empower MCS with reinforcement learning (RL)
to enable a more autonomous and adaptive decision making
mechanism in MCS.

Similar to our work, a recent line of studies [33–37] also
adopt RL for decision making in VCS systems. Specifically,
[33, 35] used RL to control autonomous vehicles for sensing

in different environments, [34, 37] applied RL to jointly
manage unmanned vehicles to collect sensing data and charge
at multiple charging stations, and [36] leveraged RL to plan
paths for robots. However, our work is fundamentally different.
On one hand, we consider FHVs that already exist in urban
environments as the major forces for VCS, thus avoid the extra
costs of purchasing and maintaining dedicated sensing vehicles
as in the above works. On the other hand, adopting FHVs for
sensing naturally requires to manage hundreds of FHVs to
work cooperatively, which is a critical issue that cannot be
addressed by the above prior literatures.

Moreover, compared with existing cooperative multi-agent
RL (MARL) methods, our GCC-MARL framework itself also
bears a fair amount of technical novelty. Specifically, the
simplest approach [14] for MARL is to train a policy for
each agent that maximizes its own reward, which possibly
deviate from optimizing the global objective. Recently the
centralized training and decentralized execution framework
[9, 38] is widely adopted to evaluate the influence of agents’
joint behaviors to the global objective. Based on such frame-
work, [11, 15, 16] stimulated agents to work cooperatively by
crediting them with rewards shaped by their contributions to
the global reward. These methods are shown to be effective
in environments with a small number of agents. However,
our problem setting contains orders of magnitudes more and
constantly changing number of agents, which will degrade the
performance of these methods. Empowered by the novel ar-
chitecture design and action statistics choice, our GCC-MARL
is able to effectively model the joint actions of hundreds of
agents even if its dimension varies with time. Furthermore, the
integration of the graph attention network [10] enables GCC-
MARL to efficiently measure the mutual influence of agents
and capture useful spatial features for routing decisions.

VIII. CONCLUSION

In this paper, we propose a graph convolutional cooperative
MARL (GCC-MARL) framework that generates routing deci-
sions for hundreds of FHVs in FVCS systems. Specifically,
GCC-MARL is an actor-critic-based algorithm that adopts
centralized training and decentralized execution. In GCC-
MARL, the decentralized decision module equipped on each
FHV avoids the exponential explosion problem in the state
and action space that occurs in centralized decision-making
mechanisms. With the carefully designed credit assignment
approach, the framework stimulates agents to cooperatively
maximize the global reward and thus aligns each agent’s local
decision with the global objective. Furthermore, we design the
action statistics to present agents’ joint actions, which solves
variable agent scales problem for the input of the central critic
and efficiently captures the spatial properties of agent’s joint
actions. Finally, we carefully integrate our MARL framework
with graph convolutional networks to effectively extract spatial
features from complex real-world networks. Extensive exper-
iments demonstrate that our proposed approach outperforms
state-of-art algorithms in both GMV and UoS metrics in
different environment settings.
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