
A Two Stage Heuristic Algorithm for Solving the Server Consolidation  

Problem with Item-Item and Bin-Item Incompatibility Constraints 
 

Rohit Gupta, Sumit Kumar Bose, Srikanth Sundarrajan, Manogna Chebiyam, Anirban Chakrabarti 

SETLabs, Infosys Technologies Limited-560100 

{rohit_gupta12, sumit_bose, srikanth_sundarrajan, manognar_c, anirban_chakrabarti}@infosys.com 
 

 

Abstract 
 

The problem of server sprawl is common in data centers 

of most business organizations. It is most often the case 

that an application is run on dedicated servers. This leads 

to situations where organizations end up having 

numerous servers that remain under-utilized most of the 

times. The servers, in such scenarios, are allocated more 

resources (disk, cpu and memory) than are justified by 

their present workloads.  Consolidating multiple under-

utilized servers into a fewer number of non-dedicated 

servers that can host multiple applications is an effective 

tool for businesses to enhance their returns on investment. 

The problem can be modeled as a variant of the bin 

packing problem where items to be packed are the servers 

being consolidated and bins are the target servers. The 

sizes of the servers/items being packed are resource 

utilizations which are obtained from the performance 

trace data. Here we describe a novel two stage heuristic 

algorithm for taking care of the “bin-item” 

incompatibility constraints that are inherent in any server 

consolidation problem. The model is able to solve 

extremely large instances of problem in a reasonable 

amount of time. 

 

1. Introduction 
The problem of server sprawl is common in data centers 

of most business organizations. Server sprawls are 

characterized by the use of dedicated servers for single 

applications. This leads to situations where organizations 

end up having numerous servers that remain under-

utilized most of the times. The servers, in such scenarios, 

are allocated more resources than are justified by their 

present workloads.  Since organizations invest substantial 

amounts of money in data centers, organizations are 

undertaking consolidation exercises for reducing the 

infrastructure costs and maximizing their returns on 

investment. Server consolidation is a common practice in 

most data centers and can be categorized into three types 

– centralization, physical consolidation and application 

integration. Centralization involves moving multiple 

geographically dispersed servers into one common 

location. Physical consolidation involves reducing the 

number of servers by introducing fewer numbers of more 

powerful and technologically superior servers. 

Application integration involves combining multiple 

applications into one common application. The focus of 

the current paper is physical consolidation. Advances in 

system virtualization technologies, Xen and Hyper-visor 

for example, are responsible for the current interest in 

server consolidation. Consolidating multiple under-

utilized servers into small number of servers is an 

effective tool for businesses to enhance their operational 

efficiency.  For example, a Unix Server Consolidation 

Survey conducted by IT industry research and analysis 

firm Gabriel Consulting Group, Inc. (GCG) revealed that 

customers are increasingly turning to consolidate their 

applications onto mid-range and large UNIX servers for 

realizing significant costs and operational benefits [1]. 

Findings in [2] indicate that the cost is not the only factor 

influencing server consolidation projects. Several other 

factors such as improved performance, ease of 

management and technology improvement are key drivers 

behind the server consolidation exercise. According to 

Gartner Inc., 94% of IT departments are either 

considering server consolidation or are currently 

consolidating [3]. 

In a nutshell, the goal of server consolidation is to 

minimize the number of destination servers (also called 

target servers) with the view of reducing cost and real 

estate space. Till date, server consolidation exercise is 

primarily a manual process that involves analyzing the 

historical workload pattern of the servers and finding out 

the group of (existing) servers that can be moved to a high 

performing target server. This is often a time consuming 

process and depends on the subjective assessment of the 

decision maker. Ajiro and Tanaka [4] has shown that the 

problem can be modeled as a variant of the bin packing 

problem called the vector packing problem where items to 

be packed are the (existing and technically deprecated) 

servers being consolidated and bins are the (high 

performing and technically superior destination servers) 

target servers. The sizes of the servers/items being packed 

are resource utilizations obtained from analyzing the 

performance trace data. Zhang et al. [5,6] apply bin-

packing algorithms to server consolidation based on 

performance trace data and user-defined consolidation 

constraints. The authors extend the deterministic bin-

packing heuristics (first-fit decreasing and best-fit 

decreasing) to high dimensional probabilistic bin 
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capacities. Ajiro and Tanaka [4] model the server 

consolidation problem as a vector packing problem 

without the incompatibility constraints and provide an 

improved first-fit decreasing algorithm for solving the 

same. None of the current work deals with the complete 

set of incompatibility constraints that naturally exist in 

server consolidation exercises. Two commonly 

encountered incompatibility constraints are the “item-item 

incompatibility constraints” and the “bin-item 

incompatibility constraints”. “Item-item incompatibility 

constraints” occur when two (existing) servers cannot be 

collocated. “Bin-item incompatibility constraints” arise 

when a given (existing) server cannot be moved to a 

particular bin. For example, an application currently 

hosted on a 64 bit machine can-not be migrated to a 32 bit 

machine. In the bin-packing literature, a number of 

variants of the classical bin-packing model have been 

studied. For example, Chu and La [7] and Kang and Park 

[8] study the variable sized bin packing problems. 

Gendreau et. al [9], Epstein and Levin [10] and Jansen 

[11] model the bin packing problem with conflicts and 

provide approximate solutions. However, the conflicts 

considered in these research papers are implicitly assumed 

to be “item-item” incompatibility constraints.  To the best 

of our knowledge, we have not come across any papers 

that discuss the “bin-item” incompatibility constraints that 

are inherently present in any server consolidation exercise. 

In this context, the problem dealt with in the current paper 

is clearly a generalization of the classical bin/vector 

packing problem and its variants tackled in the literature 

thus far. The conflicts and the incompatibility constraints 

studied in the current paper can be considered to be a 

super-set of the incompatibility constraints modeled in the 

bin/vector packing literature till date.   

In vector packing with “item-item” and “bin-item” 

incompatibility constraints, we are given items of different 

sizes and we have to pack these items into minimum 

number of bins with different capacities. In the “server” 

packing problem, items are (existing) servers, bins are 

(destination) target servers, item sizes are resource 

utilization calculated from the trace history and bin 

capacities are utilization thresholds of the new servers. In 

addition, we are given the different “item-item 

incompatibility constraints” and the “bin-item 

incompatibility constraints”. We are required to determine 

the minimum number of target servers that would be 

required after taking care of the different incompatibility 

constraints for the problem. This paper formalizes the 

“item-item” incompatibility constraints as a graph 

coloring problem and the “bin-item” incompatibility 

constraints as a pre-colored graph coloring problem. We 

developed a new heuristic algorithm of determining the 

number of destination servers in the presence of the 

incompatibility constraints including bin-item 

incompatibilities. In addition, our experiments reveal that 

our algorithm outperforms other heuristics for dense 

conflict graphs. Section 2 models the server consolidation 

problem mathematically as a vector packing problem. 

Section 3 explains the heuristic algorithm in detail. 

Section 4 describes our experiences with real life data 

before providing concluding remarks and directions for 

future research in section 5. 

 

2. Problem Scenario 
Given a set of new target servers, I, and a set of old 

servers, J, (I < J) along with the workload history and 

usage pattern of the resources (disk, cpu, memory) for 

each of the J servers, the server consolidation problem is 

to find the best possible way to combine the existing 

servers into the new target servers such that only a few of 

the target servers may be used. We use the term bin to 

represent target servers and the term item to represent the 

servers being migrated. [12] Proposes mathematical 

models for static and dynamic server allocation problem. 

The formulation below, a variant of the ones proposed in 

[12] uses the notations given in table 1.  

Table 1: Notations, Variables and Parameters 

Notations 

i New servers i ∈[1, 2, ….., I] 

j Old servers j ∈[1, 2, ….., J] 

Variables 

Yi  
Binary variable, equals 1 if server i is used 

for consolidation, 0 otherwise 

Xij  Binary variable equals 1 if old server j is 

migrated to new server i, 0 otherwise. 

Parameters 

memoryi  
Maximum available memory of the new 

server i. 

�mem j  Memory usage of old server j. 

cpui  
Maximum available cpu power of the new 

server i. 

�cpu j  CPU usage of old server j. 

diski  Maximum available disk of the new server i. 

�disk j  Disk usage of old server j. 

Binary variable 
i

Y  is 1 if there is at-least one item j∈J 

that is migrated to a bin i. Binary variable Xij  is 1 if item 

j∈J is migrated to the target server i. �mem j  is calculated 

as ( / )memory T k memoryjtt
σ+∑  and represents the 

memory usage of the server j. Similarly, �cpu j  is 

calculated as ( / )cpu T k cpujtt
σ+∑  and represents the 

CPU usage of the server j and  �disk j  is calculated as 
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( / )disk T kjt diskt
σ+∑  and represents the disk usage of 

the server j. k here is a tunable parameter. The problem is 

that of minimizing the number of target servers.   

Equation (2) constrains the value of Yi to be 1 when an 

item j is allocated to i. Equation (3) assigns an item j to 

only one of the target servers.  Equations (4) to (6) model 

the capacity constraint of the target server. The values of 

�mem j , �cpu j  and �disk j  are determined from the 

performance trace data (historical data) available from the 

data centers. 

The problem can therefore be formulated as:  

Minimize Yii
∑                                          (1) 

:Subject to  

,Y X i ji ij≥ ∀               (2) 

1X jiji
= ∀∑                   (3) 

�*Y memory mem X iji i ijj
≥ ∀∑           (4) 

�*Y cpu cpu X iji i ijj
≥ ∀∑              (5) 

�*Y disk disk X iji i ijj
≥ ∀∑             (6) 

Additionally, let JA ∈J be a subset of servers such that no 

two instances of the set JA can be hosted onto the same 

instance of the server i∈I. In other words, if j and  j’ be 

two servers instances of the group JA then j and j’ cannot 

be migrated to the same server i.; if j is migrated to i, then 

j’ need to be migrated to i’. This condition should be true 

for all members of the set JA. We call such constraints as 

the “incompatibility constraints”. This arises from the 

need to exclude members of the set JA from being 

assigned to a server i, once a member from the set JA is 

assigned to a server i. The condition can be modeled 

mathematically as:  

1X iijj J
A

≤ ∀∑
∈

       (7) 

Likewise, if we have more such constraints i.e. JB ∈J be a 

subset of servers such that no two instances of the set JB 

can be migrated together to the same instance of the server 

i∈I, then we will have additional constraints as: 

1X iijj J
B

≤ ∀∑
∈

       (8) 

The number of such constraints will depend upon the 

number of item-item incompatibilities in the problem. 

They vary with each instance of the problem. The 

formulation becomes expensive for very large instances of 

the problem. Problem instances involving 4000 plus 

servers is not uncommon in the industry. Solving such 

large problem instances to optimality using the 

mathematical solvers will take unusually long time. Under 

these situations it becomes imperative to explore heuristic 

schemes that can generate near optimal solution within a 

reasonable amount of time.  

Additionally we have the item-bin incompatibility 

constraints. These impose further restrictions on the items 

being packed into a bin. The constraints imply that a 

certain item j’ cannot be packed into a given bin i’. 

Mathematically, 

0 ', '
' '

X i j
i j

= ∃     (9) 

Such item-bin incompatibility constraints are common in 

server consolidation exercise. The formulation then is: 

�

�

�

:

,

1

* ( 1)

*

*

1

1

0 ', '
' '

Minimize Yii

Subject to

Y X i ji ij

X jiji

Y memory mem X i Pji i ijj

Y cpu cpu X iji i ijj

Y disk disk X iji i ijj

X iij
j J

A

X iijj J
B

X i j
i j

∑

≥ ∀

= ∀∑

≥ ∀∑

≥ ∀∑

≥ ∀∑

≤ ∀∑
∈

≤ ∀∑
∈

= ∃

 

3. Heuristic Solution 
We divide the set of constraints (equations (2) to (9) of 

the formulation presented above into two mutually 

exclusive sub-sets. Sub-set (2) to (6) form the constraint 

set-A, and sub-set (7) to (9) (i.e. equations that are 

structurally similar to equation (7) and those similar to 

equation (9)) form the constraint set-B.  We call the 

constraint set-B as the set of “incompatibility constraints”. 

Equations similar in structure to equation (7) are called 

the “item-item incompatibility constraints” and those 

similar in structure to equation (9) are called the “bin-item 

incompatibility constraints”. Item-item constraints can be 

explicitly specified by the user or they can be an outcome 

of the hot-spot analysis. The set of “item-item 

incompatibility constraints” for the above formulation is 

given by the following equations: 

1X iijj J
A

≤ ∀∑
∈
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1X iijj J
B

≤ ∀∑
∈

 

The set of “bin-item incompatibility constraints” for the 

above formulation is given by the following equations:  

0 ', '
' '

X i j
i j

= ∃  

We solve the server(item) – target server(bin) mapping 

problem in two stages. In stage 1 we solve a restricted 

version of the problem (P1). This involves minimizing (1) 

subject to the constraint set-B. We call this limited version 

of the problem (P1) as the problem (P2). Succinctly, it can 

be stated as: 

1

1

( 2)
1

0 ', '
' '

i
Minimize Yi

i

Subject to

X iij
j J

A P
X iij

j J
B

X i j
i j

∑
=

≤ ∀∑
∈

≤ ∀∑
∈

= ∃

Optimal solution to problem (P2) gives us the heuristic 

estimate of the minimum number of target servers 

required for a given problem instance. Furthermore, 

solution to the problem (P2) organizes the servers into 

clusters. In other words, the solution identifies groups of 

servers (clusters) that can be co-located. The heuristic 

estimate is the minimum number of such clusters (group 

of servers) that can be formed. The solution obtained at 

the end of stage-1 would have been optimal for the 

problem (P1) if the bins were un-capacitated. Stage 2 of 

the solution building process, refines the partial solution 

obtained in the previous step by taking into account the 

actual bin capacities and performing server – target-server 

mappings. The algorithm can be summarized as: 

Step 1: Solve the set of “incompatibility constraints”. As 

explained above, the solution to this step defines the 

clusters of servers such that servers belonging to the same 

cluster can be co-located onto a target server. This step is 

explained in detail in section 3.1 and 3.2. 

Step 2: Allocate servers (items) to the different target-

servers (bins). This step is explained in detail in section 

3.3. 

3.1 Solving the “Item-Item Incomp. constraints” 

Consider a subset of the problem (P2): 

1

1 ,

1

i
Minimize Yi

i

X j J Jij BAi

X iij
j J

A

∑
=

= ∀ ∈∑

≤ ∀∑
∈

 

1 ( 3)X i Pijj J
B

≤ ∀∑
∈

 

A close look at the problem (P3) will reveal that the 

problem definition resembles that of the Graph Coloring 

Problem. The Graph Coloring Problem involves coloring 

the vertices of a graph such that no two adjacent vertices 

share the same color. The optimal solution to the problem 

(P3) helps us to determine the minimum number of target 

servers that will be required for the consolidation exercise. 

 
Definition: An undirected graph G=(V,E) is composed of 

a set V of  |JA U JB| nodes or vertices, and a set E of  
| | | | | |

2 2 2
A B A BJ J J J
C C C+ −

∩
 edges between nodes.  

Example 1: Assume that we have two item-item 

incompatibility constraints: 

1
51 2 3 4

1
71 6

X X X X X
ii i i i

X X X
ii i

+ + + + ≤

+ + ≤

 

As shown in figure 1, the equations can be represented as 

a graph of 7 nodes and 13 edges. The target servers are 

analogous to the colors in this example. Assigning 

separate target servers to nodes 1, 6 and 7 is equivalent to 

assigning three different colors to the respective nodes. 

None of the adjacent nodes should share the same color is 

equivalent to the stating that none of the adjacent nodes of 

a graph (i.e. nodes connected together by an edge) should 

appear on the same target server.  

 

Theorem: Let G=(V,E) be a completely connected graph 

formed out of the set of “Item-Item incompatibility 

constraints” in (P2), and there exists a unique  optimal 

solution to the problem (P3), then the optimal solution to 

the problem (P3) will represent the lower bound to the 

solution for the problem (P1). 

Proof: Suppose the optimal solution to the problem (P1) 

is less than the optimal solution to the problem (P3). In 

such a case there will be at least two items j, j’ belonging 

to JA (or JB say) that will be hosted together on a target 

server, which will be violating the constraint (7) (or 

equation (8) say). Hence the number of target servers that 

is required for (P1) can be no less than the optimal 

solution of (P3).  �  

Since, the number of target servers obtained as a result of 

solving the problem (P3) represents the minimal number 

of target servers that will be required for the problem in 

(P1), we solve the problem (P3) first. Optimal solution to 

(P3) implicitly defines the clusters of conflicting items 

that can be grouped together such that item in one group is 

not in conflict with any other member of the group. 

However, the problem is known to be NP-hard [13]. The 

problem is well studied in the literature and a number of 

solutions have been proposed in the literature. One such 
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popular approximation algorithm is the Welsh-Powell 

method [14]. 

 
Figure 1: Conflict Graph for the “Item-Item 

Incompatibility Constraints” for Example 1. 

 

The Welsh-Powell algorithm for solving the graph 

coloring problem uses a simple heuristic and is as follows:  

   1. Sort the vertices in decreasing order of degree. To 

begin with all the vertices are uncolored. 

   2. Traverse the vertices in the sorted list, and assign a 

vertex the color 1 if it is uncolored and in case the vertex 

does not yet have a neighbor having color 1. 

   3. Repeat this process with other colors until no vertex 

is uncolored. 

The algorithm thus assigns to each vertex a color that is 

different from the colors of its neighbors. The algorithm is 

proven to use at most ∆(G) + 1 colors, where ∆(G) is the 

maximum degree of the graph. For all practical purposes, 

the Welsh-Powell algorithm offers a good approximation 

to the optimal solution to problem (P3).  The heuristic 

explained in this sub-section is similar to that of Gendreau 

et. al. [9] and Jansen and Oehring [15] 

3.2 Solving the “Bin-Item Incomp. Constraints” 

Continuing with our example, suppose in addition to the 

two item-item incompatibility constraints: 

1 2 3 4 5

1 6 7

1

1

i i i i i

i i i

X X X X X

X X X

+ + + + ≤

+ + ≤
 

we also have three bin-item incompatibility constraints: 

0
1

0
7

0
7

X
A

X
A

X
B

=

=

=

 

The three bin-item incompatibility constraints imply that 

the item 1 cannot be assigned to bin A and item 7 cannot 

be assigned to bin B in addition to bin A. To take care of 

such bin-item incompatibility constraints, we suitably 

modify the conflict graph of figure 1. Particularly, we 

augment the conflict graph by introducing ‘pre-colored’ 

dummy nodes into the graph. Each of the dummy nodes 

introduced will be colored differently and the number of 

such pre-colored dummy nodes depends on the number of 

bins that are in conflict with the items. For the example 

scenario presented here, we introduce two pre-colored 

dummy nodes since there are only two bins – A and B that 

are not compatible for some of the items. Figure 2 shows 

these two newly introduced nodes with double circles. 

These doubly encircled nodes represent the bins. Such 

nodes we call bin-nodes which are different from the 

single circled nodes, called item-nodes for the sake of 

clarity and exposition. A newly introduced ‘pre-colored’ 

bin-node is thereafter connected using an undirected edge 

to those item-nodes that cannot be assigned to this 

particular bin. As stated earlier, the optimal solution to 

this problem (Problem (P3)) defines a solution the clusters 

of items that can be grouped together such that none of the 

incompatibility constraints (item-item and bin-item) are 

violated. As before the problem is NP-hard and requires a 

suitable heuristic for solving the problem. We solve the 

problem by modifying the graph coloring heuristic of 

Welsh-Powell suitably. Instead of sorting all the vertices 

in decreasing order of the degree, we maintain two sorted 

lists. The first one – called the pre-colored list, contains 

the sorted ‘pre-colored’ vertices in the decreasing order of 

the degree. The second – called the uncolored list, 

contains the sorted uncolored vertices in the decreasing 

order of the degree. Thereafter, apply the modified Welsh-

Powell algorithm as follows  −  

1. Select the next pre-colored vertex from the pre-

colored list (At the start of the algorithm this is the 

first element in the pre-colored list). 

2. Traverse the vertices in the uncolored list, and 

assign a vertex the color of the pre-colored vertex 

of step 1 if it is uncolored and in case the vertex 

does not yet have a neighbor having the same color. 

Go to Step-1. 

3. For the vertices (in the uncolored list) that remain 

uncolored at the end of the traversal process of the 

pre-colored list, color them using the usual Welsh-

Powell heuristic. 

 
Figure 2: Conflict Graph for the Complete set of 

“Incompatibility Constraints” of Example 1. 

3.3 Allocating servers to the target servers 

Let N be the solution to the pre-colored graph coloring 

problem. The nodes having the same color define one 

cluster and hence denote the items that can be grouped 

  

1 

2 5 

3 4 

6 7 

  

1   

2  5  

3  4   

6   7   

B   

A  
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together into a target server provided capacity constraints 

of the target server are not violated. Lets label these N 

clusters as n1, n2, …., nN.  In addition to the items that 

belong to one of these N clusters, we have items which are 

not constrained by any of the incompatibility factors. 

These non-conflicting items can be associated with any of 

the N clusters. However, we decide to group such items 

into a separate cluster and associate a label nN+1 with the 

cluster. The algorithm is as follows:  

1. Sort the bins in the decreasing order of volumes 

(CPU*memory*disk). To begin with all the bins are 

empty. Only the bins that are involved in the Bin-

Item Incompatibility Constraints have pre assigned 

label. 

2. Sort the items in the decreasing order of volumes 

(CPU*memory*disk). Each of the items has an 

associated label.  

3. Pop out the next element from the items list.  

4. Let bin_counter = 1. 

5. Check whether the item can be assigned to the bin 

identified by the bin_counter. If it can be assigned 

go to step 6 else go to step 8. 

6. If the bin does not have any label assigned to it yet, 

it is assigned a label that is same as the label of the 

item being assigned to the bin. Thus, if the label of 

the item is n1 (i.e the item belongs to the cluster n1) 

then the bin is labeled as n1 as well. This means 

that henceforth only items belonging to the group 

n1 can be assigned to the bin. However, if the item 

belongs to the cluster nN+1, no label change is 

required.  

7. Remove the element from the list of sorted items 

and go to step 3. 

8. Increment the bin_counter, if the bin_counter is 

less than or equal to the number of bins repeat step 

5 else the item cannot be placed go to step 3. Since 

we are not placing any restriction on the number of 

bins, we are assuring that all the items get 

allocated. 

The algorithm is used to allocate different items (servers) 

to the bins (target servers). This is FFD algorithm which 

packs items into a bin in descending order of size and 

adds a new bin for an item which cannot be 

accommodated in any of the already opened bins. In 

essence, we partition the items into N clusters of mutually 

non-conflicting items. The algorithm then solves a simple 

vector packing problem for each set.  

 

4. Computational Experiments 
The algorithm described above is implemented in Java. 

We conduct our experimental runs on an Intel® Pentium® 

4 machine with 2.00 GHz CPU and 1GB RAM. Table 2 

compares the performance of the FFD heuristic algorithm 

with the Hybrid Grouping Genetic Algorithm (HGGA) of 

Falkenauer [16] for the one-dimensional vector-packing 

problem (VPP). Further, the variation in the number of 

bins utilized and the algorithm execution time, when item-

item and item-bin constraints are introduced into the 

problem (VPC), is shown. We experimented with 4 

different sets of item numbers (n=120, 250, 500, 1000). 

For each set we vary the number of item-item constraints 

and the number of bin-item constraints. As in [16] the 

item weights are uniformly distributed over the range 

[20,100] and the bins have a fixed capacity of 150.  

Table 2: Comparison of solution for the VPP and VPC 

(item-item and bin-item) for the one-dimensional case 

 
 

Table 3: Comparative evaluation for the case when |J| = 

120 and capacity of bins is 150 in all the 3 dimensions 

 
Table 3 to Table 8 compares the performance our 

heuristic algorithm for the 3-dimensional vector packing 

problem with item-item and bin-item constraints with (i) a 

lower bound, L1, for the problem (described below) and 

(ii) the heuristic solution, H1, proposed in Gendreau et. al. 

[9] for a relaxation of the problem. We calculate the lower 

bound L1 as the  

4444

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on August 07,2020 at 23:50:42 UTC from IEEE Xplore.  Restrictions apply. 



max{ , , }
max ( ) max ( ) max ( )

j j j

j J j J j J

i I i i I i i I i

cpu memory disk

cpu memory disk

∈ ∈ ∈

∈ ∈ ∈

     
     
     
          

∑ ∑ ∑
 

For calculating H1, we consider a relaxed version of the 

problem: one without the bin-item constraints.  The 

algorithm proposed is a modified FFD for the bin packing 

problem with item-item constraints in Gendreau et. al [9].  

For constructing the test cases, we vary the number of 

items to be migrated and the capacity of the bins. Table-

3(Table-4) presents the experimental runs for the case 

when there are 120 items in the set, J and the capacity of 

the bins is 150(200). Table 5 and 6 shows the 

corresponding figures for the case when |J|=250. We 

present one test case each of the scenario when 

|J|=500(Table 7) and |J|=1000(Table 8). 

Table 4: Comparative evaluation for the case when |J| = 

120 and capacity of bins is 200 in all the 3 dimensions 

 
Further, for each of the cases we vary the number of item-

item constraints and the number of bin-item constraints.  

Additionally, we construct the conflict graph at random in 

the following manner: for any item-item constraint the 

cardinality of the constraint can vary from 2 to a certain 

density threshold (d). Each individual member of this 

item-item constraint set is then generated at random using 

a uniform distribution. Likewise, we construct the bin-

item constrain set at random using a uniform distribution. 

For experiments, we consider the capacity of a bin to be 

same in all the three dimensions. The capacity of a bin is 

larger than any of the items’ usage in any of the 

dimensions.  

From the tables, we can observe, that our algorithm does 

not perform too well when the cardinality of the item-item 

incompatibility constraint is low ( e.g. the instances with 

d=25%). However, our algorithm outperforms modified 

FFD when the cardinality is moderate to high( e.g. the 

instances with d=50%). This is because our algorithm 

performs exceedingly well when the conflict graph is a 

completely connected graph. On the contrary, our 

algorithm does not perform too well when the conflict 

graph is a disjoint graph. When the number of “item-item 

incompatibility constraints” and the cardinality for the set 

of “incompatibility constraints” is high, the likelihood of a 

completely connected conflict graph is more and this 

explains the enhanced performance of our algorithm for 

instances with higher values of d. 

Table 5: Comparative evaluation for the case when |J| = 

250 and capacity of bins is 150 in all the 3 dimensions 

 
 

Table 6: Comparative evaluation for the case when |J | = 

250 and capacity of bins is 200 in all the 3 dimensions 

 
 

5. Conclusion 
Physical consolidation involves migrating existing servers 

onto a few large systems for the purpose of reducing the 

number of servers that an organization requires. In this 

paper we presented a two stage heuristic algorithm for the 

problem. The initial experiments suggest that the two 

stage heuristic algorithm presented in this paper performs 
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reasonably well. In the current paper we only dealt with 

the objective of minimizing the number of target servers 

used.  

Table 7: Comparative evaluation for the case when |J| = 

500 and capacity of bins is 200 in all the 3 dimensions 

 
 

Table 8: Comparative evaluation for the case when |J| = 

1000 and capacity of bins is 200 in the 3 dimensions 

 
 

A more realistic scenario would be minimizing the total 

cost  of   purchasing  the  target  servers. Currently  we  

are working towards building a model and a solution 

procedure that can incorporate the cost information as 

well. Moreover, vendors often offer quantity discounts on 

bulk orders. Integrating purchase decisions with server 

consolidation issues gives rise to a completely different 

genre of problems that will be interesting to look at. We 

are also looking at probabilistic frameworks which can 

model the workloads more realistically. 
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