
A Two Stage Heuristic Algorithm for Solving the Server Consolidation

Problem with Item-Item and Bin-Item Incompatibility Constraints

Rohit Gupta, Sumit Kumar Bose, Srikanth Sundarrajan, Manogna Chebiyam, Anirban Chakrabarti

SETLabs, Infosys Technologies Limited-560100

{rohit_gupta12, sumit_bose, srikanth_sundarrajan, manognar_c, anirban_chakrabarti}@infosys.com

Abstract

The problem of server sprawl is common in data centers

of most business organizations. It is most often the case

that an application is run on dedicated servers. This leads

to situations where organizations end up having

numerous servers that remain under-utilized most of the

times. The servers, in such scenarios, are allocated more

resources (disk, cpu and memory) than are justified by

their present workloads. Consolidating multiple under-

utilized servers into a fewer number of non-dedicated

servers that can host multiple applications is an effective

tool for businesses to enhance their returns on investment.

The problem can be modeled as a variant of the bin

packing problem where items to be packed are the servers

being consolidated and bins are the target servers. The

sizes of the servers/items being packed are resource

utilizations which are obtained from the performance

trace data. Here we describe a novel two stage heuristic

algorithm for taking care of the “bin-item”

incompatibility constraints that are inherent in any server

consolidation problem. The model is able to solve

extremely large instances of problem in a reasonable

amount of time.

1. Introduction
The problem of server sprawl is common in data centers

of most business organizations. Server sprawls are

characterized by the use of dedicated servers for single

applications. This leads to situations where organizations

end up having numerous servers that remain under-

utilized most of the times. The servers, in such scenarios,

are allocated more resources than are justified by their

present workloads. Since organizations invest substantial

amounts of money in data centers, organizations are

undertaking consolidation exercises for reducing the

infrastructure costs and maximizing their returns on

investment. Server consolidation is a common practice in

most data centers and can be categorized into three types

– centralization, physical consolidation and application

integration. Centralization involves moving multiple

geographically dispersed servers into one common

location. Physical consolidation involves reducing the

number of servers by introducing fewer numbers of more

powerful and technologically superior servers.

Application integration involves combining multiple

applications into one common application. The focus of

the current paper is physical consolidation. Advances in

system virtualization technologies, Xen and Hyper-visor

for example, are responsible for the current interest in

server consolidation. Consolidating multiple under-

utilized servers into small number of servers is an

effective tool for businesses to enhance their operational

efficiency. For example, a Unix Server Consolidation

Survey conducted by IT industry research and analysis

firm Gabriel Consulting Group, Inc. (GCG) revealed that

customers are increasingly turning to consolidate their

applications onto mid-range and large UNIX servers for

realizing significant costs and operational benefits [1].

Findings in [2] indicate that the cost is not the only factor

influencing server consolidation projects. Several other

factors such as improved performance, ease of

management and technology improvement are key drivers

behind the server consolidation exercise. According to

Gartner Inc., 94% of IT departments are either

considering server consolidation or are currently

consolidating [3].

In a nutshell, the goal of server consolidation is to

minimize the number of destination servers (also called

target servers) with the view of reducing cost and real

estate space. Till date, server consolidation exercise is

primarily a manual process that involves analyzing the

historical workload pattern of the servers and finding out

the group of (existing) servers that can be moved to a high

performing target server. This is often a time consuming

process and depends on the subjective assessment of the

decision maker. Ajiro and Tanaka [4] has shown that the

problem can be modeled as a variant of the bin packing

problem called the vector packing problem where items to

be packed are the (existing and technically deprecated)

servers being consolidated and bins are the (high

performing and technically superior destination servers)

target servers. The sizes of the servers/items being packed

are resource utilizations obtained from analyzing the

performance trace data. Zhang et al. [5,6] apply bin-

packing algorithms to server consolidation based on

performance trace data and user-defined consolidation

constraints. The authors extend the deterministic bin-

packing heuristics (first-fit decreasing and best-fit

decreasing) to high dimensional probabilistic bin

2008 IEEE International Conference on Services Computing

978-0-7695-3283-7/08 $25.00 © 2008 IEEE

DOI 10.1109/SCC.2008.39

39

2008 IEEE International Conference on Services Computing

978-0-7695-3283-7/08 $25.00 © 2008 IEEE

DOI 10.1109/SCC.2008.39

39

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on August 07,2020 at 23:50:42 UTC from IEEE Xplore. Restrictions apply.

capacities. Ajiro and Tanaka [4] model the server

consolidation problem as a vector packing problem

without the incompatibility constraints and provide an

improved first-fit decreasing algorithm for solving the

same. None of the current work deals with the complete

set of incompatibility constraints that naturally exist in

server consolidation exercises. Two commonly

encountered incompatibility constraints are the “item-item

incompatibility constraints” and the “bin-item

incompatibility constraints”. “Item-item incompatibility

constraints” occur when two (existing) servers cannot be

collocated. “Bin-item incompatibility constraints” arise

when a given (existing) server cannot be moved to a

particular bin. For example, an application currently

hosted on a 64 bit machine can-not be migrated to a 32 bit

machine. In the bin-packing literature, a number of

variants of the classical bin-packing model have been

studied. For example, Chu and La [7] and Kang and Park

[8] study the variable sized bin packing problems.

Gendreau et. al [9], Epstein and Levin [10] and Jansen

[11] model the bin packing problem with conflicts and

provide approximate solutions. However, the conflicts

considered in these research papers are implicitly assumed

to be “item-item” incompatibility constraints. To the best

of our knowledge, we have not come across any papers

that discuss the “bin-item” incompatibility constraints that

are inherently present in any server consolidation exercise.

In this context, the problem dealt with in the current paper

is clearly a generalization of the classical bin/vector

packing problem and its variants tackled in the literature

thus far. The conflicts and the incompatibility constraints

studied in the current paper can be considered to be a

super-set of the incompatibility constraints modeled in the

bin/vector packing literature till date.

In vector packing with “item-item” and “bin-item”

incompatibility constraints, we are given items of different

sizes and we have to pack these items into minimum

number of bins with different capacities. In the “server”

packing problem, items are (existing) servers, bins are

(destination) target servers, item sizes are resource

utilization calculated from the trace history and bin

capacities are utilization thresholds of the new servers. In

addition, we are given the different “item-item

incompatibility constraints” and the “bin-item

incompatibility constraints”. We are required to determine

the minimum number of target servers that would be

required after taking care of the different incompatibility

constraints for the problem. This paper formalizes the

“item-item” incompatibility constraints as a graph

coloring problem and the “bin-item” incompatibility

constraints as a pre-colored graph coloring problem. We

developed a new heuristic algorithm of determining the

number of destination servers in the presence of the

incompatibility constraints including bin-item

incompatibilities. In addition, our experiments reveal that

our algorithm outperforms other heuristics for dense

conflict graphs. Section 2 models the server consolidation

problem mathematically as a vector packing problem.

Section 3 explains the heuristic algorithm in detail.

Section 4 describes our experiences with real life data

before providing concluding remarks and directions for

future research in section 5.

2. Problem Scenario
Given a set of new target servers, I, and a set of old

servers, J, (I < J) along with the workload history and

usage pattern of the resources (disk, cpu, memory) for

each of the J servers, the server consolidation problem is

to find the best possible way to combine the existing

servers into the new target servers such that only a few of

the target servers may be used. We use the term bin to

represent target servers and the term item to represent the

servers being migrated. [12] Proposes mathematical

models for static and dynamic server allocation problem.

The formulation below, a variant of the ones proposed in

[12] uses the notations given in table 1.

Table 1: Notations, Variables and Parameters

Notations

i New servers i ∈[1, 2, ….., I]

j Old servers j ∈[1, 2, ….., J]

Variables

Yi
Binary variable, equals 1 if server i is used

for consolidation, 0 otherwise

Xij Binary variable equals 1 if old server j is

migrated to new server i, 0 otherwise.

Parameters

memoryi
Maximum available memory of the new

server i.

�mem j Memory usage of old server j.

cpui
Maximum available cpu power of the new

server i.

�cpu j CPU usage of old server j.

diski Maximum available disk of the new server i.

�disk j Disk usage of old server j.

Binary variable
i

Y is 1 if there is at-least one item j∈J

that is migrated to a bin i. Binary variable Xij is 1 if item

j∈J is migrated to the target server i. �mem j is calculated

as (/)memory T k memoryjtt
σ+∑ and represents the

memory usage of the server j. Similarly, �cpu j is

calculated as (/)cpu T k cpujtt
σ+∑ and represents the

CPU usage of the server j and �disk j is calculated as

4040

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on August 07,2020 at 23:50:42 UTC from IEEE Xplore. Restrictions apply.

(/)disk T kjt diskt
σ+∑ and represents the disk usage of

the server j. k here is a tunable parameter. The problem is

that of minimizing the number of target servers.

Equation (2) constrains the value of Yi to be 1 when an

item j is allocated to i. Equation (3) assigns an item j to

only one of the target servers. Equations (4) to (6) model

the capacity constraint of the target server. The values of

�mem j , �cpu j and �disk j are determined from the

performance trace data (historical data) available from the

data centers.

The problem can therefore be formulated as:

Minimize Yii
∑ (1)

:Subject to

,Y X i ji ij≥ ∀ (2)

1X jiji
= ∀∑ (3)

�*Y memory mem X iji i ijj
≥ ∀∑ (4)

�*Y cpu cpu X iji i ijj
≥ ∀∑ (5)

�*Y disk disk X iji i ijj
≥ ∀∑ (6)

Additionally, let JA ∈J be a subset of servers such that no

two instances of the set JA can be hosted onto the same

instance of the server i∈I. In other words, if j and j’ be

two servers instances of the group JA then j and j’ cannot

be migrated to the same server i.; if j is migrated to i, then

j’ need to be migrated to i’. This condition should be true

for all members of the set JA. We call such constraints as

the “incompatibility constraints”. This arises from the

need to exclude members of the set JA from being

assigned to a server i, once a member from the set JA is

assigned to a server i. The condition can be modeled

mathematically as:

1X iijj J
A

≤ ∀∑
∈

 (7)

Likewise, if we have more such constraints i.e. JB ∈J be a

subset of servers such that no two instances of the set JB

can be migrated together to the same instance of the server

i∈I, then we will have additional constraints as:

1X iijj J
B

≤ ∀∑
∈

 (8)

The number of such constraints will depend upon the

number of item-item incompatibilities in the problem.

They vary with each instance of the problem. The

formulation becomes expensive for very large instances of

the problem. Problem instances involving 4000 plus

servers is not uncommon in the industry. Solving such

large problem instances to optimality using the

mathematical solvers will take unusually long time. Under

these situations it becomes imperative to explore heuristic

schemes that can generate near optimal solution within a

reasonable amount of time.

Additionally we have the item-bin incompatibility

constraints. These impose further restrictions on the items

being packed into a bin. The constraints imply that a

certain item j’ cannot be packed into a given bin i’.

Mathematically,

0 ', '
' '

X i j
i j

= ∃ (9)

Such item-bin incompatibility constraints are common in

server consolidation exercise. The formulation then is:

�

�

�

:

,

1

* (1)

*

*

1

1

0 ', '
' '

Minimize Yii

Subject to

Y X i ji ij

X jiji

Y memory mem X i Pji i ijj

Y cpu cpu X iji i ijj

Y disk disk X iji i ijj

X iij
j J

A

X iijj J
B

X i j
i j

∑

≥ ∀

= ∀∑

≥ ∀∑

≥ ∀∑

≥ ∀∑

≤ ∀∑
∈

≤ ∀∑
∈

= ∃

3. Heuristic Solution
We divide the set of constraints (equations (2) to (9) of

the formulation presented above into two mutually

exclusive sub-sets. Sub-set (2) to (6) form the constraint

set-A, and sub-set (7) to (9) (i.e. equations that are

structurally similar to equation (7) and those similar to

equation (9)) form the constraint set-B. We call the

constraint set-B as the set of “incompatibility constraints”.

Equations similar in structure to equation (7) are called

the “item-item incompatibility constraints” and those

similar in structure to equation (9) are called the “bin-item

incompatibility constraints”. Item-item constraints can be

explicitly specified by the user or they can be an outcome

of the hot-spot analysis. The set of “item-item

incompatibility constraints” for the above formulation is

given by the following equations:

1X iijj J
A

≤ ∀∑
∈

4141

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on August 07,2020 at 23:50:42 UTC from IEEE Xplore. Restrictions apply.

1X iijj J
B

≤ ∀∑
∈

The set of “bin-item incompatibility constraints” for the

above formulation is given by the following equations:

0 ', '
' '

X i j
i j

= ∃

We solve the server(item) – target server(bin) mapping

problem in two stages. In stage 1 we solve a restricted

version of the problem (P1). This involves minimizing (1)

subject to the constraint set-B. We call this limited version

of the problem (P1) as the problem (P2). Succinctly, it can

be stated as:

1

1

(2)
1

0 ', '
' '

i
Minimize Yi

i

Subject to

X iij
j J

A P
X iij

j J
B

X i j
i j

∑
=

≤ ∀∑
∈

≤ ∀∑
∈

= ∃

Optimal solution to problem (P2) gives us the heuristic

estimate of the minimum number of target servers

required for a given problem instance. Furthermore,

solution to the problem (P2) organizes the servers into

clusters. In other words, the solution identifies groups of

servers (clusters) that can be co-located. The heuristic

estimate is the minimum number of such clusters (group

of servers) that can be formed. The solution obtained at

the end of stage-1 would have been optimal for the

problem (P1) if the bins were un-capacitated. Stage 2 of

the solution building process, refines the partial solution

obtained in the previous step by taking into account the

actual bin capacities and performing server – target-server

mappings. The algorithm can be summarized as:

Step 1: Solve the set of “incompatibility constraints”. As

explained above, the solution to this step defines the

clusters of servers such that servers belonging to the same

cluster can be co-located onto a target server. This step is

explained in detail in section 3.1 and 3.2.

Step 2: Allocate servers (items) to the different target-

servers (bins). This step is explained in detail in section

3.3.

3.1 Solving the “Item-Item Incomp. constraints”

Consider a subset of the problem (P2):

1

1 ,

1

i
Minimize Yi

i

X j J Jij BAi

X iij
j J

A

∑
=

= ∀ ∈∑

≤ ∀∑
∈

1 (3)X i Pijj J
B

≤ ∀∑
∈

A close look at the problem (P3) will reveal that the

problem definition resembles that of the Graph Coloring

Problem. The Graph Coloring Problem involves coloring

the vertices of a graph such that no two adjacent vertices

share the same color. The optimal solution to the problem

(P3) helps us to determine the minimum number of target

servers that will be required for the consolidation exercise.

Definition: An undirected graph G=(V,E) is composed of

a set V of |JA U JB| nodes or vertices, and a set E of
| | | | | |

2 2 2
A B A BJ J J J
C C C+ −

∩
 edges between nodes.

Example 1: Assume that we have two item-item

incompatibility constraints:

1
51 2 3 4

1
71 6

X X X X X
ii i i i

X X X
ii i

+ + + + ≤

+ + ≤

As shown in figure 1, the equations can be represented as

a graph of 7 nodes and 13 edges. The target servers are

analogous to the colors in this example. Assigning

separate target servers to nodes 1, 6 and 7 is equivalent to

assigning three different colors to the respective nodes.

None of the adjacent nodes should share the same color is

equivalent to the stating that none of the adjacent nodes of

a graph (i.e. nodes connected together by an edge) should

appear on the same target server.

Theorem: Let G=(V,E) be a completely connected graph

formed out of the set of “Item-Item incompatibility

constraints” in (P2), and there exists a unique optimal

solution to the problem (P3), then the optimal solution to

the problem (P3) will represent the lower bound to the

solution for the problem (P1).

Proof: Suppose the optimal solution to the problem (P1)

is less than the optimal solution to the problem (P3). In

such a case there will be at least two items j, j’ belonging

to JA (or JB say) that will be hosted together on a target

server, which will be violating the constraint (7) (or

equation (8) say). Hence the number of target servers that

is required for (P1) can be no less than the optimal

solution of (P3). �

Since, the number of target servers obtained as a result of

solving the problem (P3) represents the minimal number

of target servers that will be required for the problem in

(P1), we solve the problem (P3) first. Optimal solution to

(P3) implicitly defines the clusters of conflicting items

that can be grouped together such that item in one group is

not in conflict with any other member of the group.

However, the problem is known to be NP-hard [13]. The

problem is well studied in the literature and a number of

solutions have been proposed in the literature. One such

4242

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on August 07,2020 at 23:50:42 UTC from IEEE Xplore. Restrictions apply.

popular approximation algorithm is the Welsh-Powell

method [14].

Figure 1: Conflict Graph for the “Item-Item

Incompatibility Constraints” for Example 1.

The Welsh-Powell algorithm for solving the graph

coloring problem uses a simple heuristic and is as follows:

 1. Sort the vertices in decreasing order of degree. To

begin with all the vertices are uncolored.

 2. Traverse the vertices in the sorted list, and assign a

vertex the color 1 if it is uncolored and in case the vertex

does not yet have a neighbor having color 1.

 3. Repeat this process with other colors until no vertex

is uncolored.

The algorithm thus assigns to each vertex a color that is

different from the colors of its neighbors. The algorithm is

proven to use at most ∆(G) + 1 colors, where ∆(G) is the

maximum degree of the graph. For all practical purposes,

the Welsh-Powell algorithm offers a good approximation

to the optimal solution to problem (P3). The heuristic

explained in this sub-section is similar to that of Gendreau

et. al. [9] and Jansen and Oehring [15]

3.2 Solving the “Bin-Item Incomp. Constraints”

Continuing with our example, suppose in addition to the

two item-item incompatibility constraints:

1 2 3 4 5

1 6 7

1

1

i i i i i

i i i

X X X X X

X X X

+ + + + ≤

+ + ≤

we also have three bin-item incompatibility constraints:

0
1

0
7

0
7

X
A

X
A

X
B

=

=

=

The three bin-item incompatibility constraints imply that

the item 1 cannot be assigned to bin A and item 7 cannot

be assigned to bin B in addition to bin A. To take care of

such bin-item incompatibility constraints, we suitably

modify the conflict graph of figure 1. Particularly, we

augment the conflict graph by introducing ‘pre-colored’

dummy nodes into the graph. Each of the dummy nodes

introduced will be colored differently and the number of

such pre-colored dummy nodes depends on the number of

bins that are in conflict with the items. For the example

scenario presented here, we introduce two pre-colored

dummy nodes since there are only two bins – A and B that

are not compatible for some of the items. Figure 2 shows

these two newly introduced nodes with double circles.

These doubly encircled nodes represent the bins. Such

nodes we call bin-nodes which are different from the

single circled nodes, called item-nodes for the sake of

clarity and exposition. A newly introduced ‘pre-colored’

bin-node is thereafter connected using an undirected edge

to those item-nodes that cannot be assigned to this

particular bin. As stated earlier, the optimal solution to

this problem (Problem (P3)) defines a solution the clusters

of items that can be grouped together such that none of the

incompatibility constraints (item-item and bin-item) are

violated. As before the problem is NP-hard and requires a

suitable heuristic for solving the problem. We solve the

problem by modifying the graph coloring heuristic of

Welsh-Powell suitably. Instead of sorting all the vertices

in decreasing order of the degree, we maintain two sorted

lists. The first one – called the pre-colored list, contains

the sorted ‘pre-colored’ vertices in the decreasing order of

the degree. The second – called the uncolored list,

contains the sorted uncolored vertices in the decreasing

order of the degree. Thereafter, apply the modified Welsh-

Powell algorithm as follows −

1. Select the next pre-colored vertex from the pre-

colored list (At the start of the algorithm this is the

first element in the pre-colored list).

2. Traverse the vertices in the uncolored list, and

assign a vertex the color of the pre-colored vertex

of step 1 if it is uncolored and in case the vertex

does not yet have a neighbor having the same color.

Go to Step-1.

3. For the vertices (in the uncolored list) that remain

uncolored at the end of the traversal process of the

pre-colored list, color them using the usual Welsh-

Powell heuristic.

Figure 2: Conflict Graph for the Complete set of

“Incompatibility Constraints” of Example 1.

3.3 Allocating servers to the target servers

Let N be the solution to the pre-colored graph coloring

problem. The nodes having the same color define one

cluster and hence denote the items that can be grouped

1

2 5

3 4

6 7

1

2 5

3 4

6 7

B

A

4343

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on August 07,2020 at 23:50:42 UTC from IEEE Xplore. Restrictions apply.

together into a target server provided capacity constraints

of the target server are not violated. Lets label these N

clusters as n1, n2, …., nN. In addition to the items that

belong to one of these N clusters, we have items which are

not constrained by any of the incompatibility factors.

These non-conflicting items can be associated with any of

the N clusters. However, we decide to group such items

into a separate cluster and associate a label nN+1 with the

cluster. The algorithm is as follows:

1. Sort the bins in the decreasing order of volumes

(CPU*memory*disk). To begin with all the bins are

empty. Only the bins that are involved in the Bin-

Item Incompatibility Constraints have pre assigned

label.

2. Sort the items in the decreasing order of volumes

(CPU*memory*disk). Each of the items has an

associated label.

3. Pop out the next element from the items list.

4. Let bin_counter = 1.

5. Check whether the item can be assigned to the bin

identified by the bin_counter. If it can be assigned

go to step 6 else go to step 8.

6. If the bin does not have any label assigned to it yet,

it is assigned a label that is same as the label of the

item being assigned to the bin. Thus, if the label of

the item is n1 (i.e the item belongs to the cluster n1)

then the bin is labeled as n1 as well. This means

that henceforth only items belonging to the group

n1 can be assigned to the bin. However, if the item

belongs to the cluster nN+1, no label change is

required.

7. Remove the element from the list of sorted items

and go to step 3.

8. Increment the bin_counter, if the bin_counter is

less than or equal to the number of bins repeat step

5 else the item cannot be placed go to step 3. Since

we are not placing any restriction on the number of

bins, we are assuring that all the items get

allocated.

The algorithm is used to allocate different items (servers)

to the bins (target servers). This is FFD algorithm which

packs items into a bin in descending order of size and

adds a new bin for an item which cannot be

accommodated in any of the already opened bins. In

essence, we partition the items into N clusters of mutually

non-conflicting items. The algorithm then solves a simple

vector packing problem for each set.

4. Computational Experiments
The algorithm described above is implemented in Java.

We conduct our experimental runs on an Intel® Pentium®

4 machine with 2.00 GHz CPU and 1GB RAM. Table 2

compares the performance of the FFD heuristic algorithm

with the Hybrid Grouping Genetic Algorithm (HGGA) of

Falkenauer [16] for the one-dimensional vector-packing

problem (VPP). Further, the variation in the number of

bins utilized and the algorithm execution time, when item-

item and item-bin constraints are introduced into the

problem (VPC), is shown. We experimented with 4

different sets of item numbers (n=120, 250, 500, 1000).

For each set we vary the number of item-item constraints

and the number of bin-item constraints. As in [16] the

item weights are uniformly distributed over the range

[20,100] and the bins have a fixed capacity of 150.

Table 2: Comparison of solution for the VPP and VPC

(item-item and bin-item) for the one-dimensional case

Table 3: Comparative evaluation for the case when |J| =

120 and capacity of bins is 150 in all the 3 dimensions

Table 3 to Table 8 compares the performance our

heuristic algorithm for the 3-dimensional vector packing

problem with item-item and bin-item constraints with (i) a

lower bound, L1, for the problem (described below) and

(ii) the heuristic solution, H1, proposed in Gendreau et. al.

[9] for a relaxation of the problem. We calculate the lower

bound L1 as the

4444

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on August 07,2020 at 23:50:42 UTC from IEEE Xplore. Restrictions apply.

max{ , , }
max () max () max ()

j j j

j J j J j J

i I i i I i i I i

cpu memory disk

cpu memory disk

∈ ∈ ∈

∈ ∈ ∈

     
     
     
          

∑ ∑ ∑

For calculating H1, we consider a relaxed version of the

problem: one without the bin-item constraints. The

algorithm proposed is a modified FFD for the bin packing

problem with item-item constraints in Gendreau et. al [9].

For constructing the test cases, we vary the number of

items to be migrated and the capacity of the bins. Table-

3(Table-4) presents the experimental runs for the case

when there are 120 items in the set, J and the capacity of

the bins is 150(200). Table 5 and 6 shows the

corresponding figures for the case when |J|=250. We

present one test case each of the scenario when

|J|=500(Table 7) and |J|=1000(Table 8).

Table 4: Comparative evaluation for the case when |J| =

120 and capacity of bins is 200 in all the 3 dimensions

Further, for each of the cases we vary the number of item-

item constraints and the number of bin-item constraints.

Additionally, we construct the conflict graph at random in

the following manner: for any item-item constraint the

cardinality of the constraint can vary from 2 to a certain

density threshold (d). Each individual member of this

item-item constraint set is then generated at random using

a uniform distribution. Likewise, we construct the bin-

item constrain set at random using a uniform distribution.

For experiments, we consider the capacity of a bin to be

same in all the three dimensions. The capacity of a bin is

larger than any of the items’ usage in any of the

dimensions.

From the tables, we can observe, that our algorithm does

not perform too well when the cardinality of the item-item

incompatibility constraint is low (e.g. the instances with

d=25%). However, our algorithm outperforms modified

FFD when the cardinality is moderate to high(e.g. the

instances with d=50%). This is because our algorithm

performs exceedingly well when the conflict graph is a

completely connected graph. On the contrary, our

algorithm does not perform too well when the conflict

graph is a disjoint graph. When the number of “item-item

incompatibility constraints” and the cardinality for the set

of “incompatibility constraints” is high, the likelihood of a

completely connected conflict graph is more and this

explains the enhanced performance of our algorithm for

instances with higher values of d.

Table 5: Comparative evaluation for the case when |J| =

250 and capacity of bins is 150 in all the 3 dimensions

Table 6: Comparative evaluation for the case when |J | =

250 and capacity of bins is 200 in all the 3 dimensions

5. Conclusion
Physical consolidation involves migrating existing servers

onto a few large systems for the purpose of reducing the

number of servers that an organization requires. In this

paper we presented a two stage heuristic algorithm for the

problem. The initial experiments suggest that the two

stage heuristic algorithm presented in this paper performs

4545

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on August 07,2020 at 23:50:42 UTC from IEEE Xplore. Restrictions apply.

reasonably well. In the current paper we only dealt with

the objective of minimizing the number of target servers

used.

Table 7: Comparative evaluation for the case when |J| =

500 and capacity of bins is 200 in all the 3 dimensions

Table 8: Comparative evaluation for the case when |J| =

1000 and capacity of bins is 200 in the 3 dimensions

A more realistic scenario would be minimizing the total

cost of purchasing the target servers. Currently we

are working towards building a model and a solution

procedure that can incorporate the cost information as

well. Moreover, vendors often offer quantity discounts on

bulk orders. Integrating purchase decisions with server

consolidation issues gives rise to a completely different

genre of problems that will be interesting to look at. We

are also looking at probabilistic frameworks which can

model the workloads more realistically.

References
[1] UNIX Server Consolidation Survey, Press Release:

http://63.247.141.49/~gcg/index.php?option=com_content

&task=view&id=24&Itemid=50

[2] Phelps, J. (2004), “CIO Update: Server consolidation

can offer a range of benefits”, White Paper, Gartner Inc.

[3] Gartner Research, (2002), “Server Consolidation:

Benefits & Challenges”.

[4] Ajiro, Y., and Tanaka, A., (2007) “A Combinatorial

Optimization Algorithm for Server Consolidation”, The

21
st
 Annual Conference of the Japanese Society for

Artificial Intelligence.

[5] Zhang, A., Safai, F., and Beyer, D., (2005) “Applying

Bin-Packing Algorithms to Server Consolidation”,

Informs annual meeting in San Francisco.

[6] Zhang, A., “A High-Dimensional Bin-Packing

Algorithm for Server Consolidation”,

http://www2.twgrid.org/event/isgc2006/Presentation%20

Material/0504-Industry%20Track/Industry-Meichun-

05042006.pdf

[7] Chu, C., and La, R., (2001), “Variable-sized bin

packing: Tight absolute worst-case performance ratios for

four approximation algorithms”, SIAM Journal of

Computing, 30, 2069–2083.

[8] Kang, J., and Park, S., (2003) “Algorithms for the

variable sized bin packing problem”, European Journal

Operational Research, 147, 365–372.

[9] Gendreau, M. Laporte, G. and Semet, F., (2004),

“Heuristics and lower bounds for the bin packing problem

with conflicts”, Computers and Operations Research , 31,

347 – 358.

[10] Epstein, L. and Levin, A., “On bin packing with

conflicts”, math.haifa.ac.il/lea/bpc.pdf

[11] Jansen, K. (1999), “An approximation Scheme for

bin packing with conflicts”, Journal of Combinatorial

Optimization, 3, 363--377.

[12] Bichler, M., et. al. (2006), “Capacity Planning for

Virtualized Servers”, 16
th

 16 Workshop on Information

Technologies and Systems, Milwaukee, USA.

[13] Garey, M. R., and Johnson, D. S., (1979),

“Computers and Intractability: A Guide to the Theory of

NP-Completeness”, W.H. Freeman, ISBN 0-7167-1045-5.

[14] Welsh, D.J.A., and Powell, M.B., (1967), “The

upper bound for the chromatic number of a graph and its

application to timetabling problems”, The Computer

Journal, 11, 41-47.

[15] Jansen., K, and Oehring, S., (1997), “Approximation

algorithms for time constrained scheduling”, Information

and Computation, 132, 85 – 108.

[16] Falkenauer E., (2004), “A Hybrid Grouping Genetic

Algorithm for Bin Packing”, Journal of Heuristics, 2, 5-30

4646

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on August 07,2020 at 23:50:42 UTC from IEEE Xplore. Restrictions apply.

