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• Multi-agent systems are rapidly finding 
applications in a variety of domains and the 
complexity of many tasks arising in these 
domains make them difficult to solve with 
preprogrammed agent behaviors, so the agents 
must instead discover a solution on their own 
using learning.

• A central issue in the field of multi-agent-
reinforcement learning (MARL) is the formal 
statement of the multi-agent learning goal.

• Different viewpoints on this issue have led to the 
proposal of many different goals, two focal points 
can be distinguished: stability of the agents’ 
learning dynamics, and adaptation to the 
changing behavior of the other agents. 

• The MARL algorithms aim at one of these two 
goals or at a combination of both, in a fully 
cooperative, fully competitive, or more general 
setting

• A representative selection of these algorithms 
is discussed in detail in this paper, together 
with the specific issues that arise in each 
category. Additionally, the benefits and 
challenges of MARL are described along with 
some of the problem domains where MARL 
techniques have been applied



Click to edit Master title style

4

I. Introduction

4



Click to edit Master title style

5

I. Introduction – Introduction to MARL

5

• A multi-agent system can be defined as a 
group of autonomous, interacting entities 
sharing a common environment, which they 
perceive with sensors and upon which they act 
with actuators.

• Applications in: robotic teams, distributed 
control, resource management, collaborative 
decision support systems, data mining, etc

• Multi-agent systems may arise as the most 
natural way of looking at the system, or may 
provide an alternative perspective on systems 
that are originally regarded as centralized. 

• For instance, in robotic teams, the control 
authority is naturally distributed among the 
robots. In resource management, while resources 
can be managed by a central authority, identifying 
each resource with an agent may provide a 
helpful, distributed perspective on the system.

• Although the agents in a multi-agent system can 
be programmed with behaviors designed in 
advance, it is often necessary that they learn new 
behaviors online, such that the performance of 
the agent or of the whole multi-agent system 
gradually improves

• In an environment that changes over time, a 
hardwired behavior may become unappropriate.
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• A reinforcement learning (RL) agent learns by 
trial-and error interaction with its dynamic 
environment.

• At each time step, the agent perceives the 
complete state of the environment and takes 
an action, which causes the environment to 
transit into a new state. 

• The agent receives a scalar reward signal that 
evaluates the quality of this transition. 

• This feedback is less informative than in 
supervised learning, where the agent would be 
given the correct actions to take 

• The RL feedback is, however, more informative 
than in unsupervised learning, where the agent 
would be left to discover the correct actions on 
its own, without any explicit feedback on its 
performance

• Well-understood algorithms with good 
convergence and consistency properties are 
available for solving the single-agent RL task, 
both when the agent knows the dynamics of 
the environment and the reward function (the 
task model), and when it does not. 

• Together with the simplicity and generality of 
the setting, this makes RL attractive also for 
multi-agent learning. 
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• The difficulty of defining a good learning goal 
for the multiple RL agents. 

• Furthermore, most of the times each learning 
agent must keep track of the other learning 
(and therefore, nonstationary) agents. 

• Only then will it be able to coordinate its 
behavior with theirs, such that a coherent joint 
behavior results. 

• The nonstationarity also invalidates the 
convergence properties of most single-agent 
RL algorithms. 

• In addition, the scalability of algorithms to 
realistic problem sizes, already problematic in 
single-agent RL, is an even greater cause for 
concern in MARL. 
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• A wide variety of approaches to exploit 
MARL’s benefits and address its challenges 
have been proposed over the last years.

• These approaches integrate developments 
in the areas of single-agent RL, game theory, 
and more general direct policy search 
techniques. 

• The goal of this paper is to provide a 
comprehensive review of MARL. 

• The authors select a representative set of 
approaches that allows them to identify the 
structure of the field, to provide insight into the 
current state of the art, and to determine some 
important directions for future research.



Click to edit Master title style

9

I. Introduction A. Contribution and related work

9

• This paper provides a detailed discussion of 
MARL techniques for fully cooperative, fully 
competitive, and mixed (neither cooperative 
nor competitive) tasks. 

• The focus is placed on autonomous multiple 
agents learning how to solve dynamic tasks 
online, using learning techniques with roots 
in dynamic programming and temporal-
difference RL. 

• Different viewpoints on the central issue of 
the learning goal in MARL are discussed

• The authors provide an overview of the 
challenges and benefits in MARL, and of the 
problem domains where MARL techniques 
have been applied. 

• They identify a set of important open issues 
and suggest promising directions to address 
these issues.
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• Besides single-agent RL, MARL has strong 
connections with game theory, evolutionary 
computation, and optimization theory.

• Game theory – the study of multiple 
interacting agents trying to maximize their 
rewards and especially the theory of learning 
in games, make an essential contribution to 
MARL. 

• The authors focus on algorithms for dynamic 
multiagent tasks, whereas most game-
theoretic results deal with static (stateless) 
one-shot or repeated tasks. 

• The authors investigate the contribution of 
game theory to MARL algorithms for dynamic 
tasks and review relevant game-theoretic 
algorithms for static games.

• Other authors have investigated more closely 
the relationship between game theory and 
MARL. 

• Bowling and Veloso [13] discuss several MARL 
algorithms, showing that these algorithms 
combine temporal-difference RL with game-
theoretic solvers for the static games arising in 
each state of the dynamic environment.
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• Since the authors are interested in online 
techniques that exploit the special structure 
of the RL task by learning a value function, 
they do not review here evolutionary learning 
techniques.

• Evolutionary learning, and in general direct 
optimization of the agent behaviors, cannot 
readily benefit from the RL task structure.

• Evolutionary game theory sits at the 
intersection of evolutionary learning and game 
theory. 

• The authors discuss only the contribution of 
evolutionary game theory to the analysis of 
multi-agent RL dynamics. 
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• The next section introduces the necessary 
background in single-agent and multi-agent 
RL. 

• Section III reviews the main benefits of MARL 
and the most important challenges that arise 
in the field, among which is the definition of 
an appropriate formal goal for the learning 
multi-agent system. 

• Section IV discusses the formal goals put 
forward in the literature, which consider 
stability of the agent’s learning process and 
adaptation to the dynamic behavior of the 
other agents. 

• Section V provides a taxonomy of MARL 
techniques. 

• Section VI reviews a representative selection 
of MARL algorithms, grouping them by the type 
of targeted learning goal (stability, adaptation, 
or a combination of both) and by the type of 
task (fully cooperative, fully competitive, or 
mixed). 

• Section VII then gives a brief overview of the 
problem domains where MARL has been 
applied. 

• Section VIII distills an outlook for the MARL 
field, consisting of important open questions 
and some suggestions for future research.

• Section IX concludes and closes the paper
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• In this section, the necessary background on 
single-agent and multi-agent RL is introduced 

• First, the single agent task is defined, and its 
solution is characterized. 

• Then, the multi-agent task is defined. 

• Static multi-agent tasks are introduced 
separately, together with necessary game-
theoretic concepts. 

• The discussion is restricted to finite state and 
action spaces, as most MARL results is given 
for finite spaces.



Click to edit Master title style

15

A. The single-agent case

15

• In single-agent RL, the environment of the 
agent is described by a Markov decision 
process

• Definition 1: A finite Markov decision process 
is a tuple {X, U, f, ρ} where 

• X is the finite set of environment states, 

• U is the finite set of agent actions, 

• f : X ×U ×X → [0, 1] is the state transition 
probability function, and 

• ρ : X × U × X → R is the reward function.

• Throughout the paper, the standard control-
theoretic notation is used: 

• x for state, 

• X for state space, 

• u for control action, 

• U for action space, 

• f for environment (process) dynamics. 

• The authors denote reward functions by ρ, to 
distinguish them from the instantaneous 
rewards r and the returns R. 

• They denote agent policies by h.
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• The state signal xk ∈ X   describes the 
environment at each discrete time step k. 
The agent can alter the state at each time 
step by taking actions    uk ∈ U. 

• As a result of action uk, the environment 
changes state from x to some xk+1 ∈ X 
according to the state transition probabilities 
given by f: the probability of ending up in 
xk+1 given that uk is executed in xk is:

• The agent receives a scalar reward rk+1 ∈ R, 
according to the reward function ρ:                       

• This reward evaluates the immediate effect of 
action uk, i.e., the transition from xk to xk+1. 

• It says, however, nothing directly about the 
long-term effects of this action.
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• The behavior of the agent is described by its 
policy h, which specifies how the agent 
chooses its actions given the state. 

• The policy may be either stochastic, 

• or deterministic

• A policy is called stationary if it does not 
change over time.
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• The agent’s goal is to maximize, at each time 
step k, the expected discounted return: 

• where γ ∈ [0, 1) is the discount factor, and 
the expectation is taken over the probabilistic 
state transitions. 

• The quantity Rk compactly represents the 
reward accumulated by the agent in the long 
run. 

• (1)
• Other possibilities of defining the return exist.
• The discount factor γ can be regarded as 

encoding increasing uncertainty about rewards 
that will be received in the future, or as a 
means to bound the sum which otherwise 
might grow infinitely
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• The task of the agent is therefore to 
maximize its long term performance, while 
only receiving feedback about its immediate, 
one-step performance. 

• One way it can achieve this is by computing 
an optimal action-value function.

• The action-value function (Q-function),                             
is the expected 

return of a state-action pair given the policy

• The optimal Q-function is defined as (2)

• This equation states that the optimal value of 
taking u in x is the expected immediate reward 
plus the expected (discounted) optimal value 
attainable from the next state (the expectation 
is explicitly written as a sum since X is finite).

• The greedy policy is deterministic and picks for 
every state the action with the highest Q-value:
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• Many single-agent RL algorithms exist such 
as: 

• Model-based methods based on dynamic 
programming 

• Model-free methods based on online 
estimation of value functions and 

• Model-learning methods that estimate a 
model, and then learn using model-based 
techniques. 

• Most MARL algorithms are derived from a 
model-free algorithm called Q-learning

• Q-learning turns (2) into an iterative 
approximation procedure. 

• The current estimate of Q∗ is updated using 
estimated samples of the right-hand side of 
(2). 

• These samples are computed using actual 
experience with the task, in the form of 
rewards rk+1 and pairs of subsequent states 
xk, xk+1: 



Click to edit Master title style

22

A. The single-agent case – Q-learning

22

• Since (4) does not require knowledge about 
the transition and reward functions, Q-
learning is model-free. 

• The learning rate αk ∈ (0, 1] specifies how far 
the current estimate Qk(xk, uk) is adjusted 
towards the update target (sample)

• The learning rate is typically time-varying, 
decreasing with time. 

• Separate learning rates may be used for 
each state-action pair. 

• The expression inside the square brackets is 
the temporal difference, i.e., the difference 
between estimates of Q(xk, uk) at two 
successive time steps, k + 1 and k
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• The sequence Qk provably converges to Q∗
under the following conditions:  

• Explicit, distinct values of the Q-function are 
stored and updated for each state-action pair.  

• The time series of learning rates used for 
each state-action pair sums to infinity, 
whereas the sum of its squares is finite.

• The agent keeps trying all actions in all 
states with nonzero probability.
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• The generalization of the Markov decision 
process to the multi-agent case is the 
stochastic game

• A stochastic game (SG) is a tuple {X, U1, . . . 
, Un, f, ρ1, . . . , ρn} where 

• n is the number of agents, 

• X is the discrete set of environment states, 

• Ui , i = 1, . . . , n are the discrete sets of 
actions available to the agents, yielding the 
joint action set U = U1 × · · · × Un, f : X × U ×

• X → [0, 1] is the state transition probability 
function, and 

• ρi : X × U × X → R, i = 1, . . . , n are the 
reward functions of the agents

• In the multi-agent case, the state transitions 
are the result of the joint action of all the 
agents

• Consequently, the rewards ri,k+1 and the 
returns Ri,k also depend on the joint action

• The policies hi : X × Ui → [0, 1] form together 
the joint policy h. 

• The Q-function of each agent depends on the 
joint action and is conditioned on the joint 
policy



Click to edit Master title style

25

B. The multi-agent case 

25



Click to edit Master title style

26

B. The multi-agent case 

26

• If ρ1 = · · · = ρn, all the agents have the 
same goal (to maximize the same expected 
return), and the SG is fully cooperative. 

• If n = 2 and ρ1 = −ρ2, the two agents have 
opposite goals, and the SG is fully 
competitive. 

• Mixed games are stochastic games that are 
neither fully cooperative nor fully competitive.
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• Many MARL algorithms are designed for 
static (stateless) games, or work in a stage-
wise fashion, looking at the static games that 
arise in each state of the stochastic game. 

• Some game-theoretic definitions and 
concepts regarding static games are 
therefore necessary to understand these 
algorithms

• A static (stateless) game is a stochastic 
game with X = ∅. (empty state set) 

• Since there is no state signal, the rewards 
depend only on the joint actions ρi : U → R

• When there are only two agents, the game is 
often called a bimatrix game, because the 
reward function of each of the two agents can 
be represented as a |U1| × |U2| matrix with the 
rows corresponding to the actions of agent 1, 
and the columns to the actions of agent 2, 
where |·| denotes set cardinality. 

• Fully competitive static games are also called 
zero-sum games, because the sum of the 
agents’ reward matrices is a zero matrix. 

• Mixed static games are also called general-
sum games, because there is no constraint on 
the sum of the agents’ rewards.
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• When played repeatedly by the same agents, 
the static game is called a repeated game.

• The main difference from a one-shot game is 
that the agents can use some of the game 
iterations to gather information about the 
other agents or the reward functions, and 
make more informed decisions thereafter. 

• A stage game is the static game that arises 
when the state of an SG is fixed to some 
value. 

• The reward functions of the stage game are 
the expected returns of the SG when starting 
from that particular state. 

• Since in general the agents visit the same 
state of an SG multiple times, the stage game 
is a repeated game.

• In a static or repeated game, the policy loses 
the state argument and transforms into a 
strategy σi : Ui → [0, 1].

• An agent’s strategy for the stage game arising 
in some state of the SG is its policy 
conditioned on that state value. 

• MARL algorithms relying on the stage-wise 
approach learn strategies separately for every 
stage game. 

• The agent’s overall policy is then the 
aggregate of these strategies.
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• Stochastic strategies (and consequently, 
stochastic policies) are of a more immediate 
importance in MARL than in single-agent RL, 
because in certain cases, like for the Nash 
equilibrium, the solutions can only be 
expressed in terms of stochastic strategies

• An important solution concept for static 
games, is the Nash equilibrium. 

• First, define the best response of agent i to a 
vector of opponent strategies as the strategy σ 
∗ i that achieves the maximum expected 
reward given these opponent strategies:
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• A Nash equilibrium is a joint strategy [σ∗1, . . 
. , σ∗n ] T such that each individual strategy 
σ∗i is a best-response to the others

• The Nash equilibrium describes a status quo, 
where no agent can benefit by changing its 
strategy as long as all other agents keep 
their strategies constant. 

• Any static game has at least one (possibly 
stochastic) Nash equilibrium; some static 
games have multiple Nash equilibria. 

• Nash equilibria are used by many MARL 
algorithms reviewed in the sequel, either as 
learning goal, or both as learning goal and 
directly in the update rules.
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