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Abstract—Edge computing is promising to provide
computational resources for connected vehicles. Resource
demands for edge servers vary due to vehicle mobility. It
is then challenging to reserve edge servers to meet variable
demands. Existing schemes rely on statistical information
of resource demands to determine edge server reservation.
They are infeasible in practice, since the reservation based
on statistics cannot adapt to time-varying demands. In this
paper, a spatio-temporal reinforcement learning scheme called
DeepReserve is developed to learn variable demands and then
reserve edge servers accordingly. DeepReserve is adapted from
the deep deterministic policy gradient algorithm with two major
enhancements. First, by observing that the spatio-temporal
correlation in vehicle traffic leads to the same property in
resource demands of CVs, a convolutional LSTM network is
employed to encode resource demands observed by edge servers
for inference of future demands. Second, an action amender is
designed to make sure an action does not violate spatio-temporal
correlation. We also design a new training method, i.e., DR-Train,
to stabilize the training procedure. DeepReserve is evaluated
via experiments based on real-world datasets. Results show it
achieves better performance than state-of-the-art approaches
that require accurate demand information.

I. INTRODUCTION

Recent years have witnessed a growing popularity of

vehicles with the capabilities of 4G/5G connectivity. Top

car companies including BMW, Audi, Mercedes Benz,

Volkswagen, etc. have dominated the market of connected

vehicles (CVs) valued at $63.03 billion in 2019 and projected

to reach $225.16 billion by 2027 [1]. CVs enable a bunch of

applications, e.g., traffic behavior analysis in the intelligent

transportation system [2] and vehicular crowdsensing [3]. To

support these intelligent applications, CVs need to offload

data (or structured data to save communication bandwidth) to

application servers for analysis.
Apart from cloud computing adopted in existing solutions

[4], the emerging edge computing attracts extensive attention

for hosting application servers [2]. Edge servers, especially

multiple-access edge computing (MEC) servers that are

collocated with base stations (BSes), are envisioned to be

widely deployed [5]. Due to the short distance between CVs

and edge servers, the following benefits can be achieved: 1)

The communication bandwidth to cloud servers can be saved;

2) The latency of transmitting data to the edge-supported

application servers is low. For deploying an application server,

an edge server usually adopts containers [6] to dynamically

Fig. 1. Resource-demand change of edge servers due to CVs’ mobility.

allocate computational resource according to demands, and

various middleware to manage metadata, task lifecycles,

input/output data, etc [7]. To guarantee a quick response time

for latency-sensitive vehicular applications, edge servers need

to be reserved to maintain warm pools of containers before

CVs can offload data to it for process [6], [7].

However, compared with de facto operations to maintain

warm pools and middleware in the cloud, the high mobility of

vehicles and the resulting frequent edge server hand-off, make

the edge-server reservation problem extremely difficult. For

instance, the CVs connected with the edge server in area 1 in

Fig. 1 move to the edge servers in areas 3 and 5, so that the

edge server in area 1 is idle and can be released. Ignoring such

mobility could introduce severe resource wastage problem,

making the limited edge resource even more scarce. Therefore,

the problem becomes how to dynamically reserve edge servers

to guarantee CVs to finish their computation tasks in nearby

edge servers, without incurring resource too much wastage.

Existing solutions are mainly focused on determining

the placement of edge servers to better match the demand

[8]–[14]. These solutions usually assume that the statistical

information on user demands is given. Based on such

information, they apply optimization approaches to select

edge servers’ locations that satisfy statistical demands.

However, the statistical information cannot be perfectly

aligned with real-time demands from dynamically moving

CVs, resulting in severe resource under-provisioning or

over-provisioning problems.

In this paper, a deep reinforcement learning (DRL) based

scheme called DeepReserve is developed to learn variable

demands for a policy to reserve edge servers accordingly. DRL

based methods do not rely on an accurate system model or

complete system information [15]–[19]. It gradually improves

the policy based on the effects of previous reservations.

Specifically, the DRL agent takes the demands observed by

edge servers, e.g., their resource utilization as input states.

Based on the states, a proper action, i.e., the edge servers



to reserve, is selected for future demands. In particular, due

to the large number of edge servers to be selected, the

deep deterministic policy gradient (DDPG) algorithm [20] is

selected as the basic building block in DeepReserve, since it

is known for handling problems with high-dimensional state

space and action space.

Nevertheless, there still remain two major problems that

prevent classical DDPG from reserving the optimal edge

servers for various demands. First, the deep neural network

(DNN) in DDPG lacks both representative ability for accurate

state inference and sufficient high-reward experiences for

training. To solve this problem, ConvLSTM [21] is first

adopted in DeepReserve, which is inspired by the observation

that the spatio-temporal correlation of vehicle traffic [22]

reflects on the resource demands. ConvLSTM extracts spatio-

temporal features from the input states, which are mapped

into actions via a fully-connected layer and the addition of

random noise [20]. The actions are then checked and amended

to enhance the probability of achieving high rewards. The

second problem lies in that the existing training method cannot

stably exert DRL models’ power to reserve proper edge servers

in real-life deployment, to solve which a training method

named DR-Train is designed. To prevent non-convergence

due to blind explorations when the agent is inexperienced,

the experience pool for training is first initialized by a

greedy algorithm. Afterwards, considering that vehicle traffic

patterns vary between weekdays and weekends [23], the

model is divided into two branches and trained respectively to

generate the policies accommodated to two possible patterns.

DeepReserve is evaluated utilizing real-world vehicle traffic

and BS-location datasets. The results show that DeepReserve

performs better than state-of-the-art approaches that require

accurate information of demands.

In summary, our contributions are

• The system model of edge computing based CV system

is built and the edge-server reservation problem is

formulated, which is proved to be NP-hard.

• A DRL based scheme called DeepReserve is developed,

which is adapted from DDPG with two improvements,

i.e., adopting ConvLSTM and the action amender.

DeepReserve can efficiently learn to dynamically reserve

edge servers without accurate demand information.

• A training method called DR-Train is designed. Featured

with two techniques, i.e., experience-pool initialization

and model branches, DR-Train can stably train models

for different vehicle traffic patterns.

The rest of the paper is organized as follows. In Section

II, the system model of edge-computing based CV system is

built and the edge-server reservation problem is formulated.

Afterwards, DeepReserve is developed in Section III and

the training method DR-Train is presented in Section IV.

In Section V, comparative evaluation results are presented,

followed by the review of related work in Section VI. Finally,

the paper is concluded in Section VII.

TABLE I
NOTATIONS IN THE SYSTEM MODEL

Notations Descriptions
xi,t The indicator of whether MEC server i is reserved

as slot t
yi,j,t The indicator of whether CV j is connected with

MEC server i as slot t
ui,t The resource utilization of MEC server i as slot t
di,j,t The latency between CV j and MEC server i as slot

t
qi,t The number of denied connections recorded by MEC

server i at slot t
E, E The set of MEC servers and the size of the set
Vt, Vt The set of CVs at slot t and the size of the set
U The total resources of an MEC server
D The maximum latency that can be tolerated
α,β,γ The cost to reserve an MEC server, the profit for a

CV, and the punishment for a denied connection in
a slot

st,at,rt The states, actions, and reward at slot t

II. EDGE SERVER RESERVATION IN THE CV SYSTEM

A. System Model

In the CV system, MEC servers are utilized to process data

from CVs. Each MEC server is assumed to be collocated

with a BS and a BS can access to every MEC server. MEC

servers can dynamically allocate computational resources to

an application server hosted in it according to the demand.

In each slot of the CV system, an MEC server can be either

reserved or released. A centralized server is utilized to gather

observations of MEC servers at the end of each slot and adjust

the reservations of MEC servers for the next slot.

To successfully process data, a CV needs to connect with a

reserved MEC server and transmit data to it. The connection

is set up according to the status of the CV and MEC servers

as follows: 1) A CV first sets up the radio link with a

BS following the access procedure in cellular networks, e.g.,

selecting the BS with the largest signal-noise-ratio (SNR). 2)

The user-plane function (UPF) [24] of the BS then finds the

unsaturated MEC server with the smallest latency according

to real-time system information, which includes but is not

limited to network status, UPF’s workload, and UPF’s location

[24]. If such an MEC server is found, the connection is built

and UPF steers the data traffic to the MEC server. Otherwise,

the connection requests are denied and such failure cases are

recorded by the saturated MEC server with the smallest latency.

These failed CVs can request for MEC servers in the next slot.

Established connections can be changed when reserved MEC

servers are released. In this case, the data traffic of the CVs that

connect to these MEC servers is steered to another unsaturated

MEC servers with the smallest access latency, while the radio

links of these CVs are still maintained. If no such MEC server

is found, the connections break. The broken connections are

also recorded as failure cases.

The notations to describe the CV system are listed in Tab. I.

The set of MEC servers that can be reserved for the CV system

is denoted as E with a total number E. In each time slot t,
MEC server i ∈ E can be either reserved or released, which

is denoted as a binary indicator xi,t. The maximum resources

of an MEC server that can be allocated to the CV system are



U units and each CV requires a unit. The connection and the

latency between CV j and MEC server i at slot t are denoted as

yi,j,t and di,j,t, respectively. The maximum tolerable latency is

D. The resource utilization of an MEC server depends on the

number of served CVs, i.e., ui,t =
∑

j∈Vt
yi,j,t, where Vt is

the set of CVs in slot t and the number of CVs is denoted as Vt.

The recorded denied requests of each MEC server is denoted

as qi,t. The total number of failed connections recorded by all

MEC servers equals to the number of CVs that cannot connect

to MEC servers, i.e.,
∑

i∈E qi,t =
∑

j∈Vt
(1−∑

i∈E yi,j,t).
The system utility is composed of three parts. The cost paid

to the MEC server operator for reserving an MEC server in

a slot is α. For each connected CV, the system gains a profit

of β, which equals the value of obtained data subtracted with

the cost for a unit of resource in MEC server. Meanwhile, the

system is punished with γ for a denied connection.

B. Problem Formulation

The problem of edge-server reservation (Ω) in the CV

system is to determine the proper MEC servers to reserve,

so that the system utility can be maximized in each slot.

Problem Ω:

max
∑

i∈E
(−αxi,t + βui,t − γqi,t) (1)

s.t. di,j,tyi,j,t ≤ Dxi,t, (2)
∑

i∈E
yi,j,t ≤ 1, (3)

∑

j∈Vt

yi,j,t ≤ Uxi,t, (4)

yi,j,t ≤ xi,t, (5)

xi,t, yi,j,t ∈ {0, 1}, (6)

where E.q. (2) - (6) must be valid for ∀i ∈ E and ∀j ∈ Vt.

E.q. (2) limits that the latency between a CV and its connected

MEC server cannot be larger than the latency constraint. E.q.

(3) indicates that a CV can connect with at most one MEC

server. E.q. (4) ensures that the resources utilization will not

exceed the capacity of an MEC server. E.q. (5) illustrates that

a CV can only connect with a reserved MEC server. E.q. (6)

shows that the reservations of MEC servers and CV-server

connections are binary variables.

Theorem 1. Problem Ω is NP-hard.
Proof. The maximum coverage problem can be reduced to Ω.

Given a set of sets S ′ = {S1,S2, ...,SE}, each set Si covers

some elements from V ′. The problem is to find no more than

k sets from S ′, such that the number of covered elements is

maximized. In slot t, there are E (E = k) MEC servers in

total and each MEC server is able to serve certain CVs from

Vt, which satisfy the latency constraint, i.e., E.q. (2). Without

limiting the connections, i.e., E.q. (3), and the capacity of

MEC server, i.e., E.q. (4), the solution that maximizes the

system utility (α = 0, β = 1, and γ = 0) is also the

optimal solution to the maximum coverage problem. Since the

maximum coverage problem is NP-hard [25], the problem Ω
is also NP-hard.

In realistic scenarios, the statistical information of demands,

reflected by the statistics of CV amounts (Vt) and CVs’

latency (di,j,t) to edge servers, cannot accurately represent the

variable demands in each slot. In addition, collecting demand

information of each slot in a real-time manner is also infeasible

due to the dynamical mobility of CVs. Such factors make the

NP-hard problem Ω even more difficult. The model-free DRL

method is then promising to solve the problem. It can learn

to reserve from the demands observed by previously-reserved

edge servers (ui,t and qi,t) rather than relying on accurate

demand information. However, without the information (Vt

and di,j,t) that directly represents spatio-temporal features of

demands as input, existing DRL algorithms fail to exploit such

features for the inference of future demands, which is further

explained and resolved in the section below.

III. DEEPRESERVE FOR EDGE-SERVER RESERVATION

In this section, the preliminaries of DDPG are first

introduced, followed by its limits in the edge-server

reservation problem. Afterwards, the basic ideas and design

details of DeepReserve are presented.

A. Preliminaries of DDPG

In the framework of RL, there is an agent interacting

with an environment. At each slot t, the agent observes

the environment and obtains the system state st. The agent

then takes an action at according to a policy that gives the

probability to take each action given a state, and receives a

reward rt from the environment. Afterwards, the system state

transits to st+1, based on which the agent tasks another action

at+1 and gets the corresponding reward rt+1. The target is then

to determine the policy that maximizes the system utility.

The policy is learned by the agent from the interaction

with the environment. A simple way is to record the map

between states and actions in a matrix, e.g., the Q-table in Q-

learning [26]. Nevertheless, the number of states in complex

systems can be large, so that the cost of storing a Q-table is

unacceptable. To solve this problem, a DNN is leveraged to

replace the matrix, i.e., DQN in [27]. Two techniques are also

designed to guarantee stable training, i.e., experience replay

and the target network.

DDPG inherits the framework of DQN. Moreover, the actor-

critic architecture that contains an actor network and a critic

network [28] is adopted in DDPG to tackle the continuous

actions. Hence, DDPG consists of four DNNs in total, i.e.,

each of the actor network and the critic network is further

composed of an online network and a target network. In

DDPG, the online network in the actor network can directly

determine an action according to the probability distribution

of actions given by the policy gradient method, while the critic

network returns an approximated Q value to assist the training

of the actor network.

B. The Limits of DDPG

The dimensions of both the action space and the state space

in the edge-server reservation problem equal the number E of



MEC servers in a city, which can be extremely large. DDPG

is suitable because the states can be recorded by the neural

network, and the actor-critic architecture can quickly select a

high-dimension action without searching.

However, DDPG does not necessarily result in high rewards,

i.e., appropriate reservations, which can be caused by the lack

of both representative ability of DNN adopted in DDPG and

high-reward experiences for training as explained below. First,

due to the fact that demands show spatio-temporal correlation,

while the fully-connected layers in DNN adopted by DDPG do

not encode any spatial information [21] and temporal features

[22], the output of DNN is not an accurate prediction of future

states. According to such output, the map to actions cannot

achieve high rewards. Second, an agent usually randomly

samples actions from the huge action space [20] in order to

gain sufficient high-reward experiences for the neural network

to learn the policy. Nevertheless, random exploration from the

huge action space is unlikely to gather enough high-reward

experiences within limited times of exploration [29], which

also leads to low system utility during exploration.

C. Design of DeepReserve

1) DRL Model Design: To leverage DRL, the state space,

action space, and reward of the MEC server reservation

problem are first designed as follows.

States. In practical CV systems, the demands that are

observable to MEC servers are their resource utilization and

the recorded failed connections. The addiction of them is then

reported as the state to the centralized server in each slot, i.e.,

st = [u1,t + q1,t, · · ·, uE,t + qE,t]. The released MEC servers

are not required to report any information, thus, their states

are set as zero.

Actions. The actions to take are the MEC servers to be

reserved in each slot, i.e., at = [x1,t, · · ·, xE,t].
Reward. The reward received via applying at to st is the

system utility of the CV system gained from CVs minus the

cost of reserving MEC servers and the punishment of failed

connections. Formally, rt =
∑E

i=1(−αxi,t + βui,t − γqi,t).
2) Basic Ideas Behind DeepReserve: To enable DDPG

to exploit spatio-temporal features buried in states, two

improvements are made in DeepReserve.

Replacing fully-connected DNN with ConvLSTM. As

explained in Section I, the spatio-temporal correlated demands

result in the same property in states. In each slot, the states

can be represented in a map (or image), where the value

of each grid (or pixel) indicates the state corresponding to

the MEC server in the gird (let each grid contains at most

an MEC server). The convolution operation is then efficient

to capture the relations between adjacent grids (or pixels)

[22], i.e., the states of adjacent MEC servers. Meanwhile,

the state maps (images) in continuous slots form a time

series, the relation among which can be captured by the

concatenated memory cells in LSTM [21]. By exploiting the

correlation among previous states, the prediction accuracy of

future states increases [21], [22], so that the actions taken

correspondingly can gain high rewards. ConvLSTM is a neural

Fig. 2. The framework of DeepReserve.

network composed of both CNN and LSTM that are designed

for capturing features in images and time series, respectively.

Thus, ConvLSTM is adopted in DeepReserve.

Amending the actions to satisfy the spatio-temporal
correlation. To boost the procedure of gaining “good”

experiences, supervising the selection of actions via external

knowledge has been proved to be efficient [30], since the

agent does not need to learn from scratch. In the context

of edge-server reservation, considering the spatio-temporal

correlation of demands, the external knowledge is that

the demands in a specific area will not surge without an

accumulative demand increment in previous slots (temporal)

or nearby areas (spatial). To leverage such knowledge, an

action amender is designed to first check the actions selected

according to the policy learned or random exploration. If

they violate the knowledge, the actions are reversed, i.e., the

decision to reserve an MEC server is changed to release.

3) Design Details: The framework of DeepReserve is first

shown in Fig. 2. Based on the framework, the procedure of

DeepReserve is stated as follows. Based on the state observed

from the CV system, the actor network selects an action,

meanwhile, all the networks are trained for an iteration (the

training method is introduced in the next section). The action

selected is added with a random noise and converted into

binary values, which are further checked and amended by

the action amender before applied to the CV system. In the

framework, two major improvements aforementioned are made

compared with classical DDPG (marked by red boxes): 1) The

ConvLSTM [21] is adopted in DDPG; 2) An action amender is

adopted to check and modify the output of the actor network.

The design details of these improvements are illustrated below.

ConvLSTM is a combination of CNN and LSTM, i.e., the

convolution operation is adopted in each gate of the LSTM

cell. It takes a sequence of 2-D tensors (equivalent to a 3-

D tensor) of states at continuous slots as input, and outputs

a 2-D tensor as the prediction of the state in the next slot.

ConvLSTM is employed in both the actor network and the

critic network, as shown in Fig. 3(a) and Fig. 3(b), respectively.



(a) The actor network

(b) The critic network

Fig. 3. The structures of the actor network and the critic network in
DeepReserve.

In the actor network, the input data is the states of E MEC

servers in previous k slots. To accommodate the input data

to ConvLSTM, the state in each slot is structured as a 2-D

m×n tensor. Each element indicates the state of MEC server

in the corresponding grid on the map. For example, the input

data of the CV system in Fig. 1 is a sequence of 2×3 tensors

with elements 1, 3, and 5 indicating states while the remaining

elements as zero. With such a sequence of 2-D tensors as input,

ConvLSTM returns a 2-D tensor, which implies the state in

the next slot. Afterwards, the 2-D tensor is reshaped into a 1-D

tensor, which is activated with LeakyReLu. A fully-connected

layer is then applied to further map the 1-D tensor to the action

of E MEC servers with Sigmoid as the activation function. The

critic network adopts the same top three structures as the actor

network, but the output of the fully-connected layer is added

with the output of another fully-connected layer that takes the

action selected by the actor network as input. The result of

addition is mapped into an action value via a fully-connected

layer and the LeakyReLu activation function for the judgment

of the action selected by the actor network.

Since the output data from the fully-connected layer of the

actor network (added with a random noise [20]) is continuous,

a 1-bit ADC is utilized to covert the output data into binary

values [31]. The binary output is then regarded as the action

chosen by the actor network, denoted as a(λ)
i,t = [x

(λ)
1,t , ···, x(λ)

E,t].

The action amender is designed as follows. It first records

the states (the addition of resource utilization and failed

connections ui,t + qi,t) observed in previous l slots, i.e.,

{st−l, ..., st}. Given an action selected by the actor network

on an MEC server, if the action is to release an MEC server,

i.e., x
(λ)
i,t = 0, the action amender takes the emendation

that directly adopts x
(λ)
i,t as the action xi,t to apply in the

environment. If the action selected by the actor network is to

reserve an MEC server, i.e., x
(λ)
i,t = 1, the amender conducts

the following checking: 1) the states of the MEC server in

previous l slots, and 2) states of the reserved MEC servers

among the nearest g MEC servers of the MEC server at slot

t (the set is denoted as Eg). If none of the states show there

are demands, i.e., the summation of the states equals zero, the

Fig. 4. The procedure of DR-Train.

amender reverses the action with a probability p. Formally,

for an action x
(λ)
i,t selected by the actor network, the amender

takes the following operation to map x
(λ)
i,t into xi,t, denoted

as Xa, with probability p:

xi,t = x
(λ)
i,t H[

l∑

j=0

(ui,t−j + qi,t−j) +
∑

δ∈Eg

(uδ,t + qδ,t)], (7)

where H is the unit step function and P (Xa) = p. Meanwhile,

with probability 1 − p, the agent directly adopts the action

of the actor network, i.e., xi,t = x
(λ)
i,t . Such an operation is

denoted as Xb and P (Xb) = 1− p.

IV. TRAINING METHOD OF DEEPRESERVE

In order to guarantee a stable reservation performance in

real-life CV systems, a training method, i.e., DR-Train, is

designed in this section.

The training method for DDPG in [20] cannot exert

DeepReserve’s capability to reserve proper MEC servers

due to two reasons. The first reason is when an agent is

inexperienced, i.e., ConvLSTM is not trained or the action

amender has not obtained enough states for the checking, the

random action exploration inevitably results in actions with

low rewards. Consequently, with a pool of “bad” experiences,

a model easily converges to a suboptimal policy or even does

not converge. The second reason lies in that the vehicle traffic

patterns are different on weekdays and weekends [23], which

means the environments faced by the agent are different.

Hence, with the classical training method, the policy learned

indiscriminately from data of weekdays and weekends cannot

gain high rewards for both patterns simulatively.

To stably converge models and achieve high rewards under

different vehicle traffic patterns, two techniques are designed

in DR-Train, the procedure of which is shown in Fig. 4. First,

in order to avoid the agent learns from randomly-taken actions,

an algorithm that can choose actions with higher rewards

than the randomly-taken actions is utilized to initialize the

experience pool. As shown in Fig. 4, a greedy algorithm

(reserve MEC servers nearby saturated ones and release idle

ones, which is modified from [14]) is adopted in place of the

DRL agent to take actions in the first day. Second, for enabling

the model to work well on both weekdays and weekends, two

model branches are divided to learn the policies for weekdays

and weekends, respectively. As shown in Fig. 4, the training

procedure begins on a weekday. When the first weekend

arrives, a new branch of model is forked with parameters

copied from the model trained on weekdays. Afterwards, these

two branches of models are applied iteratively on weekdays

and weekends.

The details of DR-Train are shown in Alg. 1. First, the

parameters of the critic online network Qw(·) and the actor

network μw(·) for weekdays, are randomly set as θQw and θμw,



Algorithm 1 DR-Train

1: Randomly initialize critic online network Qw(·) and actor

online network μw(·) for weekdays with parameters θQw
and θμw, respectively;

2: Initialize target networks Q′
w(·) and μ′

w(·) with parameters

θQ
′

w ← θQw and θμ
′

w ← θμw, respectively;

3: Initialize a random process N and experience pools Rw

and Rh for weekdays and weekends, respectively;

4: Receive initial observation state s1;

5: for z in Z do
6: if z is weekday then
7: for t = 1 to T do
8: if z is the first weekday then
9: Select at according to the greedy algorithm;

10: Execute at and observe rt and st+1;

11: Store transition (st, at, rt, st+1) in Rw;

12: else
13: Select action a(λ)t based on binarized

μw(st,t−k|θQw ) +N ;

14: Amend a(λ)t to obtain at according to E.q. (7)

with a probability p;

15: Execute at and observe rt and st+1;

16: Store transition (st, at, rt, st+1) in Rw;

17: Sample a random sequence of k transitions

(si,i−k, ai,i−k, ri,i−k, si+1) from Rw;

18: Update the critic network by minimizing the

loss: L = (φi −Qw(si,i−k, ai,i−k|θQw ))2, where

φi = ri + ξQ′
w(si+1, μ

′
w(si+1|θμ′

w )|θQ′
w );

19: Update the actor policy using the sampled policy

gradient: ∇θμ
w
≈ ∇aQw(s, a|θQw )|s=si,i−k,a=μw

(si,i−k)∇θμ
w
μw(s|θμw)|si.i−k

;

20: Update the target networks: θQ
′

w ← ψθQw + (1−
ψ)θQ

′
w , θμ

′
w ← ψθμw + (1− ψ)θμ

′
w ;

21: else
22: if z is the first weekend then
23: Initiate the critic networks Qh(·) and Q′

h(·) and

actor networks μh(·) and μ′
h(·) for weekends

with parameters cloned from the networks for

weekdays: θQh ← θQw , θμh ← θμw, θQ
′

h ← θQ
′

w , and

θμ
′

h ← θμ
′

w ;

24: for t = 1 to T do
25: Execute actions and update networks following the

procedure in L13-20 with modifications: Qw(·) ←
Qh(·), μw(·) ← μh(·), Q′

w(·) ← Q′
h(·), μ′

w(·) ←
μ′
h(·), θQw ← θQh ,θμw ← θμh , θQ

′
w ← θQ

′
h , θμ

′
w ← θμ

′
h ,

and Rw ← Rh;

respectively (L1). The parameters of the target networks, i.e.,

Q′
w(·) and μ′

w(·), are copied from the online networks (L2)

and gradually updated from the online networks with an update

parameter ψ (L20). An Ornstein-Uhlenbeck process [20] and

the experience pools, i.e., Rw and Rh, are also initialized (L3).

Starting from the first state observed (L4), the agent adopts the

greedy algorithm to take actions and record the experiences
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Fig. 5. The average numbers of vehicles in each grid with vehicles.

Fig. 6. The geographical distributions of vehicles and BSes.

in the first day of the CV system (L9-11). Afterwards, for

slot t in weekday z of the CV-system operation duration Z
(L5-7), the action at is chosen by the ConvLSTM and the

amender according to the states in previous k slots (L13-15).

Such action is recorded in Rw (L16). For training the critic

online network, a sequence of k samples are taken from Rw

and the parameters are updated via minimizing the squared

error loss, where φi is the target value obtained according

to the Bellman equation and the discount factor is ξ (L17-

18). The actor network is then trained by sampled policy

gradient (L19). When the first weekend arrives, the networks

for weekends, i.e., Qh(·), μh(·), Q′
h(·) and μ′

h(·), are initiated

with parameters copied from the networks for weekdays (L22-

23). After initialization, the procedure to take actions and train

is the same as that on weekdays shown in L13-L20.

V. PERFORMANCE EVALUATION

The performance of DeepReserve is evaluated

comprehensively based on real-world datasets. In this

section, experimental settings are first illustrated, followed by

experimental results and corresponding analysis.

A. Experimental Settings

Dataset Description. The performance of DeepReserve is

evaluated based on two real-world datasets: locations of BSes

and vehicle trajectories, as detailed as follows: 1) BSCD

contains the locations of 46050 BSes run by CMCC and

CUCC in Chendu City collected in Dec. 2019, among which

1910 BSes in the northeast of the city (30.653°N - 30.705°N

and 104.042°E - 104.122°E) are utilized in the performance

evaluation. 2) DECD18 includes the trajectories of Didi

expresses in Chendu City during Oct 8, 2018 - Oct 31, 2018.

The location of each express is updated every 20 seconds. The



trajectories of vehicles in the same area as the selected BSes

are utilized in the performance evaluation. To show the vehicle

traffic patterns, the variance of the average numbers of vehicles

in each grid with vehicles in it (the whole area is divided into

100 grids) on Oct 12 (Friday), Oct 27 (Saturday), and Oct 29

(Monday) is shown in Fig. 5, from which it can be observed

that vehicle traffic patterns of weekdays and weekends are

disparate, and the pattern of a weekday is also distinct from

the pattern of another weekday. Based on these two datasets,

a possible reservation scheme is shown in Fig. 6, where blue

dots and red triangles indicate vehicles and BSes, respectively.

System Setup. In the CV system, a time slot is 20 seconds.

The latency between a CV and an MEC server di,j,t consists

of two parts: 1) the latency between a CV and an MEC server,

which is proportional to their geo-distance with a maximum

value of 20 ms [32]; 2) the network status, which causes

a random latency [33] with a maximum value of 10 ms.

The latency constraint D is set to 10 ms and the maximum

resources U of an MEC server for the CV system is 5 units. In

the reward function, the parameters are set as α = 15, β = 6,

and γ = 5.

Training Setup. The python library PyTorch (version 1.1.0)

is used to build the model. All experiments are tested on a

Linux workstation (CPU: Intel i7-6850K @3.6GHz, RAM: 32

GB DDR4, GPU: NVIDIA GeForce GTX 1080). A 5-layer

ConvLSTM with convolution kernel size equal to 5 [21] is

adopted in both of the actor network and the critic network,

the learning rates of which are 0.01 and 0.005, respectively.

If not stated otherwise, the parameters are set as follows: 1)

in the action amender, l = 1 and p = 0.99; 2) in the actor

network and the critic network, m = 70, n = 70, and k = 10;

3) in the training procedure, ψ = 0.01 and ξ = 0.9.

Metrics. Four metrics are utilized to evaluate DeepReserve:

1) system utility; 2) average resource utilization of reserved

MEC servers; 3) the probability of successful connections

among all CVs; and 4) training loss of both the critic network

and actor network from initialization to convergence.

Benchmark Approaches. The following benchmark

approaches are selected to compare with DeepReserve: 1)

DDPG with ConvLSTM (DC) is the classical DDPG [20],

while replacing the embedded DNN with ConvLSTM. 2)

DDPG with the action amender (DA) is the classical DDPG

[20], while added with the action amender. 3) The classical

DDPG algorithm in [20]. 4) User Clustering (UC) [8] is

applied by clustering user demands and the MEC servers

near the clustering centers are reserved. 5) Heaviest-AP First

(HAF) [13] first gathers user demands by letting CVs to

request MEC servers freely. The MEC server with the most

requests is reserved to serve CVs. The procedure iterates for

the remaining MEC servers until all CVs can be connected.

6) Greedy Service Placement (GSP) [14] is modified for the

CV system that the MEC server closest to the saturated MEC

server is reserved in each slot, and the idle MEC servers in

previous slots are released. 7) The optimal reservation scheme

is obtained by searching all feasible schemes. 8) Reserved

MEC servers are randomly selected in each slot. In addition,
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Fig. 7. The training loss with experience-pool initialization.
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Fig. 8. The effectiveness of dividing model branches.

to validate the effectiveness of DR-Train, the classical training

method for DDPG in [8] is adopted as comparison.

B. Experimental Results

Experiments are first conducted to evaluate the convergence

performance of DeepReserve trained by DR-Train. The

training loss of both the critic network and the actor network

is shown in Fig. 7. It can be observed that both networks

can converge quickly within 8000 times of iteration, which

requires the experiences gathered within two days (8640

slots). Fast convergence enables DeepReserve to be quickly

deployed in real-life CV systems. In contrast, models can

hardly converge without the experience-pool initialization

(delete L8-12 in Alg. 1). Moreover, to justify the effectiveness

of dividing model branches, the system performance with

two model branches over the 24 days in dataset DECD18 is

compared with that without branches (delete L6 and L21-25

in Alg. 1). As shown in Fig. 8(a) and Fig. 8(b), the average

system utilities and average resource utilization of two cases

are the same until Oct 13 (the first weekend), after when they

show a 25% gap and a 20% gap, respectively. These results

demonstrate the necessity to maintain policies for weekdays

and weekends, respectively.



(a) Average system utility (b) Average resource utilization

Fig. 9. The performance under different parameters in the action amender.

(a) Average system utility

(b) Average resource utilization

Fig. 10. The performance compared with benchmark approaches.

The performance of DeepReserve with different parameters

in the action amender is then evaluated. The average system

utility and the average resource utilization of MEC servers

on Oct 12 (when the model is well-converged and is not

impacted by the data of weekends) are shown in Fig. 9(a) and

Fig. 9(b), respectively. It can be observed that both system

utility and average resource utilization decrease for around

70% and 27% respectively, as the emendation probability p
decreases from 0.99 to 0.9, which can be viewed as the

results of decreasing the intensity to amend actions. This

result validates the effectiveness of the action amender in

DeepReserve. However, p cannot be set to 1 (the system utility

is too low to be shown in the figure). This is because the MEC

server released by the amender easily satisfies the condition of

amending (being idle in previous slots triggers Xa according

to E.q. (7)) again in the following slots, thus, it will always

be released. The system then converges to the state that nearly

all MEC servers are released. In addition, as the number of

slots l with zero states or the number of nearby MEC servers

g to be checked increases from 1 to 5, the probability that

an action chosen by the neural network is modified decreases.

Hence, similar to reducing p, the performance decreases.

DeepReserve is also compared with benchmark approaches,

among which UC and HAF are conducted under the

assumption that accurate information of demands in each

slot is available. The average performance on Oct 12 is

shown in Fig. 10. From Fig. 10(a) and Fig. 10(b), it can be

observed that DeepReserve achieves higher system utility
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Fig. 11. The performance compared with different variants of DeepReserve.

and resource utilization than all the benchmark approaches

except for a slight worse than the optimal solution. These

results demonstrate that DeepReserve can reserve proper edge

servers for enhancing the system utility.

To further validate the effectiveness of adopting ConvLSTM

and the action amender in DeepReserve, a deep dive into

the detailed performance in each slot of Oct 12 is shown

in Fig. 11(a) and Fig. 11(b). According to the results, both

of ConvLSTM and the action amender bring significant

performance enhancement. Interestingly, when the CV density

is high, i.e., when slots are around 900 and 2700 according to

Fig. 5, the performance of DC is close to that of DeepReserve.

Such a result is owing to that the relations between nearby

MEC servers are significant, i.e., the values in nearby grids

of the input state map are closely related, which match

with the size of convolution kernel. Thus, ConvLSTM can

efficiently capture spatio-temporal features when CVs are

densely distributed. Meanwhile, when CV density is too low

for ConvLSTM to learn a good policy, i.e., at the slots less

than 900 or larger than 3500, the performance of DA is better

than DDPG and DC thanks to the action amender. Armed

with ConvLSTM and the amender that complementarily

contribute performance gain when CVs are densely and

sparsely distributed, respectively, DeepReserve consistently

achieves much better performance than DDPG.

Finally, the detailed performance comparison between

DeepReserve and state-of-the-art approaches is shown in Fig.

12(a) and Fig. 12(b) (the results of the random approach

are too low to be included in the figures). By comparing

DeepReserve with the approaches with accurate demand

information in each slot, DeepReserve achieves slightly better

performance than UC and HAF and around 10% worse than

the optimal solution constantly in all slots, which confirms

the DeepReserve’s power of quickly adapting the reservation

to real-time demands. In contrast, as an algorithm without the



1 500 1000 1500 2000 2500 3000 3500 4000

Time slots

-1500

-1000

-500

0

500

1000

1500

Sy
st

em
 u

til
ity

DeepReserve UC HAF GSP Opt

(a) System utility

1 500 1000 1500 2000 2500 3000 3500 4000

Time slots

0

0.2

0.4

0.6

0.8

1

Av
er

ag
e 

re
so

ur
ce

 u
til

iz
at

io
n

DeepReserve UC HAF GSP Opt

(b) Average resource utilization

Fig. 12. The performance compared with state-of-the-art approaches.
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Fig. 13. The CDF plot of the probability of successful connection.

requirement of accurate demand information, GSP performs

much worse than DeepReserve, especially when the density

of CVs is high. This is because the adjustment of reservations

cannot catch up with the variance of demands, which results

in severe punishments due to massive connection failures.

This reason is further verified by the CDF of the probability

that a CV successfully connects to an MEC server as shown

in Fig. 13. From the results, it is obvious that GSP has

much more failed connections than the other approaches.

These results also illustrate that DeepReserve can ensure the

connections of over 99% CVs to MEC severs in 99% slots,

which is the same as the optimal solution. The high success

probability of connections guarantees the high availability of

the service provided by MEC servers.

VI. RELATED WORK

A. Edge Server Reservation

Existing literature focuses on determining the placement of

edge servers or service from candidate locations. The solutions

in [8], [9] aim to determine the positions of edge servers

that are geographically close to users. The locations of edge

servers in [10] are chosen based on the number of user requests

aggregated in nearby BSs, such that the latency to transmit

requests to edge servers can be minimized. The authors of

[11] extend the server placement problem to choose suitable

edge servers to hold multiple interrelated services. The work in

[12] further considers the placement of multiple services into

edge servers with heterogeneous capacities to maximize the

system utility. This literature usually determines edge-server

placement based on given statistical demands in an offline

manner. In our study, we make reservation decisions in an

online manner adaptive to the real-time demands, without

relying on accurate demand information. The solution in [34]

does not assume user demands are directly given, but leverages

the collected contexts of connected users (e.g., equipment

types and external environment factors) to predict the demands,

so as to guide the placement decision. However, these contexts

are not available in CV systems.

B. DRL in Edge Computing for CVs
DRL has been widely applied to solve problems in the

edge-computing systems for CVs. The authors of [19]

leverage DRL to determine the task-offloading scheme for

CVs, so that the tradeoff between QoE of CVs and profit

of edge servers can be achieved. In [15], the task offloading

problem is extended to the scenario where CVs act as

supplementary edge servers. Furthermore, the authors in [16]

take the dependencies between tasks into consideration for

making offloading decisions. In addition, there are also papers

that utilize DRL to jointly determine the data caching schemes

and computational-resource allocation schemes [17], or jointly

consider cooperative content placement and delivery [18]. All

the aforementioned papers explicitly rely on CV information,

like locations and latency to construct the state information

in DRL. In contrast, we study the edge server reservation

problem without this direct information. Modifications are

made allowing DRL agent to exploit the demand information

from other obtainable system information.

VII. CONCLUSION

In this paper, the edge server reservation problem is studied

to support the emerging intelligent edge applications. We

first formally formulated the edge-server reservation problem,

revealed its complexity, and discussed the difficulties to

solve when the demand information is unavailable. We

then developed a novel DRL based scheme, DeepReserve,

to make decisions simply relying on the partial demand

information. DeepReserve enhanced the classical DDPG

algorithm by adding an extra ConvLSTM module and an

action amender to capture the spatio-temporal correlation of

demands. The training process was further enhanced with

a newly proposed DR-Train algorithm to improve training

stabilization. Extensive trace-driven experiments validated

the effectiveness of the DeepReserve in exploiting the

underlying spatio-temporal correlations and the capability to

handle dynamic traffic patterns. Consequently, DeepReserve

demonstrated superior performances when compared with

state-of-the-art approaches.
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