Raven: Scheduling
Virtual Machine
Migration during Data
Center Upgrades with
Reinforcement
Learning

Chen Ying Baochun Li Xiaodi Ke Lei Guo

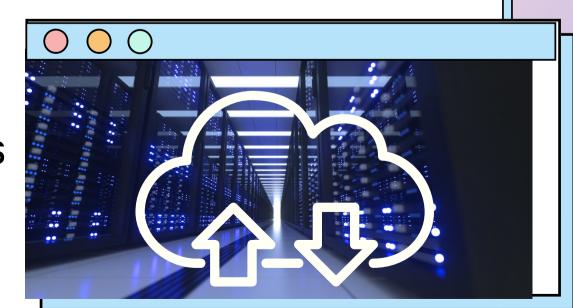
O O TODAY'S AGENDA

Background &
Context

4 Results

Brief Deep RL Summary

5 Conclusions


Raven:
The Scheduler

How does this relate?

BACKGROUND & CONTEXT

- common for modern data centers to require
 maintenance upgrades for physical machines(PMs)
 - migrate virtual machines (VMs)
 - reduce downtime and/or disruptions
 - migrating images takes the longest
- must carefully select destination PM and schedule the VM migration
- Not much related works or within 'normal' situations
 - network topology and link capacities
 would be initially unknown

Extra features

- Fully connected neural network
 - \circ adjustable policy $\pi(a|s;\theta)$ and parameters
- Cross-Entropy method is used in calculations to find optimal policy $\pi(a|s;\theta^*)$

Parameter for ->
$$\hat{v} = \argmax_v \frac{1}{N} \sum_{n \in [N]} \mathbf{1}_{\{R(x_n) \ge \xi\}} \frac{f(x_n; u)}{f(x_n; w)} \log f(x_n; v),$$
 sampling (3)

(3)

$$\hat{\theta}_{k} = \underset{\theta_{k}}{\operatorname{arg\,max}} \sum_{n \in [N]} \mathbf{1}_{\{R(x_{n}) \geq \xi_{k}\}} \bigg(\sum_{a_{t}, s_{t} \in x_{n}} \pi(a_{t} | s_{t}; \theta_{k}) \bigg), \quad \text{`- Parameter estimator at iteration 'k'}$$

$$(4)$$

It's reinforcement learning with a extra features..

RAVEN?

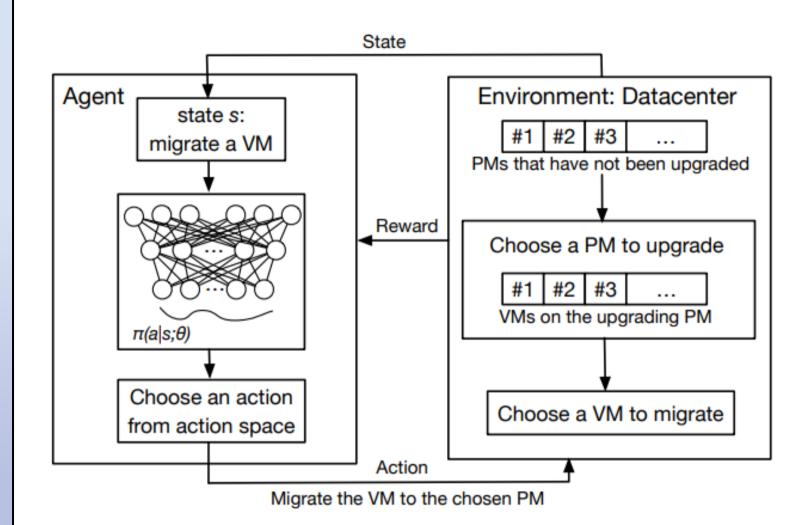


Fig. 4: The architecture of *Raven*.

Start: Pick PM that needs to be upgraded

Per timestep: VM is migrated

Episode: Finish upgrading all PMs Time step

Action: destination PM index

State Space: $s_{tj} = \{s_{tj}^{\text{status}}, s_{tj}^{\text{total cpu}}, s_{tj}^{\text{total mem}}, s_{tj}^{\text{total mem}}, s_{tj}^{\text{used cpu}}, s_{tj}^{\text{used mem}}\},$

Reward: lower total migration

time

RESULTS

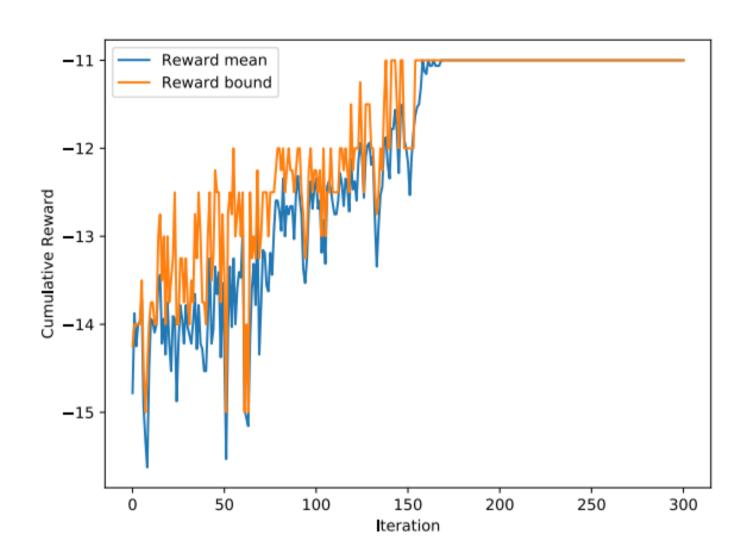


Fig. 5: The learning curve of *Raven* in datacenter with 9 physical machines and 30 virtual machines.

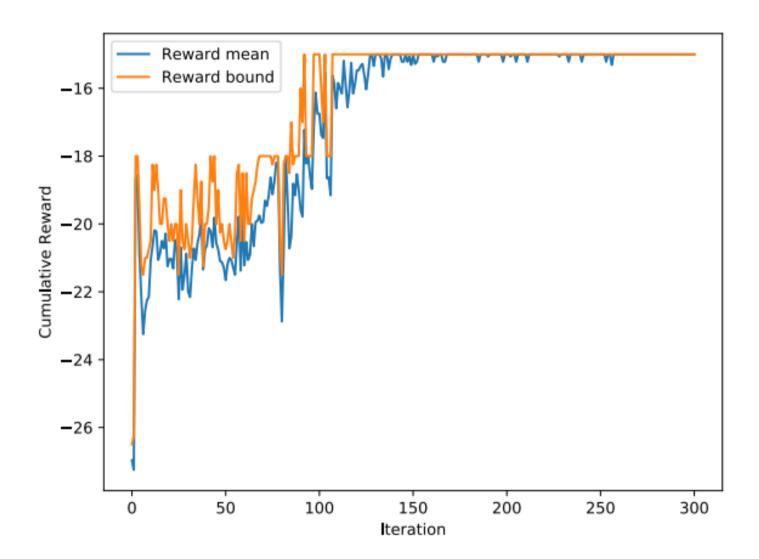
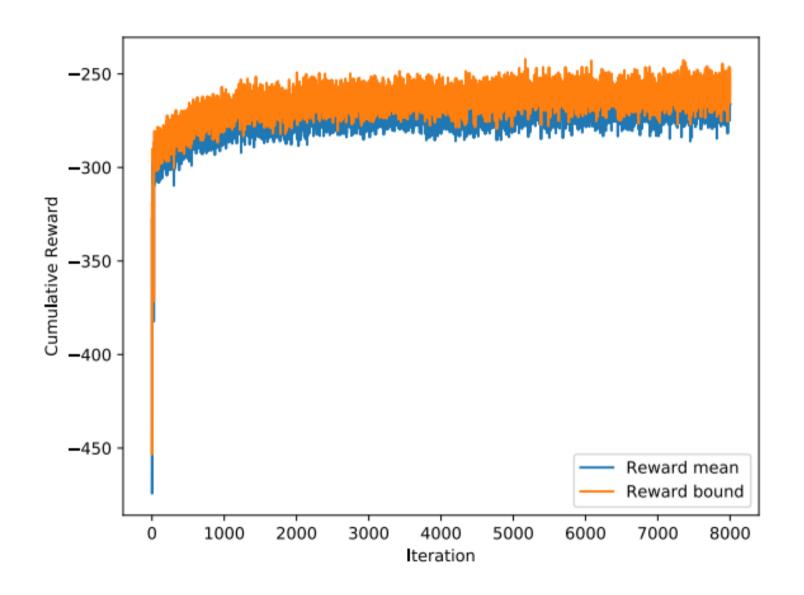



Fig. 6: The learning curve of *Raven* in datacenter with 10 physical machines and 40 virtual machines.

RESULTS CTD

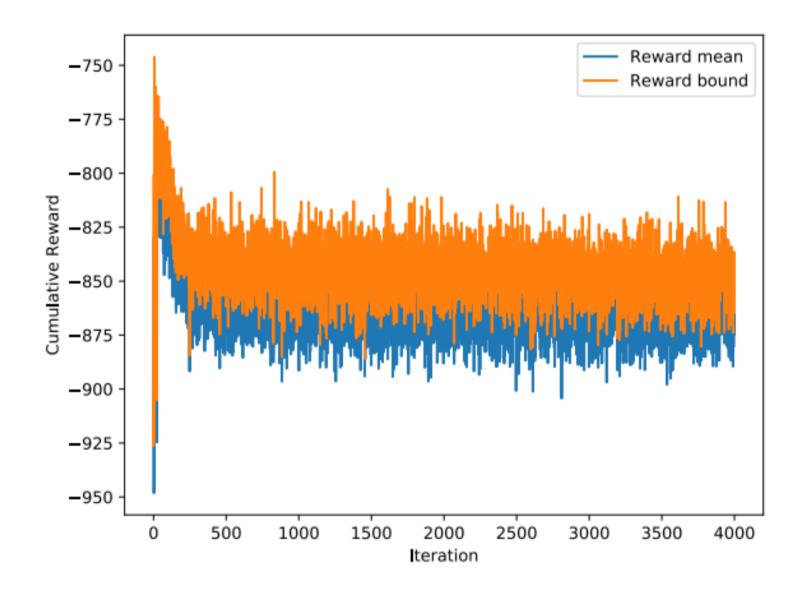


Fig. 8: The learning curve of *Raven* in datacenter with 260 physical machines and 520 virtual machines.

Fig. 9: The learning curve of *Raven* in datacenter with 260 physical machines and 1158 virtual machines.

RESULTS CTD

Table 1: Total migration time within different datacenters.

Datacenter Setting			Total Migration Time		
Number of PMs	Number of VMs	Number of Aggregation Switches	Min-DIFF	Heuristic	Raven
50	100	0	35.56 (11%)	57.50 (45%)	31.50
50	100	2	130.5 (27%)	110.0 (14%)	94.00
50	150	0	55.50 (31%)	103.00 (63%)	38.00
50	150	2	168.00 (16%)	159.00 (11%)	140.50
100	200	0	43.50 (28%)	91.50 (66%)	31.00
100	200	2	227.00 (35%)	221.50 (34%)	146.00
100	300	0	65.50 (2%)	192.50 (66%)	63.99
100	300	2	339.00 (15%)	378.00 (24%)	286.00
260	520	6	791.00 (58%)	510.00 (34%)	332.14 440.15 268.00
260	520	7	681.00 (35%)	445.78 (1%)	
260	520	8	651.25 (58%)	440.00 (39%)	
260	1158	6	944.31 (7%)	924.42 (5%)	869.97
260	1158	7	903.00 (10%)	910.50 (11%)	805.85
260	1158	8	918.50 (15%)	870.95 (11%)	774.23

RESULTS CTD

Table 2: Average total migration time within different datacenter.

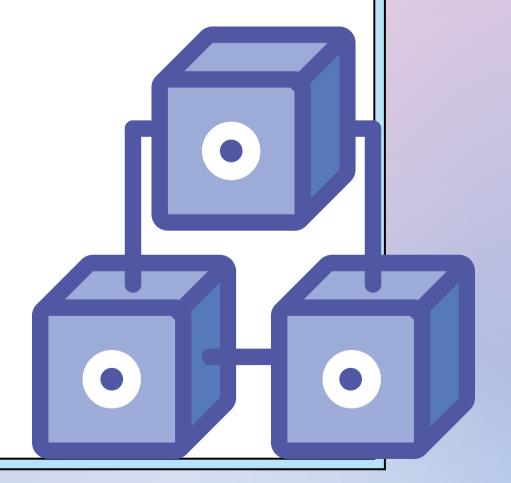
Datacenter Setting			Average Total Migration Time		
Number of PMs	Number of VMs	Number of Aggregation Switches	Min-DIFF	Heuristic	Raven
50	100	0	36.20 (0%)	57.55 (36%)	36.39
50	100	2	117.00 (1%)	107.38 (-7%)	115.13
50	150	0	47.25 (-1%)	94.50 (49%)	47.94
50	150	2	172.95 (9%)	165.83 (5%)	157.00
100	200	0	53.05 (17%)	100.16 (56%)	43.54
100	200	2	248.24 (15%)	214.80 (2%)	209.14
100	300	0	66.80 (7%)	156.65 (60%)	61.96
100	300	2	335.95 (12%)	299.65 (1%)	296.32
260	520	6	725.55 (46%)	451.52 (14%)	388.94
260	520	7	667.70 (35%)	465.76 (7%)	433.17
260	520	8	622.65 (45%)	420.08 (19%)	338.65
260	1158	6	971.67 (12%)	1020.25 (17%)	846.06
260	1158	7	912.01 (14%)	987.62 (20%)	782.55
260	1158	8	836.54 (10%)	969.42 (22%)	748.93

CONCLUSIONS

Needed Improvements:

- consider live VM migration
- struggles to converge under certain settings

Overall


- closer to a real-life use case scenario
- ⊘ still has the shortest times overall compared to:
 - Min-DIFF
 - Heuristic evaluation

HOW DOES THIS RELATE?


- Deep reinforcement learning looks more promising to pursue
 - large fat tree, harder to maintain a traditional Q Table

- Similar unique example, with no obvious starting event
 - good example to 'translate'

Works Cited

Ying, C., Li, B., Xiaodi, K., & Guo, L. (2020). Raven: Scheduling Virtual Machine Migration During Datacenter Upgrades with Reinforcement Learning. Mobile Networks and Applications, 1-12.

