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Abstract—Mobile edge computing (MEC) has been an effective
paradigm to support real-time computation-intensive vehicular
applications. However, due to highly dynamic vehicular topology,
these existing centralized-based or distributed-based scheduling
algorithms requiring high communication overhead, are not
suitable for task offloading in vehicular networks. Therefore,
we investigate a novel service scenario of MEC-based vehicular
crowdsourcing, where each MEC server is an independent agent
and responsible for making scheduling of processing traffic data
sensed by crowdsourcing vehicles. On this basis, we formulate a
data-driven task offloading problem by jointly optimizing offload-
ing decision and bandwidth/computation resource allocation, and
renting cost of heterogeneous servers, such as powerful vehicles,
MEC servers and cloud, which is a mixed-integer programming
problem and NP-hard. To reduce high time-complexity, we pro-
pose the solution in two stages. First, we design an asynchronous
deep Q-learning to determine offloading decision, which achieves
fast convergence by training the local DQN model at each agent in
parallel and uploading for global model update asynchronously.
Second, we decompose the remaining resource allocation prob-
lem into several independent subproblems and derive optimal
analytic formula based on convex theory. Lastly, we build a
simulation model and conduct comprehensive simulation, which
demonstrates the superiority of the proposed algorithm.

Index Terms—Mobile edge computing, vehicular networks,
task offloading, asynchronous deep reinforcement learning

I. INTRODUCTION

Mobile edge computing (MEC) has been an effective
paradigm to support real-time intelligent transportation sys-
tems (ITSs) by providing computation, communication and
caching resources at the edge devices [1, 2]. These ITS ser-
vices, such as autonomous driving, video surveillance and traf-
fic control, are always data-driven and computation-intensive
tasks and have to process a large amount of traffic data carried
by mobile vehicles in a large-scale road networks. Though the
MEC servers are deployed close to mobile terminals, it still
imposes a strict requirement of computation and bandwidth
resources beyond the local capability of MEC servers. Par-
ticularly, due to unique characteristics of vehicular networks
[3], such as highly dynamic network topology and uneven
distribution of vehicle density, the users may suffer from
service delay caused by unpredictable network congestion and
unbalanced workload distribution. Heterogeneous computation
servers such as powerful vehicles, MEC servers and cloud, are
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expected to be integrated for satisfying the increasing demand
of ITS services. Hence, it is still non-trivial to investigate task
offloading mechanism in MEC-based vehicular networks.

In the last decades, great efforts have been paid on develop-
ing types of computation offloading mechanisms in vehicular
networks [4–6], which is used for determining the servers
for processing tasks offloaded from terminal users. Some
researchers formulated the frameworks of vehicular edge com-
puting (VEC) [7], where computation resources of powerful
vehicles are utilized for local task processing via vehicle-
to-vehicle (V2V) communication. However, the VEC cannot
provide stable services due to unreliable V2V connection and
dynamic computation capacity. To improve reliability, some
other researchers proposed MEC-based offloading mechanisms
[8], such as multi-user game model [9], and reinforcement
learning [10], where the MEC servers deployed at roadside
handle tasks offloaded from neighboring vehicles via vehicle-
to-infrastructure (V2I) communication. However, these studies
only focused on optimizing offloading decision, where the
edge resource competition among multiple tasks is neglected.
To solve this issue, some studies designed several resource
allocation mechanisms to ensure the QoS of users, such as
convex-based optimization [11] and Semi-Markov Decision
Process [12]. In addition, some researchers formulated joint
optimization model by integrating task offloading and resource
allocation [13] and developed several scheduling algorithms,
such as deep Q-learning [14] and ADMM [15]. However, these
joint optimization models are based on non-linear program-
ming, which are typically NP-hard and cannot be optimally
solved in polynomial time [16, 17]. In particular, these existing
studies are based on centralized or decentralized scheduling
with synchronous information exchange, which cannot be
applied to large-scale vehicular networks due to overhigh
communication overhead and scheduling complexity.

Based on the motivation above, this paper investigates a
novel service scenario of data-driven task offloading in MEC-
empowered vehicular networks, where traffic data sensed
by crowdsourcing vehicles are offloaded to heterogeneous
computation servers, such as neighboring computing vehicles,
MEC servers and cloud. Specifically, data-driven tasks are
characterized by the amount of crowdsourcing data set and
the required computation resources, which are divided into
multiple subtasks according to data distribution among crowd-



sourcing vehicles. To model the heterogeneity of computation
servers, three different types of transmission and computation
models for computing vehicles, MEC servers and cloud, are
formulated to simulate task offloading procedure. Particularly,
the renting cost of bandwidth and computation resources is
also considered, which differs in types of computation servers.
In addition, the MEC servers are responsible for making
scheduling decision in a distributed way, including offloaded
server and resource allocation, for nearby crowdsourcing ve-
hicles within V2I coverage, which aims at minimizing the
service time and cost of completing tasks simultaneously by
fully exploiting heterogeneous computation and communica-
tion resources. Accordingly, the following issues have to be
addressed. First, we have to strike a balance between these
two objectives since they contradict with each other. It is
because that to complete the task in a shorter time, higher
cost has to be paid for renting more computation resources.
Second, to keep up-to-date global knowledge, MEC servers
require frequent communication with each other, as well as
mobile vehicles, which may result in over-high communication
overhead. Third, the scheduling optimization synthesizing task
offloading and resources allocation may require extremely high
time complexity, especially in large-scale network .

Therefore, this paper develops an asynchronous task offload-
ing algorithm inspired by the basic idea of both asynchronous
advantage actor-critic (A3C) and deep Q-network (DQN),
which achieves fast convergence in an asynchronous way.
Further, the optimal solution of resource allocation is derived
based on decomposition method and convex theory, which is
implemented at MEC server in a distributed way. The main
contributions of this paper are outlined as follows.

• We investigate a service scenario of MEC-based vehicular
crowdsourcing where heterogeneous bandwidth and com-
putation resources, including computing vehicles, MEC
servers and cloud, are exploited for processing traffic data
sensed by crowdsourcing vehicles. In particular, the MEC
server is regarded as local agent and independently makes
offloading decision of pending tasks, as well as resource
allocation of computation servers.

• We formulate the data-driven task offloading (DTO) prob-
lem as a mixed-integer programming model by jointly
considering task offloading decision and resource al-
location among heterogeneous servers, as well as the
corresponding renting cost, which aims at minimizing
average service time (AST) and average service cost
(ASC), simultaneously. In particular, the characteristics
of data-driven tasks, and three types of task transmission
and computation models for heterogeneous servers, are
theoretically modelled, respectively.

• To reduce time complexity, we derive the solution of the
DTO in two stages. First, we develop an asynchronous
deep Q-network (ADQN) algorithm to enable each MEC
server make offloading decision in a distributed way. By
utilizing the advantage of A3C, each agent can train its
local DQN model in parallel and share its local knowl-
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Fig. 1: Service Architecture for Data-Driven Task Offloading
in MEC-Empowered Vehicular Networks

edge for global model update asynchronously, which
can achieve fast convergence. Second, we further de-
compose the remaining resource allocation problem into
three small subproblems and derive the optimal analytic
formula based on Karush–Kuhn–Tucker (KKT) condition
[18], which is implemented at each MEC server.

• We build a comprehensive simulation model by inte-
grating real-world map, traffic simulator and python-
based task offloading module. Further, we implement the
proposed algorithm, as well as two competitive solutions.
The simulation results demonstrate the superiority of
the proposed algorithm compared to two competitive
algorithms in a wide range of service scenarios.

The rest of this paper is organized as follows. Section II
presents the system model in detail. Section III formulates the
optimization problem. Section IV proposes the solution. The
simulation result is shown in Section V. Finally, Section VI
gives the conclusion.

II. SYSTEM MODEL

In this section, we present a service architecture for data-
driven task offloading in MEC-empowered vehicular network.
As shown in Fig. 1, the service architecture consists of
application layer, vehicular layer, MEC layer and cloud layer,
respectively, which are introduced as follows.

In application layer, various types of ITS services, such as
traffic signal control, abnormal vehicle detection and traffic
flow prediction, are supposed to be data-driven tasks, which
require for processing traffic data collected by crowdsourcing
vehicles distributed among road networks. Accordingly, a data-
driven task is divided into multiple subtasks based on data
distribution. Each subtask is associated with a set of traffic
data sensed by a crowdsourcing vehicle and can be processed
in parallel. The task can only be completed when all the
subtasks are completed. With the advantage of MEC-based
service architecture, the subtasks can be offloaded to nearby
computation server without centralized processing at the cloud,
which greatly reduces transmission time and improves com-
putation efficiency. In this paper, the task offloading procedure
includes task transmission and computation, while the retrieval



time of computation result is neglected due to its trivial size,
which is a common setting in related literatures [19, 20].

In vehicular layer, mobile vehicles are classified into two
categories: crowdsourcing vehicles and computing vehicles.
On one hand, crowdsourcing vehicles are equipped with
various sensors and able to collect types of traffic data. A
crowdsourcing vehicle can cache data associated with sev-
eral types of subtasks, which has to be offloaded to nearby
computation servers via wireless communication. On the other
hand, computing vehicles are assumed to own one processor
and can undertake local computing for subtasks within V2V
communication range. However, due to the limited computa-
tion capability, at most one subtask is allowed to offload to a
computing vehicle at each time. Accordingly, the renting cost
of computing vehicles is the cheapest.

In MEC layer, the MEC server is deployed at the RSU
and plays two roles: computation server and local scheduler,
respectively. As the computation server, the MEC server is able
to process multiple pending tasks simultaneously offloaded via
wireless V2I communication. Due to the mobility of vehicles,
the subtask has to be completely uploaded within limited V2I
connection time. Therefore, the competition for wireless band-
width and computation resource may occur among multiple
pending subtasks, which will be modeled in the following
section. The renting cost of MEC servers is assumed to be
higher than computing vehicles. Further, as the local scheduler,
the MEC server is responsible for making the offloading
decision of each subtask, including offloaded server, wireless
bandwidth and computation resource allocation, based on
collected task information via overhearing heartbeat message
periodically broadcast by crowdsourcing vehicles.

In cloud layer, the cloud server is resided in backbone
network and assumed to own unlimited computation resources.
The vehicles can offload their subtasks to the cloud server via
cellular interface. Due to wide deployment of base stations
(BSs), the vehicles can always access to the cloud server but
have to pay the transmission cost, which is proportional to the
size of uploaded data. Particularly, for vehicles outside the V2I
coverage or fail to complete the associated subtasks within the
connection time of MEC servers or computing vehicles, they
have to choose the cloud as the offloaded server. Vehicles also
have to pay the renting cost, which is proportional to allocated
computation resources from the cloud. The renting cost of the
cloud is the highest among all the computation servers.

Based on the above observation, the completion of a task
needs the coordination among multiple MEC servers and
the integration of heterogeneous resources. Therefore, a dis-
tributed mechanism is urgently needed to be designed and im-
plemented at each MEC server to minimize both service time
and service cost by optimizing the utilization of heterogeneous
wireless bandwidth and computation resources of vehicular,
MEC and cloud layers in a comprehensive way.

III. PROBLEM FORMULATION

In this section, we introduce data-driven task offloading
(DTO) problem in detail. In general, the procedure of process-

ing data-driven tasks is presented, which includes task commu-
nication and computation models for MEC server, cloud and
computing vehicles, respectively. On this basis, we define the
objective function and formulate problem definition. Before
elaboration, the basic notations are introduced as follows.

A. Preliminary

The set of MEC servers is denoted by M . Each MEC server
m ∈ M is characterized by a two-tuple (pm, bm), where pm
and bm are the computation capability and the V2I wireless
bandwidth, respectively. Then, the set of vehicles in the V2I
coverage of m is denoted by Vm, which can be further divided
into two categories: crowdsourcing vehicle set and computing
vehicle set, denoted by V s

m and V p
m, respectively. Accordingly,

the set of crowdsourcing and computing vehicles neighboring
to v is denoted by V s

v and V p
v , respectively. The crowdsourcing

vehicle v ∈ V s
m has a cached data set denoted by Dv . Each

computing vehicle v ∈ V p
m has computation capacity pv .

Further, the set of data-driven tasks is denoted by R. Each
task r ∈ R is characterized by two-tuple (Dr, crr), where
Dr and crr are required data set and computation resource,
respectively. Particularly, each task r is supposed to be divided
into multiple subtasks based on the distribution of Dr among
crowdsourcing vehicles. Specifically, each subtask rv of r is
associated with a data set Drv cached by a crowdsourcing
vehicle v. Accordingly, the required data set Drv is denoted
by Dr ∩ Dv and the required computation resource crrv , is
proportional to the size of Drv , i.e., crrv ∝ ||Drv ||. For
simplicity, we use ||r|| and ||R|| to denote the number of
subtasks in r and tasks in R, respectively.

In addition, the offloading decision of each subtask rv is
represented by a set of notations alrv , ∀l ∈ Nv , where each
alrv indicates whether rv is offloaded to computation server l
or not and Nv is the set of computation servers available to
v, which is formulated as follows.

Nv = {l|l ∈ V p
v ∪m ∪ c} (1)

Each subtask is assumed to be indivisible and has to be only
assigned to one of the computing servers, which is formulated
as follows.

alrv ∈ {0, 1}, ∀l ∈ Nv (2)∑
∀l∈Nv

alrv = 1, ∀r ∈ R, ∀v ∈ V s (3)

B. Task Transmission Model

In this section, we formulate the task transmission models
of MEC server, cloud and computing vehicle, respectively.

First, the wireless V2I bandwidth of MEC server is com-
peted among multiple vehicles for task transmission. If subtask
rv is offloaded to MEC server m, i.e., amrv = 1, let xrv denote
the ratio of wireless V2I bandwidth allocated for rv , then the
summation of total allocation ratios should not exceed one,
which is formulated as follows.∑

∀r∈R

∑
∀v∈V s

m

amrvxrv ≤ 1 (4)



Given wireless V2I bandwidth bm, the transmission time of
offloading rv from v to m is computed as follows.

ttrv,m =
||Drv ||

xrv · bm · log2(1 + Pv·gmv

N0
)

(5)

Where Pv is the transmission power of vehicle v and gmv is
the channel gain between m and v.

Second, one-to-one V2V communication model is adopted
for task transmission between vehicles. Only one subtask of
neighboring crowdsourcing vehicles can be offloaded to each
computing vehicle v′ ∈ V c, which is expressed as follows.∑

∀v∈V s
v′ ,∀r∈R

av
′

rv ≤ 1 (6)

Given wireless V2V bandwidth bv′ , if subtask rv is offloaded
to v′, i.e., av

′
rv = 1, then the transmission time of offloading

rv from vehicle v to v′ is computed as follows.

ttrv,v′ =
||Drv ||

bv′ · log2(1 + Pvgvv′
N0

)
(7)

Third, task offloading from vehicles to cloud is transmitted
via cellular wireless interface. Due to the wide deployment
of BS in urban area, the vehicle is assumed to be always
connected to the cloud via cellular interface. Given the cellular
bandwidth bc, then the transmission time of offloading rv from
v to cloud is computed as follows.

ttrv,c =
||Drv ||

bc · log2(1 + Pv·gvc

N0
)

(8)

Accordingly, the transmission cost is described as follows.
It is a common assumption that the cost of V2I and V2V
communication is neglected. Further, let ωt denote the unit
cost of using cellular interface, then the transmission cost of
offloading rv to the cloud is computed as follows.

tcrv,c = ωt · ||Drv || (9)

C. Task computation model

In this section, we formulate the task computation models
of MEC server, computing vehicles and cloud, respectively. In
particular, the computation time of processing task, as well as
the renting cost of computation resources, are introduced.

First, the computation resource of MEC server is competed
among multiple pending subtasks. Given the computation
resource of each processor owned by each MEC server m,
denoted by fm, let tm denote the number of processors per
MEC server and yrv denote the ratio of computation resources
allocated for rv , then the computation time of completing
subtask rv is formulated as follows.

ptrv,m =
crrv

yrv · fm (10)

Due to the mobility of vehicles, the summation of transmission
time ttrv,m and computation time ptrv,m cannot exceed the
maximum V2I connection time between v and m, denoted by
Lvm, which is formulated as follows.

ttrv,m + ptrv,m ≤ Lvm (11)

Then, the summation of allocated computation resources can-
not exceed the maximum computation capability, which is
formulated as follows.∑

∀r∈R

∑
∀v∈V s

m

amrvyrv ≤ tm (12)

Second, the computing vehicle can only process one subtask
at each time. Therefore, given the computation resource of
vehicle v′, denoted by fv′ , if rv is offloaded to v′, the
computation time of processing rv , is formulated as follows.

ptrv,v′ =
crrv
fv′

(13)

Similar to Eq. (11), the summation of transmission time ttrv,v′

and computation time ptrv,v′ cannot exceed the maximum
V2V connection time between v and v′, denoted by Lvv′ ,
which is expressed as follows.

ttrv,v′ + ptrv,v′ ≤ Lvv′ (14)

Third, the cloud is assumed to own unlimited computation
resources. Given the required computation resource of rv ,
denoted by f c

rv , then the computation time of processing rv
by the cloud is formulated as follows.

ptrv,c =
crrv
f c
rv

(15)

Accordingly, the cost of renting computation resources is
described as follows. Let ωm, ωv and ωc denote the unit cost
of renting computation resources from the MEC, computing
vehicle and the cloud, respectively, then the computation cost
of rv by the corresponding server is formulated in Eq. (16).

pcrv,m = ωm · yrv · fm (16)
pcrv,v′ = ωv · fv′ (17)
pcrv,c = ωc · f c

rv (18)

Where ωc > ωm > ωv .

D. Problem Definition

Based on task transmission and computation model, the
service time and cost of each subtask rv , denoted by strv
and scrv , are formulated as follows, respectively.

strv =
∑

∀l∈Nv

alrv (ttrv,l + ptrv,l) (19)

scrv = acrv · tcrv,c +
∑

∀l∈Nv

alrv · pcrv,l (20)

Then, the service time of a task r is defined as the average
service time of all the subtasks rv ∈ r, formulated as follows.

str =
∑

∀rv∈r

strv
||r|| , ∀r ∈ R (21)

Similarly, the service cost of a task r is defined as the average
service cost of all the subtasks rv ∈ R, formulated as follows.

scr =
∑

∀rv∈r

scrv
||r|| , ∀r ∈ R (22)



On this basis, two objectives are defined as follows.
Definition 3.1: Average service time (AST), it is defined as

the summation of the service time of tasks divided by the total
task number, which effectively evaluates system efficiency.

f1 =
∑
∀r∈R

str
||R|| =

∑
∀r∈R

∑
∀rv∈r

strv
||r|| · ||R|| (23)

Definition 3.2: Average service cost (ASC): it is defined as
the summation of the service cost of all tasks divided by the
total task number, which evaluates the system overhead.

f2 =
∑
∀r∈R

scr
||R|| =

∑
∀r∈R

∑
∀rv∈r

scrv
||r|| · ||R|| (24)

To minimize the two objectives simultaneously, the objective
function is defined as the weighted sum of AST and ASC,
which is formulated as follows.

f = η1 · f1 + η2 · f2 =
∑
∀r∈R

∑
∀rv∈r

η1 · strv + η2 · scrv
||r|| · ||R|| (25)

Where η1 and η2 represent the weights of AST and ASC and
η1 + η2 = 1.

Finally, the formal definition of the DTO problem is formu-
lated as an optimization model, which is shown follows.

min
A,X,Y,F

f =
∑
∀r∈R

η1 · str + η2 · scr
||R|| (26)

s.t.
∑

∀l∈Nv

alrv = 1, ∀r ∈ R, ∀v ∈ V s (26a)

∑
∀r∈R

∑
∀v∈V s

m

amrvxrv ≤ 1, ∀m ∈ M (26b)

∑
∀r∈R

∑
∀v∈V s

m

amrvyrv ≤ tm, ∀m ∈ M (26c)

alrv ttrv,l ≤ Lvl, ∀l ∈ Nv (26d)∑
∀r∈R

∑
∀v∈V s

v′

av
′

rv ≤ 1, ∀v′ ∈ V c
m (26e)

alrv ∈ {0, 1}, ∀l ∈ Nv, ∀rv ∈ r, ∀r ∈ R (26f)
f c
rv ∈ R+, ∀rv ∈ r, ∀r ∈ R (26g)

It is observed that A = {alrv} are the set of offloading
decision, where each element is an 0-1 integer variable.
X = {xrv}, Y = {yrv} and F = {f c

rv}, are continuous
positive variables, which represent the allocation of V2I wire-
less bandwidth, MEC’s and cloud’s computation resources,
respectively. Further, the constraints in Eqs. (26b) ∼ (26d)
are non-linear. Therefore, the DTO problem is a mixed-integer
non-linear programming model, which is typically an NP-hard
problem and cannot be solved in polynomial time.

IV. ALGORITHM DESIGN

In this section, we derive the solution of the DTO in
two stages: task offloading and resource allocation. We first
design an asynchronous deep Q-learning algorithm at each
MEC server side for task offloading. Then, we derive the
theoretical optimal solution of resource allocation based on
decomposition method and convex theory.

A. Asynchronous Deep Q-Learning for Task Offloading

The basic idea of asynchronous deep q-learning (ADQN)
is to achieve fast convergence by synthesizing the advantages
of both asynchronous advantage actor-critic (A3C) [21] and
deep Q-learning (DQN). As shown in Fig. 2, each agent has a
local DQN model and a global model resides in the cloud. The
basic elements of reinforcement learning in the DQN model
are designed as follows.

• System State: due to the limited V2V range, it is assumed
that at most n computing vehicles are available to each
crowdsourcing vehicle. Then, the system state of current
pending subtask rv at time t is defined as a multi-
dimensional vector, which is formulated as follows.

srv (t) =[Drv , crrv , Dtotal, Dload, bm, fm, bv′
1
, fv′

1
, · · · ,

bv′
n
, fv′

n
]

(27)

Where Drv and crrv represent data size and required
computation resource of rv . Dtotal represents the total
data size of pending subtasks before scheduling and
Dload represents the workload already offloaded to m.

• Action Space: it is defined as the set of candidate com-
putation servers available to pending task rv . Specifically,
one-hot encoding is adopted to represent the action,
which is represented as a n+2-dimensional binary vector,
as shown in Eq. (28).

urv (t) = [amrv , a
c
rv , a

v′
1

rv , a
v′
2

rv , · · · , av
′
n

rv ] (28)

• Reward Function: the basic principle of reward function
is that the lower service time and cost bring with the
action, the higher reward is granted. If the subtask can be
successfully completed within the connection time, then
the reward is defined as the product of the reciprocal
of the weight sum of service time and cost of subtask
and a constant M1. Otherwise, the reward is defined as a
negative value, which represents a punishment, denoted
by −M2. The reward function is formulated as follows.

rrv (t) =

{ M1

η1strv+η2scrv
, strv,l − Lv,l < 0

−M2, otherwise
(29)

Where M1 and M2 are two predefined positive constants
and l represents the selected server. It is noted that the
reward can only be obtained after all the pending tasks
are completed.

Due to high dimension and continuity of system state and
action space, the size of traditional Q-table will be too large,
which results in dimension curse and slow convergence. To
overcome this issue, the DQN model utilizes deep neural net-
work to approximate Q-table instead, represented as follows.

Q(s, a, θ) ≈ Q′(s, a) (30)

Where Q(s, a, θ) is the approximated Q-value of a given state-
action pair by neural networks, θ is the parameter and Q′(s, a)
is the real Q-value of a given state-action pair.
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Fig. 2: The Diagram of Asynchronous Deep Q Learning Algorithm

According to Fig.2, local DQN model at each agent has
two Q networks and experience pool. One current Q network,
denoted by Q, is used for selecting action under a system state.
The target Q network, denoted by Q′ is used to calculate the
target Q-value. The experience pool can store the tuples of
state, action, reward and next state, denoted by (s, a, r, s′),
which is used for repeatedly training. For a pair of s and a,
the loss function of DQN is computed as below.

L(θm) = E[(Qtarget −Q(s, a, θm))2] (31)

Where Q(s, a, θm) is the Q-value of local agent m. Q network
uses gradient descent algorithms to update its own parameters
to approach the target Q-value, where the parameter θ is
updated as θm = θm − β∇θmL. β controls update space. In
particular, the parameters of target Q network do not need to
be updated frequently. It is copied from the parameters of Q
network periodically, that is, delayed update, which can reduce
the correlation between target Q network and Q network.

According to Fig. 2, based on the framework of A3C, the
procedure of ADQN is described as follows. First, for each
agent, given a list of pending subtasks, the action of task
offloading is determined in an iterative way based on its local
Q network. The generated experience, denoted by (s, a, r, s′),
is stored in experience pool. Second, each agent extracts a
batch of tuples from experience pool and computes the loss
function based on Eq. (31), as well as its gradient. Third, the
local gradient information of each agent is asynchronously up-
loaded to the global model at the cloud via wired connection.
Fourth, once receiving the gradient information, the global Q
network is immediately updated and its network parameters
are shared to each local agent, i.e., θm = θg, ∀m ∈ M . Fifth,
when the update number of Q network achieves a predefined
threshold, the latest θg of Q network is copied to θ′g of Q
target network, i.e. θ′g = θg , and then shared to each local
agent, i.e., θ′m = θ′g, ∀m ∈ M . It should be noted that the first
to third step can be performed at each agent simultaneously.

B. Optimal Resource Allocation based on Convex optimization

Based on the ADQN, the value of A can be computed in
advance. Thus, the optimization model of Eq. (26) is only
related to the resource allocation, which is rewritten as follows.

min
X,Y,F

f =
∑
∀r∈R

η1 · str + η2 · scr
||R|| (32)

s.t.
∑
∀r∈R

∑
∀v∈V s

m

amrvxrv ≤ 1, ∀m ∈ M (32a)

∑
∀r∈R

∑
∀v∈V s

m

amrvyrv ≤ tm, ∀m ∈ M (32b)

f c
rv ∈ R+, ∀rv ∈ r, ∀r ∈ R (32c)

It is observed that the variables X, Y and F in Eq. (32) are
independent with each other. In particular, the three constraints
of Eqs.(32a)∼(32c) are separable since the variables are not
overlapped. Thus, the optimization model can be decomposed
into three submodels, which are formulated as follow.

1) Computation Resource Allocation Of Cloud: the first
submodel with respect to F concerns on computation resource
allocation of cloud, which is formulated as follows.

min
fcrv

g1 = η1 · crrv
f c
rv

+ η2 · ωc · f c
rv (33)

s.t. f c
rv ∈ R+, ∀rv ∈ r, ∀r ∈ R (33a)

The optimal solution is achieved by finding the solution with
the gradient of g1 equals zero, i.e., ∇g1 = 0. The optimal
computation resource allocated for each rv offloaded to the
cloud is computed as follows.

f c∗
rv =

√
η1crrv
η2ωc

, ∀rv ∈ r, ∀r ∈ R (34)



2) Wireless Bandwidth Resource Allocation: the second
submodel with respect to the variables X concerns on wireless
V2I bandwidth allocation, which is formulated as follows.

min
X

g2 =
∑
∀r∈R

∑
∀rv∈r

η1a
m
rv ttrv,m

||r|| · ||R|| (35)

s.t.
∑
∀r∈R

∑
∀v∈V s

m

amrvxrv ≤ 1, ∀m ∈ M (35a)

It is observed that the variables related to the MEC servers
are independent of each other, the submodel Eq.(35) can be
further divided into multiple simple models, where each one
is only related with an MEC server m, shown as below.

min
Xm

gm2 =
∑

∀rv∈Rm

η1a
m
rv ttrv,m

||r|| · ||R|| (36)

s.t.
∑

∀rv∈Rm

amrvxrv ≤ 1 (36a)

Where Rm represents all subtasks within the coverage of MEC
server m and Xm represents the variables in X associated with
MEC server m. Obviously, the objective in Eq. (36) is convex
and the constraint in Eq. (36a) is linear. Thus, the model of
Eq.(36) is a convex optimization problem. Based on the KKT
condition [18], we can get the following formulas:

∇Xmgm2 + λm∇Xm(
∑

∀rv∈Rm

amrvxrv − 1) = 0,

λm(
∑

∀rv∈Rm

amrvxrv − 1) = 0,

λm ≥ 0

(37)

By solving the set of equations, the optimal solution of
wireless bandwidth allocation for subtask rv can be obtained
as follow:

x∗
rv =

amrv
√

ξrv∑
∀rv∈Rm

amrv
√
ξrv

, ∀rv ∈ Rm

ξrv =
η1 ·Drv

bm · ||r|| · log2(1 + Pvgmv

N0
)
, ∀rv ∈ Rm

(38)

3) Computation Resource Allocation Of MEC Server:
the third submodel with respect to variables Y concerns on
computation allocation of MEC Server, formulated as follows.

min
Y

g3 =
∑
∀r∈R

∑
∀rv∈r

η1a
m
rvptrv,m + η2a

m
rvpcrv,m

||r|| · ||R|| (39)

s.t.
∑
∀r∈R

∑
∀v∈V s

m

amrvyrv ≤ tm, ∀m ∈ M (39a)

Similar to the submodel of Eq. (35), the submodel of Eq.(39)
can also be divided into multiple simple models, where each
one is only associated with an MEC server m, shown as below.

min
Ym

gm3 =
∑

∀rv∈Rm

η1a
m
rvptrv,m + η2a

m
rvpcrv,m

||r|| · ||R|| (40)

s.t.
∑

∀rv∈Rm

amrvyrv ≤ tm (40a)

Where Ym = {yrv}, ∀rv ∈ Rm represents variables in Y
associated with MEC server m. Based on KKT condition, we
can obtain two alternative solutions. For the first case, where
dual variable λm = 0, the solution is derived as follows.

y∗rv = amrv

√
θrv
γrv

, ∀rv ∈ Rm

θrv =
η1 · crrv

fm · ||r|| · ||R|| , ∀rv ∈ Rm

γrv =
η2 · ωm · fm
||r|| · ||R|| , ∀rv ∈ Rm

(41)

For the second case, where dual variable λm �= 0, the solution
is derived as follows.

y∗rv = amrv

√
θrv

γrv + λm
, ∀rv ∈ Rm

∑
∀rv∈Rm

amrv

√
θrv

γrv + λm
− tm = 0,

(42)

Where the variable λm can be efficient achieved by solving the
second subequation of Eq. (42) via binary search. Obviously,
the optimal solution of the third submodel is the one of two
solutions in Eq. (41) and (42) with higher objective function.

It is noted that the solution of resource allocation, consists
of Eq.(34), (38), (41) and (42), can be independently imple-
mented at the MEC server side with local knowledge.

V. PERFORMANCE EVALUATION

A. Default setting

In this section, we implement the simulation model pre-
sented in Section II. Specifically, the road map is extracted
from a 4km × 4km area of Tianfu new district in Chengdu,
China. The vehicular traces are simulated by an open-source
traffic simulator called SUMO [22]. There exist five MEC
servers distributed among road network and five types of
data-driven tasks. Each task consists of five sub-tasks, which
indicates that the associated data set consists of five part and
each part is cached by a crowdsourcing vehicle. It is assumed
that each crowdsourcing vehicle has at most three neighboring
computing vehicles for task offloading. Data size and required
computing resources of a task are randomly selected from
the intervals [45, 75] MB and [30, 50] G CPU cycles. In
addition, the wireless bandwidth of vehicle and MEC server
are set to 30 and 150 MHz. The computation capacity of
computing vehicle and MEC server are set to 10 and 60 G CPU
cycles/s. The price of renting one unit computation resource of
computing vehicle, MEC server and cloud is set to 0.05, 0.2
and 1 $/G cycles, respectively. The price of uploading data via
cellular interface is set to 0.5× 10−4$/MB. In addition, the
transmission power of vehicles Pv , guassian channel noise N0

and channel gain gmv are set to 150mW , 10−6mW and 5DB,
respectively. The weights η1 and η2 are set to 0.5. The setting
of parameters are referred to these literature [17, 23–28].

For algorithm implementation, the network architecture and
hyperparameters of ADQN are described as follows. The Q



network consists of four hidden layers, where the numbers of
neurons are set to 32, 16, 8 and 4, respectively. The learning
rate and discount factor is set to 0.001 and 0.9, respectively.
The size of experience pool and batch is set to 100 and 10,
respectively. Since no existing algorithms are suitable for the
DTO problem, we implement two competitive task algorithms
of task offloading for performance comparison, called deep Q-
Learning (DQN) [29] and random offload scheduling (ROS),
respectively. The detail is described as follows.

• DQN: which is implemented at each MEC server for
making task offloading decision. In this way, each agent
has its own independent neural network, which is trained
independently with its local experience.

• ROS: which randomly chooses one of the servers for
task offloading, including cloud, dwelling MEC server
and neighboring computing vehicles.

All the task offloading algorithms adopt the resource allocation
derived in Section IV-B. Due to its optimality, we do not
introduce other resource allocation algorithms for comparison.

For performance evaluation, we collected the following
statistics for each subtask rv at each scheduling period t: the
time sttrv and the cost sctrv of completing subtask rv , the
reward rtrv of completing subtask rv , and offloaded server altrv
of rv . Besides ASC, AST and objective value (OV) defined in
Eqs. (23)∼(25), we define extra two metrics for analysis.

• Average cumulative reward (ACR): it is defined as the
cumulative rewards divided by the number of scheduling
periods t, which is calculated as follows.

ACR(t) =
1

t

t∑
i=1

∑
∀r∈R

∑
∀rv∈r

rirv
||r|| · ||R|| (43)

The cure of ACR indicates the converge speed and the
performance of the algorithm.

• Offloading proportion (OP): it is defined as the number
of subtasks offloaded to each type of computation server
divided by the total number of subtasks.

OP (l) =
1

T

T∑
t=1

∑
∀r∈R

∑
∀rv∈r

altrv
||r|| · ||R|| (44)

Where l represents the type of computation server. OP
reflects the behavior of task offloading algorithms.

1) Effect of computation resource requirement: Fig. 4a
compares the OV of three algorithms under different com-
putation resource requirements. As shown, the OV of all
algorithms increases when computation resource requirement
increases. The reasons behind are introduced as follows. First,
higher computation resource requirement means longer time
for computing each task, which results in higher value of AST.
It is verified that the AST of three algorithms increases, as
shown in Fig. 4b. Second, crowdsourcing vehicles have to rent
more computation resources for computing tasks by paying
more renting cost. As shown in Fig. 4c, the ASC of three
algorithms increases gradually. Third, the tasks are preferred to
be offloaded to the cloud since the increasing system workload

may exceed the limited computation capacities of computing
vehicles and MEC servers. It is verified that the proportion of
tasks offloaded to cloud increases as shown in Fig. 4d, which
can also increase the ASC.

In addition, it is noted that the ADQN achieves the lowest
value of OV among three algorithms according to Fig. 4a,
which can be explained as follows. First, the ADQN algorithm
explores the environment more efficient by asynchronously
sharing the local knowledge for global DQN model update
and better exploits the resource to make appropriate offloading
choice based on periodically updated DQN model. Fig. 3 com-
pares the ACR of three algorithms under different computation
resource requirements. It is clear that the ADQN algorithm can
always converge to a higher level than the other two algorithms
after a small number of iterations. Further, as shown in Fig.
4d, the proportion of task offloading to the cloud by ADQN
is the lowest among three algorithms, which indicates that
the ADQN can coordinate the heterogeneous resources well
for completing tasks without over-relying on cloud even in
heavier workload. Therefore, this set of simulation results
demonstrates the scalability of the proposed algorithm.

2) Effect of computation capacity of MEC server: Fig. 5a
compares the OV of three algorithms under different compu-
tation capacities of MEC servers. As shown, the performance
of all algorithms gets better when the computation capacity
increases. It is observed that the OV of three algorithms
decreases much more when the computation capacity increases
form 20 GHZ to 40 GHZ than other cases. The reason behind
is that the computing capacity of MEC server is too low
at first and only handle limited number of tasks with its
local processor, which enforces the remaining pending tasks
to choose the cloud for task processing. However, when the
computation capacity of MEC server increases to more than
40GHZ , the renting price of MEC server will also increase
and slow down the reduction of OV, which will be further
validated by the following simulation results.

Fig. 5b compares the AST of three algorithms. As shown,
the AST of DQN and ADQN decreases with the increasing
of computation capacity of MEC server. However, the AST
of ROS maintains at a high level. It is because that ROS
does not change the probability of subtask offloaded to MEC
server in all cases and the resource allocation of MEC server
remains unchanged when computation capacities of MEC
server exceeds a certain level according to Eq.(41). Further,
Fig. 5c compares the ASC of all algorithms. It is observed
that the ASC of ADQN and DQN decreases at first and then
increases. It is because that the number of subtasks offloaded to
the cloud will drastically decrease when computation capacity
of MEC server increases from 20 GHZ to 60 GHZ. However,
since the renting cost is proportional to computation capability,
the increase of renting cost of MEC server finally exceeds
the reduction of renting cost of cloud when computation
capability of MEC server keeps increasing, which results in the
increasing of ASC. This explanation is strengthened by Fig.
5d, which shows the OP of three algorithms. The proportion
of the cloud of ADQN and DQN decreases dramatically and
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Fig. 3: The ACR of three algorithms under different computation resource requirements

[10,30] [20,40] [30,50] [40,60] [50,70]
1

2

3

4

5

6

7

O
bj
ec
tv
al
ue

Computation resources required by subtasks (Gigacycles)

ADQN
DQN
ROS

(a) OV

[10,30] [20,40] [30,50] [40,60] [50,70]
2

3

4

5

6

7

A
ve
ra
ge
se
rv
ic
e
tim
e

Computation resources required by subtasks (Gigacycles)

ADQN
DQN
ROS

(b) AST

[10,30] [20,40] [30,50] [40,60] [50,70]
1

2

3

4

5

6

A
ve
ra
ge
se
rv
ic
e
co
st

Computation resources required by subtasks (Gigacycles)

ADQN
DQN
ROS

(c) ASC

A
D
Q
N

A
D
Q
N

A
D
Q
N

A
D
Q
N

A
D
Q
N

D
Q
N

D
Q
N

D
Q
N

D
Q
N

D
Q
N

R
O
S

R
O
S

R
O
S

R
O
S

R
O
S

[10,30] [20,40] [30,50] [40,60] [50,70]
0.0

0.2

0.4

0.6

0.8

1.0

1.2

O
ff
lo
oa
di
ng
pr
op
or
tio
n

Computation resources required by subtasks (Gigacycles)

Cloud
MEC
Vehicle

(d) OP

Fig. 4: The performance of three algorithms under different computation resource requirements
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Fig. 5: The performance of three algorithms under different computation capacities of MEC Servers

that of ROS remains the same across all the cases. According
to Figs. 5a∼5c, the ADQN still achieves the lowest OV, ASC
and AST in all cases, which demonstrates the adaptiveness of
the ADQN against different computation capacities.

VI. CONCLUSION

In this work, we investigate a novel service scenario of data-
driven task offloading in MEC-empowered vehicular networks,
where heterogeneous computation servers, such as computing
vehicles, MEC servers and cloud, are expected to cooperate
with each other for processing subtasks offloaded by multiple
crowdsourcing vehicles. On this basis, we formulate the DTO
by characterizing the properties of data-driven tasks, task
transmission and computation procedure of heterogeneous
servers as well as the corresponding renting cost, which aims
at minimizing AST and ASC, simultaneously. Due to the
high complexity, we divide the solution of the DTO into two
stages: task offloading and resource allocation. First, we design
the ADQN algorithm for determining task offloading in a
distributed way by combing the framework of A3C and DQN,

which achieves fast convergence by enabling parallel training
of lcoal DQN model at each MEC server and asynchronously
update of global model. Second, we decompose the remaining
resource allocation problem into three parts: computation
resource allocation of cloud, wireless bandwidth allocation of
MEC server, computation resource allocation of MEC server,
and derive the optimal analytic form for each part based on
KKT condition. Finally, we build the simulation model by
integrating real-world map, SUMO and scheduling module.
The extensive simulation results show the superiority of the
proposed algorithm under a wide variety of circumstances.
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