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Abstract

This paper introduces Correlated-Q (CE-Q)
learning, a multiagent Q-learning algorithm
based on the correlated equilibrium (CE) so-
lution concept. CE-Q generalizes both Nash-
Q and Friend-and-Foe-Q: in general-sum
games, the set of correlated equilibria con-
tains the set of Nash equilibria; in constant-
sum games, the set of correlated equilibria
contains the set of minimax equilibria. This
paper describes experiments with four vari-
ants of CE-Q, demonstrating empirical con-
vergence to equilibrium policies on a testbed
of general-sum Markov games.

1. Introduction

Recently, there have been several attempts to design
a multiagent learning algorithm that learns equilib-
rium policies in general-sum Markov games, just as
Q-learning converges to optimal policies in Markov
decision processes. Hu and Wellman [8] propose
an algorithm called Nash-Q that converges to Nash
equilibrium policies under certain (restrictive) con-
ditions. Littman’s [11] friend-or-foe-Q (FF-Q) algo-
rithm always converges, but it only learns equilib-
rium policies in restricted classes of games: e.g., two-
player, constant-sum Markov games, which exhibit
minimax equilibria (foe-Q); e.g., coordination games
with uniquely-valued equilibria (friend-Q).

This paper introduces Correlated-Q (CE-Q) learning,
a multiagent Q-learning algorithm based on the cor-
related equilibrium solution concept [1]. CE-Q gener-
alizes both Nash-Q and FF-Q: in general-sum games,
the set of correlated equilibria contains the set of Nash
(and thus, coordination) equilibria; in constant-sum
games, where Nash and minimax equilibria coincide,
the set of correlated equilibria contains the set of min-
imax equilibria.

A Nash equilibrium (NE) is a vector of independent

probability distributions over actions, in which all
agents optimize with respect to one another’s prob-
abilities. A correlated equilibrium (CE) is more gen-
eral than a NE, since it permits dependencies among
the agents’ probability distributions, while maintain-
ing the property that agents are optimizing. An ev-
eryday example of a correlated equilibrium is a traffic
signal. For two agents that meet at an intersection, the
traffic signal translates into the joint probability distri-
bution (stop,go) with probability 0.5 and (go,stop)
with probability 0.5. No probability mass is assigned
to (go,go) or (stop,stop). Note that it is optimal
for agents to obey their respective traffic signals.

The set of CE is a convex polytope; thus, unlike Nash
equilibria (NE), CE can be computed easily via linear
programming. Also, CE that are not NE can achieve
higher rewards than NE, by avoiding positive proba-
bility mass on less desirable outcomes, unlike mixed
strategy Nash equilibria. Also unlike NE, to which no
learning algorithm is known to converge in general, no-
regret algorithms (e.g., Foster and Vohra [2]) converge
to CE in repeated games.

One of the difficulties in learning (Nash or correlated)
equilibrium policies in general-sum Markov games
stems from the fact that in general-sum games, there
exist multiple equilibria with multiple payoff values.
We attempt to resolve this equilibrium selection prob-
lem by introducing four variants of CE-Q, based on
four equilibrium selection functions. We define utili-
tarian, egalitarian, republican, and libertarian CE-Q
learning. This paper demonstrates empirical conver-
gence to equilibrium policies for all four CE-Q variants
on a testbed of Markov games. We also discuss the the-
ory of stochastic stability, which could be employed to
describe the convergence properties of our algorithms.
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2. Markov Games

Stochastic games generalize repeated games and
Markov decision processes (MDPs). A stochastic game

is a tuple 〈I, S, (Ai(s))s∈S,1≤i≤n, P, (Ri)1≤i≤n〉, where
I is a set of n players, S is a set of states, Ai(s) is
the ith player’s set of actions at state s, P is a prob-
ability transition function that describes state tran-
sitions, conditioned on past states and joint actions,
and Ri(s,~a) is the ith player’s reward for state s ∈ S
and joint actions ~a ∈ A(s) = A1(s) × . . . × An(s).
Stochastic games for which the probability transitions
satisfy the Markov property are called Markov games:
i.e., for ~at = (a1, . . . , an)t, P [st+1|st,~at, . . . , s0,~a0] =
P [st+1|st,~at].

An MDP is a one-player Markov game. Recall Bell-
man’s equations that characterize the optimal state-
and action-values for a single agent and an MDP:

Q∗(s, a) = (1 − γ)R(s, a) + γ
∑

s′

P [s′|s, a]V ∗(s′) (1)

V ∗(s) = max
a∈A(s)

Q∗(s, a) (2)

or 0 ≤ γ < 1. In words, the value Q∗(s, a) is the
normalized sum of the immediate reward obtained at
state s for taking action a and the discounted expected
value of the future rewards obtained by following the
optimal policy thereafter. The value function V ∗(s) at
state s is defined as the value that maximizes Q∗(s, a)
over all actions a. The actions that maximize Q∗(s, a)
at each state s describe the (deterministic) optimal
policy π∗: i.e.,

π∗(s) ∈ arg max
a∈A(s)

Q∗(s, a) (3)

In Markov games, player i’s Q-values are defined over
states and action-vectors ~a = (a1, . . . , an), rather than
state-action pairs:

Qi(s,~a) = (1 − γ)Ri(s,~a) + γ
∑

s′

P [s′|s,~a]Vi(s
′) (4)

Intuitively, the notion of state-value function also car-
ries over from MDPs to Markov games. But the obvi-
ous analogue of Eq. 3, in which all players maximize
their respective rewards with respect to one another’s
actions is not adequate, since (deterministic) actions
that satisfy these simultaneous equations need not ex-
ist. (As a consequence, Markov games need not exhibit
deterministic equilibrium policies: e.g., Rochambeau—
Rock-paper-scissors.)

Several alternative definitions of the value function
have been proposed. Littman [10] studied two-player,

zero-sum Markov games and von Neumann’s minimax
value function [14]. Let Σi(s) be the probabilistic ac-
tion space of player i at state s. Now

V1(s) = max
σ1∈Σ1(s)

min
a2∈A2(s)

Q1(s, σ1, a2) = −V2(s) (5)

where Q(s, σ1, a2) =
∑

a1∈A1
σ1(a1)Q(s, a1, a2). At

the opposite extreme, Littman’s friend-Q [11] value
function is suited to coordination games—games
for which all the players’ reward functions are
equivalent—with uniquely-valued equilibria:

Vi(s) = max
~a∈A(s)

Qi(s,~a) (6)

For the general case of n-player, general-sum games,
Hu and Wellman [8] proposed the following definition
of the value function:

Vi(s) ∈ nashi(Q1(s), . . . , Qn(s)) (7)

nashi(X1, . . . , Xn) denotes the ith player’s reward
according to some Nash equilibrium in the general-
sum game determined by reward matrices X1, . . . , Xn.
Note that existence of such values, which is implied
by Nash’s theorem [13] relies on probabilistic actions.
This definition generalizes the minimax value function,
since Nash equilibria and minimax strategies coincide
in zero-sum games. But this value function need not
be well-defined: in general, the set of Nash equilibria
need not be a singleton.

We propose an alternative definition of the value func-
tion in Markov games:

Vi(s) ∈ cei(Q1(s), . . . , Qn(s)) (8)

where cei(X1, . . . , Xn) denotes the ith player’s re-
ward according to some correlated equilibrium in
the general-sum game determined by the rewards
X1, . . . , Xn. Eq. 8 generalizes Eq. 7, since a Nash
equilibrium is a correlated equilibrium that can be
factored into independent distributions over each in-
dividual player’s action space. Thus, equilibria that
are consistent with Eq. 8 exist, but this value func-
tion, too, need not be well-defined.

For each choice of value function, it is necessary to
establish the existence of Q-values that support equi-
librium policies defined by the value function. In par-
ticular, we seek a solution to the system of equations
given by Eq. 4 and either Eq. 5, 6, 7, or 8: i.e., a
set of action-values Q∗, and corresponding state-values
V ∗. The existence of such solutions are established in
Greenwald [5], using Kakutani’s and Brouwer’s fixed
point theorems. Most of these results were known pre-
viously, but new and direct proofs of these four results
are presented in this recent work.



2.1. Correlated Equilibrium

A Nash equilibrium (NE) is a vector of independent

probability distributions over actions, in which all
agents optimize with respect to one another’s probabil-
ities. A correlated equilibrium (CE) allows for the pos-
sibility of dependencies in the agents’ randomizations:
a CE is a probability distribution over the joint space
of actions, in which all agents optimize with respect to
one another’s probabilities, conditioned on their own.

In contrast to Nash equilibria, for which no efficient
method of computation is known, correlated equilibria
can be computed easily via linear programming. As an
example, consider “Chicken” a two-player, two-action,
one-shot, general-sum game.

L R
T 6,6 2,7
B 7,2 0,0

The correlated equilibria in this game are described by
the probability constraints πTL+πTR+πBL+πBR = 1
and πTL, πTR, πBL, πBR ≥ 0 together with the follow-
ing rationality constraints:

−1πTL + 2πTR ≥ 0
1πBL − 2πBR ≥ 0

−1πTL + 2πBL ≥ 0
1πTR − 2πBR ≥ 0

These constraints have a natural interpretation in
terms of conditional probabilities. Let π(y|x) de-
note the conditional probability of y given x, and let
π(y) =

∑

x π(y|x) denote the marginal probability of
y. Now πTL = π(L|T )π(T ) and πTR = π(R|T )π(T ).
Thus, the first constraint, which describes row’s re-
wards, can be restated as −1π(L|T )+2π(R|T ) ≥ 0, or
equivalently, 6π(L|T )+2π(R|T ) ≥ 7π(L|T )+0π(R|T ).
Intuitively, the expected reward to the row player of
action T is at least that of action B whenever he in
fact plays action T . The other three constraints can
be interpreted analogously.

3. Multiagent Q-Learning

In principle, the generalization of dynamic program-
ming and reinforcement learning from MDPs to
Markov games is straightforward. A template for
multiagent Q-learning, is presented in Table 1. In
this generic formulation, the algorithm takes as in-
put an equilibrium selection function f , which com-
putes the value function V , given matrix-vector ~Q =
(Q1, . . . , Qn). Littman’s FF-Q algorithm computes V
according to either Eq. 5 or Eq. 6, as appropriate. Hu
and Wellman’s Nash-Q algorithm computes V accord-
ing to Eq. 7. Correlated-Q computes V via Eq. 8.

multiQ(MarkovGame, f, γ, α, S, T )
Inputs selection function f

discount factor γ
learning rate α
decay schedule S
total training time T

Output state-value functions V ∗
i

action-value functions Q∗
i

Initialize s, a1, . . . , an and Q1, . . . , Qn

for t = 1 to T
1. simulate actions a1, . . . , an in state s
2. observe rewards R1, . . . , Rn and next state s′

3. for i = 1 to n
(a) Vi(s

′) = fi(Q1(s
′), . . . , Qn(s′))

(b) Qi(s,~a) = (1 − α)Qi(s,~a)
+ α[(1 − γ)Ri + γVi(s

′)]
4. agents choose actions a′

1, . . . , a
′
n

5. s = s′, a1 = a′
1, . . . , an = a′

n

6. decay α according to S

Table 1. Multiagent Q-Learning.

3.1. CE-Q

The difficulty in learning equilibria in Markov games
stems from the equilibrium selection problem: how can
multiple agents select among multiple equilibria? We
introduce four variants of correlated-Q learning, based
on four correlated equilibrium selection mechanisms.
Each variant of CE-Q learning resolves the equilibrium
selection problem with its respective choice of objec-
tive function, which ensures that the equilibrium value

of a game is unique, albeit not the equilibrium policy.

1. maximize the sum of the players’ rewards:

σ ∈ arg max
σ∈CE

∑

i∈I

∑

~a∈A

σ(~a)Qi(s,~a) (9)

2. maximize the minimum of the players’ rewards:

σ ∈ arg max
σ∈CE

min
i∈I

∑

~a∈A

σ(~a)Qi(s,~a) (10)

3. maximize the maximum of the players’ rewards:

σ ∈ arg max
σ∈CE

max
i∈I

∑

~a∈A

σ(~a)Qi(s,~a) (11)

4. maximize the maximum of each individual player i’s
rewards: let σ =

∏

i σi, where

σi ∈ arg max
σ∈CE

∑

~a∈A

σ(~a)Qi(s,~a) (12)

Thus, cei( ~Q(s)) =
{
∑

~a∈A σ(~a)Qi(s,~a)
}

, where
σ satisfies either Eq. 9, 10, 11, or 12.



We refer to these algorithms as utilitarian (uCE-Q),
egalitarian (eCE-Q), republican (rCE-Q), and libertar-

ian (lCE-Q) correlated Q-learning, respectively. Note
that all these equilibria can be computed via linear
programming by incorporating the objective function
of choice into the linear programming formulation (i.e.,
the probability and rationality constraints) described
in Sec. 2.1. Note also, the implementation of all four
selection functions necessitates the sharing of Q-tables
among agents. Hu and Wellman [8] resolve this issue
by allowing all agents to observe all other agents’ ac-
tions and rewards; thus, one agent can simulate an-
other’s update procedure, thereby maintaining a copy
of the other’s Q-table.

4. Grid Games

The first set of detailed experimental results on which
we report pertain to grid games [9]. We describe three
grid games: grid game 1 (GG1), a multi-state coordi-
nation game; grid game 2 (GG2), a stochastic version
of Battle of the Sexes; and grid game 3 (GG3), a multi-
state version of Chicken. In the following section, we
describe experiments with grid soccer, a constant-sum
Markov game that extends Matching Pennies.

Fig. 1 depicts the initial states of the three grid games.
In GG1, there are two agents and two goals. The
agents’ action sets include one step in any of the four
compass directions. Actions are executed simultane-
ously. If both agents attempt to move into the same
cell, they cannot; instead, they both lose 1 point. If
ever an agent reaches its goal, it scores 100 points, and
the game ends. Note that it is possible for both agents
to score 100 points since actions are simultaneous.

Other than the board setup, GG2 is identical to GG1.
In GG2, there are two agents, one goal, and two bar-
riers: if an agent attempts to move through one of the
barriers, then with probability 1/2 this move fails. In
GG3, like GG2 there is one goal, but there are no prob-
abilistic transitions, and the reward structure differs:
if both agents enter the goal from the side, they both
earn 120; but, if one agent enters the goal through the
center, while the other enters through the side, the
former earns 125, while the latter earns only 100.

In all three of these grid games there exist determin-

istic Nash equilibrium policies for both agents. In
GG1, there are several pairs of deterministic equilib-
rium policies in which the agents coordinate their be-
havior all of which yield equivalent rewards. In GG2,
there are exactly two deterministic equilibrium poli-
cies: one agent moves up the center and the other
attempts to pass through the barrier, and the same

again with the agents’ roles reversed. Note that these
equilibria are asymmetric: the agent that moves up
the center scores 100, but the agent that attempts to
move through the barrier scores only 50 on average.
The deterministic equilibrium policies of GG2 carry
over to GG3.

In addition, all the grid games exhibit nondetermin-

istic correlated (and Nash) equilibrium policies. In
GG2, there exists a continuum of symmetric, nonde-
terministic, correlated equilibrium policies: i.e., for all
p ∈ [0, 1], with probability p one agent moves up the
center and the other attempts to pass through the
barrier, and with probability 1 − p the agents’ roles
are reversed. In GG3, there exist symmetric, non-
deterministic, correlated equilibrium policies in which
both agents move up the sides with high probability
and each of the deterministic equilibria is played with
equally low probability.

Our experiments reveal that off-policy correlated-Q,
foe-Q, friend-Q (α → 0.001 and γ = 0.9.) and
on-policy Q-learning (i.e., ε-greedy, with ε → 0.001,
α → 0.001, and γ = 0.9) all converge empirically in
the three grid games. Littman [11] proves that FF-
Q converges in general-sum Markov games. Fig. 2
shows that in fact ordinary Q-learning (on-policy) and
correlated-Q (off-policy) also converge in these games.

The values plotted in Fig. 2 are computed as follows.
The error errt

i at time t for agent i is the difference
between Q(s,~a) at time t and Q(s,~a) at time t − 1:
errt

i =
∣

∣Qt
i(s,~a) − Qt−1

i (s,~a)
∣

∣. The values on the x-
axis represent time, and the corresponding y-values are
the means of the distributions of the errors errt

i for
all t = 0, . . . , x. This mean is converging to zero for
all algorithms in all grid games.1

4.1. Equilibrium Policies

Since all the learning algorithms converge, the follow-
ing question arises: to what equilibrium policies do
these algorithms converge? Since the state space in the
grid games is large, rather than enumerate the equilib-
rium policies, we addressed this question by append-
ing to the training phase an auxiliary testing phase in
which the agents play according to the learned policies.
Our results are depicted in Table 2.

On-policy Q-learning is successful in grid games: it
consistently converges to equilibrium policies in which
the two agents coordinate their behavior perfectly. In
GG1, this leads to symmetric scores, but in GG2 and

1In fact, the actual Q-value differences are converging at
all state-action pairs. The mean is simply a useful statistic
for summarizing this aggregate behavior.
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Figure 1. Grid games. Initial States. Shapes indicate goals.
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Figure 2. Convergence in the grid games: all algorithms are converging. The CE-Q algorithm shown is uCE-Q.

Grid Games GG1 GG2 GG3
Algorithm Score Games Score Games Score Games
Q 100,100 2500 49,100 3333 100,125 3333
Foe-Q 0,0 0 67,68 3003 120,120 3333
Friend-Q −104,−104 0 −104,−104 0 −104,−104 0
uCE-Q 100,100 2500 50,100 3333 116,116 3333
eCE-Q 100,100 2500 51,100 3333 117,117 3333
rCE-Q 100,100 2500 100,49 3333 125,100 3333
lCE-Q 100,100 2500 100,51 3333 −104,−104 0

Table 2. Grid Games played repeatedly, allowing 104 moves. Average scores are shown. The number of games played
varied with the agents’ policies: some move directly to the goal, while others digress.

GG3 their policies and their scores are asymmetric.

Foe-Q learners perform poorly in GG1. Rather than
progress toward the goal, they cower in the corners,
avoiding collisions, and avoiding the goal. In GG2 and
GG3, the principle of avoiding collisions leads both
foe-Q learners straight up the sides of the grid. Al-
though these policies yield reasonable scores in GG2,
and Pareto optimal scores in GG3, these are not equi-
librium policies. On the contrary, both agents have an
incentive to deviate to the center, since the reward for
using the center passage exceeds that of moving up the
sides, given that one’s opponent moves up the side.

In GG1, friend-Q learning can perform even worse
than foe-Q learning. This result may appear surpris-
ing at first glance, since GG1 satisfies the conditions

under which friend-Q is guaranteed to converge to
equilibrium values. Indeed, friend-Q learns Q-values
that support equilibrium policies, but friends lack the
ability to coordinate their play. Whenever one friend
chooses a policy that collides with the policy of its so-
called friend, both agents obtain negative scores in one
never-ending game. In GG2 and GG3, friend-Q’s per-
formance is always poor: both friends learn to play the
equilibrium policy that uses the center passage, which
causes friends to collide repeatedly.

4.2. CE-Q Learning

In GG1, uCE-Q, eCE-Q, and rCE-Q all learn Q-values
that coincide exactly with those of friend-Q: i.e., Q-
values that support equilibrium policies. But unlike



friend-Q, these variants of CE-Q always obtain posi-
tive scores. In our implementation of CE-Q learning,
a centralized mechanism computes a correlated equi-
librium. Thus, CE-Q play is always coordinated, and
uCE-Q, eCE-Q, and rCE-Q learners do not collide
while playing the grid games. Were we to implement
a decentralized version of CE-Q, such learners could
fail to coordinate and earn negative scores.

The libertarian operator is one way to eliminate CE-
Q’s dependence on a centralized mechanism. In lCE-
Q, each agent solves an independent optimization
problem during learning; thus, play is not necessarily
coordinated. Like the other variants of CE-Q, lCE-
Q converges, and its Q-values coincide exactly with
those of friend-Q in GG1. Also like the other variants
of CE-Q, but unlike friend-Q, lCE-Q achieved positive
scores in GG1. In fact, lCE-Q learners are indifferent
between multiple equilibrium policies, but in this test
run both agents happened upon coordinated equilib-
rium policies.

In GG2, all variants of CE-Q learning converge to poli-
cies much like ordinary Q-learners. Interestingly, tak-
ing long-run rewards into account, this game does not
retain its Battle of the Sexes-like structure. On the
contrary, GG2 is a dominance-solvable game. The Q-
table below depicts the Q-values in the initial state
that were learned by uCE-Q. (The other algorithms
learned similar, although possibly transposed, values.)
The column player eliminates the strategy side, since
it is dominated, after which the row player eliminates
the strategy center. Thus, the equilibrium outcome
is (side, center), as the scores indicate.

side center

side 48.70, 58.76 38.66, 81.00
center 81.00, 40.30 34.42, 71.90

In both GG1 and GG2, CE-Q learning is indifferent
between all correlated equilibrium policies, determin-
istic and nondeterministic, since they all yield equal
sums of rewards. In GG3, however, uCE-Q (and eCE-
Q) learn the particular nondeterministic correlated
equilibrium policies that yield symmetric scores, be-
cause the sum (and the minimum) of rewards at this
equilibrium exceeds that of any deterministic equilib-
rium policy. Consequently, the sum of the scores of
uCE-Q and eCE-Q exceed that of Q-learning. CE-Q’s
rewards do not exceed the sum of the foe-Q learners’
scores, however; but foe-Q learners do not behave ra-
tionally. In contrast, rCE-Q converges to a pure strat-
egy equilibrium policy that is among those policies
that maximize the maximum of all agents’ rewards.
Finally, each lCE-Q agent attempts to play the equi-

librium policy that maximizes its own rewards, but
this yields repeated collisions and negative scores.

Like Nash-Q, correlated-Q learning generalizes friend-
Q, since it converges to precisely the same Q-values as
friend-Q in games where friend-Q learns equilibrium
values. In the next section, we show that again like
Nash-Q, correlated-Q learning also generalizes foe-Q.

5. Soccer Game

The grid games are general-sum games for which there
exist deterministic equilibria. In this section, we con-
sider soccer [10], a zero-sum game for which there do
not exist deterministic equilibrium policies.

The soccer field is a grid. The circle represents the
ball. There are two players, whose possible actions
are N, S, E, W, and stick. The players’ actions are
executed in random order. If this sequence of actions
causes the players to collide, then only the first moves.
But if the player with the ball moves second, then the
ball changes possession.2 If the player with the ball
moves into a goal, then he scores +100 if it is in fact
his own goal and the other player scores −100, or he
scores −100 if it is the other player’s goal and the other
player scores +100. In either case, the game ends.

B
W E

N

S

A
A
A
A
A
A
A

B
B
B

B
B

B

B

A

Figure 4. Soccer Game. State s.

In this simple soccer game, there do not exist deter-
ministic equilibrium policies, since at some states there
do not exist deterministic equilibria. For example, at
the state depicted in Fig. 4 (hereafter, state s), any
deterministic policy for player B is subject to indef-
inite blocking by player A. But if player B employs
a nondeterministic policy, then player B can hope to
pass player A on his next move.

We experimented with the same set of algorithms in
this soccer game as we did in the grid games. Con-
sistent with the theory, FF-Q converges at all state-
action pairs. All variants of correlated-Q also converge
everywhere—in this game, all equilibria at all states
have equivalent values; thus, all CE-Q operators yield

2In other words, if the player without the ball moves
into the player with the ball, attempting to steal the ball,
he cannot. But if the player with the ball moves into the
player without the ball, the former loses the ball to the
latter. This form of the game is due to Littman [10].
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Figure 3. Convergence in the soccer game. All algorithms—except Q-learning—converge. As above, the CE-Q algorithm
shown is uCE-Q.

identical outcomes. Moreover, CE-Q learns Q-values
(and policies) that coincide exactly with those of foe-
Q. But Q-learning does not converge.

Fig. 3 presents an example of a state-action pair at
which Q-learning does not converge. The values on the
x-axis represent time, and the corresponding y-values
are the error terms errt

i =
∣

∣Qt
i(s,~a) − Qt−1
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∣
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The error values shown in Figs. 3(a), (b), and (c) re-
flect player A’s Q-values corresponding to state s, with
player A taking action S and player B sticking. These
three graphs depict converging sequences of error val-
ues for uCE-Q, foe-Q, and friend-Q, respectively,

Q-learners compute Q-values for each of their own pos-
sible actions, ignoring their opponents’ actions. The
error values shown in Fig. 3(d) reflect player A’s Q-
values, corresponding to state s and action S. In this
figure, although the Q-value differences are decreasing,
they are not converging. They are decreasing only be-
cause the learning rate α → 0.001. At all times, the
amplitude of the oscillations in error values is as great
as the envelope of the learning rate.

At state s, CE-Q and foe-Q converge to nondetermin-
istic policies for both players, where each one random-
izes between sticking and heading south.

Friend-Q, however, converges to a deterministic policy
for player B at state s, namely E. Learning accord-
ing to friend-Q, player B (fallaciously) anticipates the
following sequence of events: player A sticks at state
s, and then player A takes action E. Thus, by taking
action E, player B passes the ball to player A, with
the intent that player A score for him. Player A is in-
different among her actions, since she assumes player
B plans to score a goal for her immediately.

In this soccer game, Q-learning does not converge. In-
tuitively, the rationale for this outcome is clear: Q-
learning seeks deterministic optimal policies, but in
this game no such policies exist. Friend-Q converges
but its policies are irrational. Correlated-Q learn-

ing, however, converges to the same solution as foe-Q
learning—the Q-values learned by the two algorithms
are identical. Thus, CE-Q learns minimax equilibrium
policies in this two-player, zero-sum game.

6. Discussion

In MDPs, Q-learning has remarkable properties of
global convergence: it provably converges to an op-
timal policy, from any initial condition. Similarly,
if one applies multiagent Q-learning to a two-player
constant-sum Markov game, it continues to yield
global convergence to the unique equilibrium value of
the game [12]. However, beyond this class of games,
the strong convergence properties of Q-learning cease
to hold. Although Hu and Wellman [8] have iden-
tified sufficient conditions for convergence of Nash-Q
learning, their theorems are of limited applicability be-
cause the conditions are extremely demanding. Fur-
thermore, generalizing the solution concept from Nash
equilibrium to allow for correlation does not necessar-
ily help in this respect. Although this paper, like Hu
and Wellman’s work, provides some empirical evidence
for convergence, we, too, offer no general result.

These difficulties with multiagent Q-learning in
general-sum Markov games are to be expected because
there are often multiple equilibria in such games, which
renders the Q-learning dynamics non-ergodic. Thus,
Q-learning converges to a collection of Q-values (and
an equilibrium policy) that depend on initial condi-
tions (or it may even exhibit lack of convergence, al-
though we have not observed this outcome). If we add
noise to the Q-learning system so that at each itera-
tion the agents play an equilibrium with high probabil-
ity, but with low probability they choose their actions
arbitrarily, we arrive at the notion of stochastic sta-
bility [3]. The system with noise is ergodic: it has
a unique stationary distribution, which gives a pre-
cise estimate of the proportion of time that the sys-
tem spends at each collection of Q-values (and at each



equilibrium policy) in the long run. An equilibrium is
stochastically stable if Q-learning with noise picks it
up with positive probability in the limit, as the amount
of noise go to zero. In future work, we intend to char-
acterize the stochastically stable states of this ergodic
Q-learning system.

7. Conclusion

The goal of this line of research is to improve the design
of multiagent systems (MAS). At one extreme, MAS
designers act as central planners, equipping all agents
in the system with pre-specified behaviors; but such
systems are rarely compatible with agents’ incentives.
At the other extreme, MAS designers allow the agents
to specify their own behavior; but these systems are
susceptible to miscoordination. A MAS design based
on the correlated equilibrium solution concept would
(perhaps) rely on a central planner, but would pre-
specify rational agent behavior. Such a design would
not only facilitate multiagent coordination, but could
generate greater rewards than any MAS design based
on the Nash equilibrium solution concept.

In this paper, we discussed algorithms for learning Q-
values in Markov games, given a game-theoretic so-
lution concept. In past work, we have studied al-
gorithms for learning game-theoretic equilibria in re-
peated games [7]. In ongoing work, we are combining
these two types of learning. Specifically, we are re-
placing the linear programming call in CE-Q learning
with an adaptive procedure that converges to corre-
lated equilibrium [2, 6]. Similarly, we are studying an
adaptive version of minimax-Q that replaces its lin-
ear programming call with an adaptive procedure that
converges to minimax equilibrium [4]. (No adaptive
algorithm is known to converge to Nash equilibrium.)
This adaptive approach could lead to decentralized al-
gorithms that learn correlated equilibrium policies in
Markov games. The results contained in the present
paper serve as the foundation for ongoing research, in
which agents simultaneously learn Q-values and game-
theoretic equilibria.
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