
3796 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 8, AUGUST 2023

Reinforcement Learning for Mobile Robotics
Exploration: A Survey

Luíza Caetano Garaffa , Maik Basso , Andréa Aparecida Konzen , and Edison Pignaton de Freitas

Abstract— Efficient exploration of unknown environments is
a fundamental precondition for modern autonomous mobile
robot applications. Aiming to design robust and effective robotic
exploration strategies, suitable to complex real-world scenar-
ios, the academic community has increasingly investigated the
integration of robotics with reinforcement learning (RL) tech-
niques. This survey provides a comprehensive review of recent
research works that use RL to design unknown environment
exploration strategies for single and multirobots. The primary
purpose of this study is to facilitate future research by compil-
ing and analyzing the current state of works that link these
two knowledge domains. This survey summarizes: what are
the employed RL algorithms and how they compose the so
far proposed mobile robot exploration strategies; how robotic
exploration solutions are addressing typical RL problems like
the exploration-exploitation dilemma, the curse of dimensionality,
reward shaping, and slow learning convergence; and what are the
performed experiments and software tools used for learning and
testing. Achieved progress is described, and a discussion about
remaining limitations and future perspectives is presented.

Index Terms— Cooperative exploration, mobile robot explo-
ration, multirobot exploration, multirobot systems (MRSs), rein-
forcement learning (RL), single robot exploration.

I. INTRODUCTION

IN RECENT years, the advancement of new technologies
applied to robotics has boosted the interest in academic

research and practical application of mobile robots in different
domains. Such applications include, for example, search and
rescue (SAR) missions, intelligence, surveillance and recon-
naissance (ISR), and planetary exploration. Several situations
require robotic autonomy when the map or model of the envi-
ronment is not previously known. The employment of mobile

Manuscript received 4 March 2021; revised 21 August 2021; accepted
27 October 2021. Date of publication 12 November 2021; date of current
version 4 August 2023. This work was supported in part by the Coorde-
nação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—
Finance Code 001 and in part by the Conselho Nacional de Desenvolvi-
mento Científico e Tecnológico—Brasil (CNPq) under Project 309505/2020-8,
Project 420109/2018-8, and Project 132668/2020-3. (Corresponding author:
Luíza Caetano Garaffa.)

Luíza Caetano Garaffa and Andréa Aparecida Konzen are with the Grad-
uate Program in Computer Science, Institute of Informatics, Federal Uni-
versity of Rio Grande do Sul, Porto Alegre 91509-900, Brazil (e-mail:
lcgaraffa@inf.ufrgs.br).

Maik Basso is with the Graduate Program in Electrical Engineering,
Department of Electrical Engineering, Federal University of Rio Grande do
Sul, Porto Alegre 91509-900, Brazil.

Edison Pignaton de Freitas is with the Graduate Program in Computer Sci-
ence, Institute of Informatics, Federal University of Rio Grande do Sul, Porto
Alegre 91509-900, Brazil, and also with the Graduate Program in Electrical
Engineering, Department of Electrical Engineering, Federal University of Rio
Grande do Sul, Porto Alegre 91509-900, Brazil.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2021.3124466.

Digital Object Identifier 10.1109/TNNLS.2021.3124466

robots in such complicated contexts depends on a robust
and efficient exploration strategy. Therefore, in the past few
decades different “human-designed” exploration methods were
proposed, such as the artificial potential fields [1] and the well-
known frontier-based exploration [2], enabling exploration for
many applications. However, defining the functioning of an
appropriate resilient exploration strategy is hard in complex
and dynamic real-world settings.

Concurrently, reinforcement learning (RL) techniques are
based on letting the agent acquire skills through environ-
ment interaction instead of explicitly designing the desired
behaviors. This learning paradigm tries to emulate the human
learning process, which occurs through trial and error. Hence,
RL and deep-RL (DRL) are being highlighted as promising
alternatives to develop solutions to complex robotics prob-
lems, including unknown environment exploration. However,
applying RL to real robots is not a straightforward task, facing
problems like the curse of dimensionality, reward shaping, and
awkward sim-to-real transference.

This survey reviews the most important strategies proposed
by the recently published academic works tackling the robotic
exploration problem using RL. The goal is to understand how
the two fields are being integrated, which approaches are used
to solve the RL in robotics issues, what are the so-far achieved
successes and the remaining challenges, besides discussing
future possibilities for this promising research area.

This article is organized as follows. Section II contains
a concise overview of the mobile robot exploration field.
Section III presents a brief review of RL basic concepts.
Section IV describes some common problems and solu-
tions related to RL in general robotic tasks. The reasons
for using RL in robotic exploration and a proposal of
classes of exploration strategies are presented in Section V.
Sections VI and VII represent this survey’s main contribution,
presenting the recently proposed solutions for exploration
with RL, highlighting the remaining challenges for single-
robot and multirobot systems (MRSs), respectively. Finally,
some discussion topics are proposed in Section VIII, and a
conclusion is presented in Section IX.

II. ROLE OF EXPLORATION IN MOBILE ROBOTICS

A mobile robot is a robotic platform that is able to
move through an environment using locomotive elements
(e.g., wheels, propellers, and legs) [3]. In the 1950s, mobile
robots were first introduced in industrial production processes,
being mainly automated guided vehicles (AGVs) that followed

2162-237X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on March 31,2024 at 03:48:10 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0858-3111
https://orcid.org/0000-0003-4655-8889
https://orcid.org/0000-0001-9728-7906
https://orcid.org/0000-0002-7896-5158

CAETANO GARAFFA et al.: RL FOR MOBILE ROBOTICS EXPLORATION 3797

Fig. 1. Competences for robotic navigation, with highlight for the exploration
task. Adapted from [8].

a predefined trajectory in order to transport tools [4]. Nowa-
days, however, mobile robots are operating in unstructured
and dynamic environments, being employed in an increasing
number of applications as medical care, personal services,
planetary exploration, SAR operations, construction, entertain-
ment, and surveillance [5]. This kind of application demand
autonomous systems capable of choosing appropriate actions
from their perception and interaction with the environment.
Hence, the robotics research field is increasingly focusing
on the development of robust software solutions that enable
robots to autonomously transpose the challenges that arise
from dynamic and unpredictable circumstances [6].

One of the biggest challenges to achieve full autonomy in
unstructured environments is the navigation problem. Nav-
igation comprehends the robot’s ability to perform actions
based on sensor measurements to reach its goal positions.
Ideally, an autonomous agent should be able to explore
the environment while simultaneously collecting information
about the surrounding world, building an appropriate map, and
localizing itself on this map [7]. Fig. 1 illustrates the backbone
elements of robotic navigation, where each one represents a
vast and challenging research field. The three basic naviga-
tion competencies—mapping, localization, and path planning,
compose the simultaneous localization and mapping (SLAM),
the active localization, and the integrated approach. However,
this work focuses on an imperative aspect for mobile robot’s
autonomy: the exploratory behavior.

Autonomous exploration encompasses the robot’s ability to
autonomously move through an unknown environment while
collecting the necessary information to accomplish a prede-
fined goal. In the literature, robotic exploration was described
as the attempt to answer the question “Given what you know
about the world, where should you move to gain as much
new information as possible?” [2]. Common problems solved
by exploratory planning are map acquisition and single or
multi targets identification. It is the exploratory behavior that
makes human guiding or pre-planned trajectories unnecessary,
being especially important in hostile or inaccessible environ-
ments [e.g., SAR in postdisaster scenes, planetary exploration,
intelligence, surveillance, and reconnaissance (ISR)]. Defining
an exploration strategy is not a straightforward process, given

that an appropriate approach is widely dependent on the
target application, and a compromise between map quality and
coverage time is necessary. Therefore, different exploration
methods and setups have been proposed and investigated over
the years.

The exploration approaches can be classified according to
the three most common paradigms for organizing intelligence
in robotics: reactive, deliberative (or hierarchical), and hybrid.
reactive strategies are behavior-based, which means that the
robot exhibits behaviors as a reaction to events, without a
planning stage [9]. Important reactive methods that have been
employed for exploration include the random search [10],
the subsumption architecture [11], and the potential fields
methodology [1]. Purely reactive exploration is easy to imple-
ment and enables a considerable range of behaviors, but the
absence of learning and planning abilities makes it usually
inefficient for complex applications. On the other hand, delib-
erative strategies are based on a fixed event sequence: the
agent senses the world, plans its actions, and then acts. The
planning stage enhances the decision-making process, but its
costly execution makes it difficult to respond appropriately
to unexpected changes in the environment. Finally, there
are exploration strategies that employ an hybrid approach,
where the robot can perform planning but is also able to
deal with the environment’s unpredictability [3]. The hybrid
paradigm has been the main focus of current research, and
the great majority of recent works employ hybrid exploration
strategies.

As mentioned above, several exploration strategies have
been proposed over time. Well-known methods as the gen-
eralized Voronoi graph [12] and the widespread frontier-based
approach [2] divide the world representation and rank the
resulting regions to make logical decisions. Other strategies
employ clustering algorithms such as K-means [13] or spec-
tral clustering [14] to divide the map into different sectors.
Whether it divides and ranks regions or not, the crucial part of
an exploration strategy is deciding the next desirable destina-
tion or movement. Some frontier-based methods use interest
attributes (e.g., nearest, farthest, most extensive frontier) to
decide the next target region. A common alternative is the use
of cost-utility models, like market-based [15] or next-best-view
selection algorithms [16].

Another popular approach for the exploration decision-
making process is modeling the problem as a Markov decision
process (MDP) and solving it, for example, with dynamic
programming algorithms, value iteration, or RL. Both MDP
and RL are further discussed in the following sections.
In methods where a target location is defined, the robot can
navigate using reactive behaviors (e.g., move-to-goal, avoid-
obstacles), plan a path and reactively execute it, or continu-
ously replan and execute the path [17]. In strategies with path
planning, graph search algorithms like RRT [18], A* [19], and
Dijkstra [20] are commonly used. Some recent studies use
Machine Learning techniques to plan the robot’s path [21].
All methods above demonstrate that robotic exploration is
a widely studied field. However, considering the growing
demand for autonomous exploration in complex applications,
the development of appropriate robotic exploration strategies

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on March 31,2024 at 03:48:10 UTC from IEEE Xplore. Restrictions apply.

3798 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 8, AUGUST 2023

Fig. 2. Proposed taxonomy for the model-free RL algorithms, divided into value-based, policy search, and hybrid algorithms.

remains a challenge and a topic of broad and current research
interest.

III. REINFORCEMENT LEARNING IN A NUTSHELL

RL is a computational approach to make an agent learn from
interactions with the environment, without explicit examples
or external instructors [22]. Through trial-and-error, the agent
tries to maximize a numerical reward signal in order to learn
an optimal policy (π∗) that maps situations into actions [23].
The reward function, which determines the agent’s feedback
depending on the selected action, is defined in accordance
with the application goal. The fundamental elements in an RL
problem are the environment and an agent capable of sensing
the environment’s state and taking actions that affect this state.
The agent also must have one or more goals related to the state
of the environment.

In RL problems, the environment is typically modeled as
an MDP or a partially observable MDP (POMDP). Both
MDP and POMDP are mathematical tools to model dis-
crete decision-making and optimization problems. Generally,
an MDP can be defined by a tuple (S, A, T, R), where S
represents a set of states (s ∈ S), A represents a set of
actions (a ∈ A), T is the transition probability associated
with the states (T (st+1‖st , a)), and R is the reward function.
The system attends the Markov property, which defines that
only the current state impacts future decisions. POMDP is
an extension of the MDP, and its main difference is the
definition that states are not fully observable. They can be
defined by a tuple (S, A, ω, T, O, R), in which ω is a set of
observations and O is the probability distribution associated
with the observations [24].

Some challenges arise from the RL basic definitions. For
example, the agents trained through RL face a well-known
trade-off called exploration versus exploitation dilemma. Since
the agent must interact with the environment to learn, it must
choose between exploring new actions to improve its knowl-
edge or exploiting the current action-value estimates to get the
most certain reward. The chosen method to solve this dilemma
directly impacts learning efficiency. Another problem that RL
methods must solve is the credit assignment problem, which
refers to the problem of distributing credit for success among
the many decisions involved in achieving it [22].

A large group of learning algorithms has been proposed
to solve RL problems. These algorithms can be divided into

two main classes: model-based and model-free. Model-based
methods use learning and a model of the environment’s
transitions to approximate a global value or policy function.
The model can be learned, meaning that the agent learns both
the model and a value or policy, or the model can be known,
where the agent knows the model and uses planning to learn
a global value or policy [25]. On the other hand, model-free
methods do not rely on an environment model, and the agent
learns the policy or value directly through trial-and-error with
the physical system [26]. Model-free RL approaches are able
to solve problems that cannot be solved mathematically, but
they return nonoptimal solutions. As is highlighted in Sec-
tions VI and VII, the great majority of surveyed works adopt
Model-free approaches. This common choice may be justified
by the targeted application, which encompasses exploring an
unknown environment whose ground-truth model is usually
previously unavailable. At the same time, the environments
tend to be too complex to be precisely modeled by the agent.
Therefore, although model-based RL can be used for robotic
exploration, model-free algorithms are the focus of this section
and are discussed in greater detail.

Fig. 2 illustrates a model-free RL taxonomy proposal that
divides the algorithms into three subclasses: value-based,
policy search, and actor–critic. The image does not contain all
existing model-free algorithms but presents some prominent
examples for each subclass. In policy search algorithms, the
policy is learned directly from the agent interaction with the
environment [27]. Some algorithms that fit into this category
are the policy gradient (PG), which optimize parametrized
policies using gradient descent [28]. The policy search by
dynamic programming (PSDP) performs the policy search
from a baseline policy distribution [29]. On the other hand,
policy improvement with path integrals (PI2) uses first-order
principles of stochastic optimal control to learn a parametrized
policy [30], and it has inspired other algorithms such as the
PIB B , which is a black-box optimization algorithm [31].

In value-based algorithms, the agent’s trial-and-error
process results in a value function from which the policy
is derived. This value function estimates how advantageous
it is for the agent to be in a specific state or to perform
a given action considering a specific state [22]. Among the
most famous algorithms are the classic Q-learning [32], which
computes the quality of the taken actions, and the deep
Q-networks (DQNs), which use deep learning to estimate the

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on March 31,2024 at 03:48:10 UTC from IEEE Xplore. Restrictions apply.

CAETANO GARAFFA et al.: RL FOR MOBILE ROBOTICS EXPLORATION 3799

value function in a Q-learning framework [33]. MAXQ algo-
rithm represents a hierarchical RL method that decomposes
the target MDP into a hierarchy of smaller MDPs [34]. Other
important value-based algorithms use the action performed by
the current policy to learn the value function, which is the case
of Monte Carlo (MC) [35], state–action–reward–state–action
(SARSA) [36] and its variations like the SARSA(λ).

Finally, actor–critic algorithms adopt a hybrid approach,
where the policy is not derived exclusively from a value
function, but the value function is computed and influences the
policy learning process. The actor is the policy structure that
predicts the actions, and the critic computes the value function
that evaluates the policy choices. Some widespread actor–critic
algorithms include the soft actor–critic (SAC) [37], asynchro-
nous advantage actor–critic (A3C) [38], and the advantage
actor–critic (A2C), which is derived from A3C. Both prox-
imal policy optimization (PPO) [39] and trust region policy
optimization (TRPO) [40] are PG algorithms that improve
the policy based on available data, without extreme parameter
updates to avoid performance collapse. Other examples include
the deterministic PG (DPG) [41] and its variations like the
deep deterministic PG (DDPG), [42] and the twin delayed
deep deterministic PGs (TD3) [43].

IV. REINFORCEMENT LEARNING IN

ROBOTIC APPLICATIONS

As remarkably described in [44], the disciplines of RL
and robotics compose a promising relationship, given that
RL makes hard-to-engineer behaviors feasible for robotics
applications, while robotics challenges inspire and validate
RL solutions. The intrinsic function of robots is to replicate
animal behavior to assist or replace humans in different tasks.
Therefore, the idea of integrating learning capability to robotic
devices arises almost naturally. Simultaneously, RL tries to
emulate how humans and other animals learn through trial-
and-error interactions with the environment, being even used
to study the brain functioning in research fields like neuroin-
formatics. Hence, the application of RL techniques to robotics
is increasingly being investigated by academics, motivated by
the goal of letting the robot autonomously learn how to plan
and control its actions in complex and dynamic tasks.

However, robotics differ in several essential aspects com-
pared with domains where RL was already successfully
employed, such as video games. Robotics applications take
place in the real-world, which means that the agent must
cope with partially observable systems, measurement noise
and delays, impossibility to speed up the training phase in the
real environment, and expensive hardware that requires safe
exploration. The most commonly adopted alternative to limit
the interaction with the real world is to perform the training
phase through simulation, which also presents issues. Trans-
ferring the behaviors learned through simulation to the real
robot is not usually a straightforward task, given that errors
in the simulated environment model can easily accumulate
and cause the behavior to diverge from the expected [45].
Other RL problems that are accentuated in robotics are the
definition of appropriate reward functions, also called reward

shaping, and the curse of dimensionality, which refers to the
exponential rise of computational effort given the increase of
spatial dimensions [46].

In order to solve the problems mentioned above and make
the employment of RL in real robotic applications viable,
several tools and strategies have been exploited. It is possi-
ble to reduce the dimensionality curse impact and enhance
the RL algorithm convergence and generalization with smart
approaches to discretize the state or action spaces [47], [48].
Function approximation can also be used to ease the dimen-
sionality problem, besides helping to predict the reward func-
tions [49] and to making value-based RL algorithms suitable
for robotics [50] using methods like Gaussian processes and
neural networks. In the cases where function approximation is
not sufficient to reduce the dimensionality (e.g., balancing and
walking applications like humanoid robotics), different alter-
natives are being investigated, like the central pattern generator
based RL [51] and the combination of symbolic inverse kine-
matic with RL [52]. An alternative to speed up training and
increase the convergence probability is transferring auxiliary
information or knowledge to the agent before or during the
learning phase. This can be accomplished by, for example,
employing Transfer Learning techniques [53], using demon-
stration [54], [55], learning forward environment models
[56], [57], incorporating human feedback during training [58],
and decomposing a task into simpler components [59], [60].
However, despite existing solutions, it is possible to state that
applying RL to robotics remains a challenge.

V. ROBOTIC EXPLORATION USING

REINFORCEMENT LEARNING

Considering the discussed limitations in robotic applica-
tions, what does justify the use of RL to tackle autonomous
robotic exploration? The fact is that “human-designed” explo-
ration techniques usually make strong assumptions about the
environments and the tasks, which may restrict their adapt-
ability to complex dynamic environments and thus limit their
application in real-world practices. The need for robust and
flexible solutions to robotic exploration and the significant
advances in machine learning techniques have made the com-
bination of the two research fields a hot topic in recent years.
In that context, the employment of RL for robotic exploration
tasks is being increasingly investigated, driven by the idea of
letting the agents automatically learn skills from environment
interaction instead of receiving explicit instructions. Further-
more, RL does not require dataset labeling, which represents
a large cost for Supervised Learning solutions.

Sections VI and VII contain an overview of the most recent
academic researches that propose exploration strategies of sin-
gle and multiple robots employing RL techniques. An environ-
ment was considered unknown if the robots did not have access
to a world’s map previously to the exploration. An application
was considered an exploration task when the static or dynamic
environment is unknown or when the targets positions are
unknown. Therefore, even though some works use the terms
navigation or path planning to describe the proposed strategy,
they were considered suitable for the current study if the level

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on March 31,2024 at 03:48:10 UTC from IEEE Xplore. Restrictions apply.

3800 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 8, AUGUST 2023

TABLE I

RL ALGORITHMS USED IN SINGLE-AGENT STRATEGIES FOR UNKNOWN ENVIRONMENT EXPLORATION TASKS

Fig. 3. Classification of mobile-robot exploration strategies that employ RL
techniques, including end-to-end and two-stage approaches.

of environment information met the requirements mentioned
above. Some analyzed applications include unknown environ-
ment mapping and coverage, single or multitarget search with
static, dynamic, known and unknown targets, and crossing
unknown environments in a map-less fashion to reach a goal
position.

The great majority of the recently proposed exploration
techniques fit into the hybrid paradigm, using global environ-
ment information to plan the following actions and reacting to
unseen events. Therefore, another classification was developed
to facilitate the synthesis of how the RL algorithms usually
compose the proposed exploration strategies. The proposed
classification divides the methods into two categories, as illus-
trated in Fig. 3. In both classes, the inputs are composed of
raw sensor measurements, such as camera images and sets
of distances or velocities, by processed sensor measurements,
like partial maps, robot trajectory, and robot pose, or by a
combination of both. In some less common cases, human
feedback is also used as input.

Strategies with an end-to-end approach accomplish robot
exploration tasks as a black box. The inputs are fed to
the RL or deep RL algorithm, which directly returns the
robot control actions, like linear and angular velocities or
the movement the robot must perform (e.g. move forward,
backward, right, or left). As the name states, the two-Stage
strategies divide the robot decisions into two parts and can
integrate RL with nonlearning-based methods. First, the inputs
are used by an algorithm that decides the next robot’s target
position. Then, the selected location and other sensory inputs
are used to perform the path planning and guide the agent
from the current to the target position. RL algorithms can be

employed in the first, second, or both stages. In the following
sections, the stated classification is taken as a reference for
evaluating the research works.

VI. SINGLE ROBOT EXPLORATION

This section reviews the state-of-the-art exploration strate-
gies designed for a single robotic agent using RL techniques.
The key analyzed aspects are: 1) which RL algorithms com-
pose and what is their role on the most recent exploration
strategies; 2) how current works deal with problems like
the exploration-exploitation dilemma, curse of dimensionality,
reward shaping, and slow learning convergence; 3) what are
the commonly employed simulation tools, simulation and real-
world experiments, achieved progress, and remaining lim-
itations. The reviewed research works projected strategies
focusing on unmanned aerial vehicles (UAVs) and unmanned
ground vehicles (UGVs), and to a lesser extent focusing on
autonomous underwater vehicles (AUVs).

The applications targeted by the academic works are divided
into goal-guided, regarding tasks whose goal is to find
or reach a specified target, and nonguided, regarding tasks
whose main goal is to cover a whole area, usually with
mapping purposes. The most common identified nonguided
application is mapping unknown indoor environments
[63], [65], [66], [74]. For instance, in [77] the problem
of mapping an unknown office is tackled, and in [64] the
exploration is used for learning a saliency map of the envi-
ronment. Currently, goal-guided applications are being studied
in a larger quantity and with a greater task diversity. Some
examples include finding victims in postdisaster scenes [62],
[76], finding the original location of a chemical leaking source
in underwater environments [80], traversal of land vehicles
in undiscovered tracks [71], and goal-driven map-less naviga-
tion [78], [79], [81], [84]. The great majority of both kinds of
applications include obstacle avoidance.

A. RL Algorithms in the Exploration Strategies

Table I contains a summary of the most common RL
algorithms employed in single-agent exploration strategies.
As already mentioned in Section III, the fact that all the
identified algorithms are model-free derives from the nature
of exploration tasks, in which the environment model is
usually unknown or the environment is too complex to be
modeled. It is possible to note that value-based algorithms are
the most commonly adopted alternative, especially the deep
Q-learning methods. This prevalence may be explained by
the fact that deep neural networks enabled robust function
approximation, making the employment of the well-known
classic Q-learning in complex robotic applications more real-
istic. Actor–critic algorithms have also been considerably used

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on March 31,2024 at 03:48:10 UTC from IEEE Xplore. Restrictions apply.

CAETANO GARAFFA et al.: RL FOR MOBILE ROBOTICS EXPLORATION 3801

TABLE II

HOW RL ALGORITHMS COMPOSE TWO-STAGE SINGLE-AGENT EXPLORATION STRATEGIES

TABLE III

HOW RL ALGORITHMS COMPOSE END-TO-END SINGLE-AGENT EXPLORATION STRATEGIES

in the exploration strategies, particularly the asynchronous
advantage actor–critic (A3C), developed by Google Deep
Mind in 2016 [38]. No Policy Search algorithm was identified
in the most critical recent academic works for single-robot
exploration approaches.

Tables II and III summarize how the identified RL algo-
rithms compose, respectively, the proposed two-stage and end-
to-end single-agent exploration strategies. Two approaches
were identified in the two-stage strategies. The first and
more common one is using the RL algorithm to decide the
next location the robot should move to and then employing
complementary methods to guide the robot toward the target
point. In [76], DRL is combined with the classic frontier-
based exploration. An A3C network receives the known map,
the robot location, and the frontiers locations, returning the
coordinates of the next goal frontier. Similarly, an A3C

network receives the current map, the agent’s location and
orientation in [77], and returns the next visiting direction,
given that the space around the agent is equally divided
into six sectors. In [67], a DQN returns the goal points in
the grid map, using as input the map, the current, and the
historical robot positions. The three mentioned works employ
the well-studied A* algorithm for path planning. In [64],
Q-learning is used to decide whether the agent must move
to one of its four adjacent nodes or if it must learn from the
current node by capturing useful images to create a saliency
map of the environment. The reviewed works prove that this
approach is a smart way to discretize and reduce the action
space while using RL to solve the main exploration problem,
which is to decide the next region the robot should visit.
However, a possible drawback is that the methods focus on the
trajectory generation from one point to another, not prioritizing

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on March 31,2024 at 03:48:10 UTC from IEEE Xplore. Restrictions apply.

3802 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 8, AUGUST 2023

the full coverage of explored areas in the path planning
process.

Another approach in two-stage strategies is employing a
nonlearning method to decide the next goal location and then
using RL to guide the robot toward the selected point. For
single agents, this approach is less common. In [65], the
goal point is randomly selected between the set of the fur-
thest points measured by an RPLIDAR sensor with scanning
range 360◦. An online sequential extreme learning machine
(OS-ELM) is used to estimate the Q-values and lead the robot
toward the target with object avoidance. The network receives
the sensors’ measurements, the distance between robot and
goal, the angle between robot orientation and goal, and returns
the robot action, which can be moving 0.3 m, turning left,
or turning right. The downside of this approach is that it does
not use the RL algorithm for the critical exploration decision-
making process, but to plan the trajectory between two known
points. At the same time, there are much more efficient and
well-established path planning methods in the literature.

Table III reveals the most investigated approach for single
robot exploration using RL: tackling goal-guided problems in
an end-to-end fashion. Within this context, many works use
neural networks with convolutional layers aiming to reproduce
human behavior and directly translate pixels into actions.
For example, the Rainbow network architecture was used to
generate local paths toward goal positions in unknown rough
terrain environments while maintaining the UGV’s safety [71].
Some works employ DQN algorithms’ variations to improve
their performance and avoid problems caused by estimation
errors. double DQNs, proposed by Hasselt [85] and based
on decoupling action selection from evaluation, were used
to define the next robot action between five possible move-
ment controls [68], [73]. A dualing architecture-based deep
double Q network (D3QN), which combines double DQN
and dueling network architectures, was used with a similar
action space [72]. To tackle the common RL problem of
lack of generalization capability to new goals, Zhu et al. [84]
proposed a new deep neural network called siamese actor–
critic network, which receives an RGB image of the current
environment observation and an RGB image of the target,
and returns the movement the agent should perform next.
Other works also propose end-to-end exploration solutions
combining convolutional layers for feature extraction with the
A3C algorithm [78], [79] and the SAC [82]. As previously
mentioned, these methods take images as inputs. A limitation
of all mentioned works is that the models are trained with syn-
thetic, rendered scenarios, which generally do not generalize
appropriately to real-world images.

Within the goal-guided end-to-end solutions, there are also
the ones that do not employ convolutional neural networks
(CNNs). In order to guide the robot to reach a specific point
at an unknown environment with obstacle avoidance, a back
propagation (BP) network is used in [69] to estimate the
Q-values. A continuous action space for the robot motion
control is employed in [80] and [81] by using, respectively,
an actor–critic model with deterministic PG (DPG) and asyn-
chronous deep DPG. End-to-end solutions for nonguided
applications are not as numerous in the literature. In both [66]

and [74], CNNs are used to extract features from raw RGB
images and depth information from an RGB-D sensor, respec-
tively, and DQN define the next agent’s movement to explore
an unknown environment entirely. With the same goal, classic
Q-learning is used in [61]. Finally, few solutions adapt for both
goal-guided and nonguided applications. In [63], a Q-learning
algorithm uses the UAV position, a binary parameter that
indicates the presence or absence of a signal source (target) in
the environment, and each grid cell’s state to guide the robot in
order to map the environment and detect targets. The integrated
approach of end-to-end solutions also has its limitations. The
main downfall is the need to control the vehicle reactively
through on-board real-time computing. Moreover, end-to-end
methods still experience limited generalization capabilities and
they are tightly dependent on the system (e.g., type of vehicle
and sensors) [86].

B. Approaching Common Problems

1) Exploration–Exploitation Dilemma: The great majority
of academic works about single mobile robot exploration using
RL employ the classic ε-greedy or some simple variations of
the algorithm to handle the exploration-exploitation dilemma.
Considering ε a positive scalar between 0 and 1, the agent
selects the action with maximum value with probability 1− ε,
and selects a random action with probability ε. If the ε value
increases during training, the exploratory behavior is more
stimulated in the early learning stages, and as time passes, the
agent selects the optimal action more frequently. Furthermore,
a fewer number of works employ different techniques, but
with a similar approach. Stochastic switching is used in [83],
and in [70] the Boltzmann distribution is employed to define
the probability of choosing one action given the current
state. In [82], the temperature decay training paradigm is
proposed, working similarly to ε-greedy, but adapted to obtain
an uncertainty-averse behavior.

2) Curse of Dimensionality: To avoid the curse of dimen-
sionality, the most common approach is to employ deep neural
networks to perform function approximation. Another function
approximation technique used in [62] is called fixed sparse
representation (FSR), and maps the original Q table to a
parameter vector. The discretization of the states and action
spaces is also a commonly adopted alternative, as can be
observed in both Tables II and III. In the analyzed works, the
algorithms that directly return motion controls with a discrete
set of actions used between 3 and 9 possible alternatives.
It is important to observe that although adopting a small
and discrete set of actions accelerates training convergence,
in motion control applications it may limit the robot perfor-
mance, resulting in tortuous paths.

3) Reward Shaping: In general, the examined research
works use heuristic strategies to define the reward func-
tions for the robotic exploration applications. The application
goal directly influences how the rewards are modeled: in a
SAR mission, the reward usually encourages the agent to
find the most quantity of information in the early stages
of exploration [62], for example. For goal-driven navigation,
the reward encourages the distance narrowing between the

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on March 31,2024 at 03:48:10 UTC from IEEE Xplore. Restrictions apply.

CAETANO GARAFFA et al.: RL FOR MOBILE ROBOTICS EXPLORATION 3803

agent and the target [69], [70]. Collisions with obstacles are
associated with punishments in all strategies. The rewards can
be either dense, which means they are assigned to the agent
in many different states, or sparse, usually returning zero for
most states and only rewarding the agent in a few states or
events.

Tables II and III indicate the kind of reward used for
each reviewed work. In all cases, the agent receives the most
significant reward if it achieves the exploration goal and gets
a considerable punishment if the mission fails (e.g., takes
too much time, a collision happens). The difference is that
dense strategies adopt intermediate rewards. Sparse rewards
are easier to be defined and are adopted by many strate-
gies [64], [74]–[76], [78], [80], [83], but they can increase the
learning convergence time. Therefore, despite the difficulty to
properly determine dense rewards, they are the most adopted
option among the single robot exploration works. Common
approaches include: punishing the agent at every time-step
to decrease exploration time [62], [73], [84]; small positive
rewards if getting away from obstacles or closer to target;
minor punishments otherwise [61], [69]–[71], [81]. From the
analyzed work, it is possible to conclude that reward shap-
ing for single-robot exploration still represents a nontrivial,
application-dependent task.

4) Learning Convergence: Different strategies to accelerate
learning convergence were identified in the robotic exploration
works. The solutions used to tackle all previously men-
tioned aspects—exploration-exploitation dilemma, the curse
of dimensionality, and reward shaping—directly impact the
learning convergence. The discretization of the state and action
spaces, widely adopted in the reviewed works, contributes
to faster convergence. Curiosity-driven intrinsic rewards are
used in [78] and [79] to stimulate the agent to explore new
areas after many failures in familiar positions, improving data
efficiency and avoiding possible deadlocks.

A method that is especially present is the experience replay
(EP), which employs past experiences in the training process to
reduce the correlation between successive samples, make the
learning process smoother, and improve data efficiency [66],
[67], [73]–[75], [82]. An attention mechanism that analyses
the importance of the algorithm’s inputs is employed in [71],
aiming to increase data efficiency. Transfer learning techniques
were also employed in the single-robot exploration context.
Dynamic programming was used to find approximate solutions
to initialize the actor–critic networks [80]. Similarly, the
weights of the CNN trained with RL were initialized using
a supervised learning model trained with real-world data [74].
Another identified strategy is to increase the training difficulty
gradually and share knowledge between different agents [84].

C. Simulation and Real-World Experiments

As well as most robotic RL projects, all the reviewed works
perform the learning process through simulation, reducing
interaction with the real world and avoiding problems like
unsafe exploration and the impossibility to speed up training.
Although not all works mention it, Table IV summarizes
commonly adopted software tools for training and testing

TABLE IV

SOFTWARE TOOLS USED FOR TRAINING AND TESTING
SINGLE-AGENT EXPLORATION STRATEGIES

TABLE V

RELATION OF WORKS THAT PERFORM AND DO NOT PERFORM

TESTS IN DYNAMIC ENVIRONMENTS

experiments. As the agent learns through environment inter-
action, the physics simulation engine directly interferes in
the learned behaviors and the transference from simulation
to real robots. Therefore, the heterogeneity of simulation
tools can make the comparison between exploration strategies
inaccurate. It is possible to note that Gazebo [87] stands out
as the most adopted simulation environment, as well as ROS
is broadly employed to develop robot communication and
control software. In comparison, the adoption of platforms
for developing RL algorithms is more distributed among the
different alternatives.

For performance evaluation, the adopted metrics depend on
the application’s goal task. Nonguided applications usually
evaluate the explored region rate, while goal-guided evaluate
the success rate related to reaching or locating the targets.
Some standard metrics for both kinds of works are the
path length and exploration efficiency. When it comes to the
considered baselines, the most common alternatives are classic
techniques, such as frontier-based or artificial potential fields,
simple methods like random walk, or other RL algorithms.
In [76], for example, the proposed exploration strategy enabled
98% of explored region rate in simulation and 97% in a real
robot with shorter paths than cost-utility frontier-based meth-
ods. The classic Q-learning is used as a baseline in [69], [70]
and [75], and its performance is overcome by the proposed
DRL methods in all cases. Table V indicates the number
of works that perform tests in dynamic environments, with
moving objects or changing environmental characteristics.
The great majority of methods are not validated in dynamic
scenarios, which is an essential step for fulfilling the strategies’
purpose and solving complex real-world problems. Another
aspect that can negatively affect the sim-to-real transfer of the

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on March 31,2024 at 03:48:10 UTC from IEEE Xplore. Restrictions apply.

3804 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 8, AUGUST 2023

TABLE VI

RL ALGORITHMS USED IN MRS COORDINATION STRATEGIES FOR UNKNOWN ENVIRONMENT EXPLORATION TASKS

exploration strategies is that most methods do not consider
the model’s uncertainties. In order to develop a resilient
exploration solution, Fan et al. [82] explicitly modeled the
data uncertainty into the SAC network. However, precise
representation of the uncertainties remains a challenge.

Although most works validate the proposed techniques only
through simulation tests, the number of experiments in real
robots has increased in the last years. In [76], experiments
were performed in a real unknown cluttered urban SAR
(USAR)-like scene with 15 × 15 m2, which was 97% covered
by the agent. The map was acquired by visiting 44 frontier
locations in 835 seconds, considering that the computation
time to choose a frontier location was 1.2 s. Experiments
in real indoor environments for map acquisition were also
performed in [67]. The proposed method achieved lower
exploration rates than frontier-based methods, but a higher
exploration efficiency with shorter path lengths. In [62], a UAV
performed goal-guided navigation in a closed room, dis-
cretized as a 5 ×5 board with static objects. Other works also
perform experiment with real robots in static environments,
such as [78], [81], [84] and [63]. The only experiment in a
real dynamic environment is performed in [83], using an office
with obstacles, tight turns, and dynamic human subjects. The
proposed method achieved competitive results compared to the
widely used ROS move-base planner.

It is possible to conclude that the single mobile robot
exploration field combined with RL techniques has been evolv-
ing and achieving significant progress in recent years. This
advancement has been driven mainly by RL union with deep
learning techniques, which can handle the complex states and
action spaces inherent to real-world applications. However,
there are several remaining challenges. More tests considering
dynamic environments and uncertainties such as noisy sensor
measurements are needed to scale the solutions to real-world
applications. In some cases, the performance improvement
is not significant enough to justify the RL method’s choice
over simpler classic methods, considering the long training
periods and high computational and memory costs. As high-
lighted in [84], another critical remaining issue is the lack
of solutions capable of generalization between environments
and targets. Furthermore, some possible future investigations
include testing strategies with policy-based RL algorithms and
testing other methods to balance exploration and exploitation
besides ε-greedy.

VII. MULTIROBOT EXPLORATION

MRSs can be defined as a group of two or more robots
that are able to cooperate or compete with each other in
order to achieve a specified goal [104]. Research on MRS has
attracted considerable attention in the past years, driven by its

advantageous characteristics such as high levels of fault toler-
ance, increased efficiency in task accomplishment, situational
awareness from multiple locations, greater flexibility in opera-
tions, and distributed payloads. This set of features make MRS
suitable for several complex and important applications [105],
including unknown environment exploration. However, the
multirobot teams’ success relies on the agents’ autonomy skills
and on the design of a proper cooperation strategy, which is a
nontrivial task and represents the core challenge for multirobot
cooperation viability. In this context, RL algorithms are
being highlighted as a promising alternative to compose MRS
coordination strategies. This section contains an overview of
the most recent academic works that propose MRS cooperation
strategies for unknown environment exploration using RL
techniques.

The analyzed research works were recently published and
encompass UAVs, UGVs, and AUVs applications. Some com-
monly identified nonguided MRS goals are collectively explor-
ing or covering entire unknown areas and mapping a strange
environment as soon as possible, which are suitable skills for
applications such as exploring cluttered USAR scenes and
uncertain environment patrolling. On the other hand, usual
goal-guided applications include goal-driven map-less navi-
gation through unknown complex environments and search-
ing static or dynamic multitargets in unknown environments.
The target searching goal was investigated in contexts such
as underwater environments, victims identification in USAR
scenes, and pursuit-evasion game, where a group of predator
agents are trained to capture the prey agents cooperatively.
Collision avoidance, either with objects or between agents,
is a highlighted concern of all nonguided and goal-guided
applications.

A. RL Algorithms in the Exploration Strategies

Table VI contains a summary of the most common RL
algorithms employed in MRS cooperative exploration strate-
gies. Similar to single-agent applications, due to the nature
of exploration tasks, all the algorithms are model-free. Deep
Q-learning methods are the most widely used, particularly
DQN, and the majority of works employ value-based methods.
As will be further discussed, this impacts the agent state and
action spaces, since discretization or function approximation
is required. Similar to the single-agent methods, the number
of actor–critic algorithms is considerable. Only one work that
employed policy search algorithm was identified.

Tables VII and VIII summarize how the identified RL algo-
rithms compose, respectively, the so far proposed two-stage
and end-to-end MRS exploration strategies. Three approaches
were identified in two-stage strategies. First, there are works
that use RL to decide where each agent should move next,

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on March 31,2024 at 03:48:10 UTC from IEEE Xplore. Restrictions apply.

CAETANO GARAFFA et al.: RL FOR MOBILE ROBOTICS EXPLORATION 3805

TABLE VII

HOW RL ALGORITHMS COMPOSE TWO-STAGE MRS EXPLORATION STRATEGIES

TABLE VIII

HOW RL ALGORITHMS COMPOSE END-TO-END MRS EXPLORATION STRATEGIES

and employ a complementary method to perform the path
planning between the current position and goal destination.
Both Luo et al. [95] and Zhou et al. [98] proposed a coordina-
tion strategy for nonguided applications employing topological
maps, in which the RL algorithm determines the next nodes
the agents should move to. As the goal of the RL is to decide
between a finite set of possible locations, the action spaces
are inherently discrete. Again, a benefit of this approach is
the employment of RL in the key decision-making process of
exploration, while using a discrete action space. However, path
planning does not focus on efficient area coverage.

When it comes to RL usage for guiding the agents toward
selected locations, the proposed strategies are more diverse.
In [103], each robot is assigned a different target location
based on dynamic Voronoi partitions. As DDPG can handle
continuous action spaces, it is used to decide the linear and
angular velocities of the robots, increasing behavior possi-
bilities and enabling smoother movements. With a focus on
target searching, in [102] a POMDP solver defines if the agent
should explore its current node or for which node it should
move next, and in [97] the Hungarian method is used to obtain
the best arrangement of cooperative subtasks and distribute it
between the robots. In both works, the RL algorithm receives
the next goal location and a set of sensor measurements, and
returns the agents movement. Unlike [103], the action spaces
are discrete and composed of 3 and 4 movements possibilities,
respectively.

Finally, there are works that use two different RL algorithms
to assign where to go and how to reach the defined locations.

As DQN is more suited to discrete action spaces, in [93] it
is used to indicate the coordinates of the next location, and
DDPG is used to guide the agents selecting rotation angles
in continuous action space. In [90], the traditional frontier
exploration method is combined with DRL, where the A3C
algorithm decides the next goal frontier and the DQN defines
the movements to guide the agents. This approach results
in smart path planning and cooperation strategies. However,
the use of two deep neural networks can represent high
computational costs that must be considered, especially in
applications with energy, area, and computational constraints.

As previously defined, end-to-end systems are an integrated
approach, taking raw and/or processed sensors measurements
as inputs and returning the robots’ control actions. The state
spaces of the MRS end-to-end exploration strategies are
in general a combination of some or all of the following
parameters: the robot’s pose, the sensor measurements union,
the location of the other agents, and the known map. From
Table VIII, it is possible to notice that all methods with
continuous state spaces use neural networks with convolutional
layers. These layers are able to extract features from the inputs,
and are connected to a fully connected neural network that
returns each agent actions. As for the action space, the great
majority of research works employ a discrete space, defining,
in average, between 3 and 9 possible moving directions or
spinning angles. At the same time that this discretization
makes the training time decrease and facilitates the algorithms
convergence, it was repeatedly pointed as a limitation for the
MRS performance, as it causes abrupt behaviors and tends to

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on March 31,2024 at 03:48:10 UTC from IEEE Xplore. Restrictions apply.

3806 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 8, AUGUST 2023

make the solutions less effective in realistic complex scenarios.
Similar to single-robot end-to-end strategies, on-board real-
time computing to control the vehicles’ movements must
be considered as a project requirement, which can limit its
application.

B. Approaching Common Problems

1) Exploration-Exploitation Dilemma: Like the single-
agent exploration works, ε-greedy is the most adopted method
to balance exploration and exploitation during the learning
process [89]–[91], [93], [95], [96]. In [90], a switching strategy
based on collision risk is also used to choose the actions,
in combination with a self-decay probability to smooth the
switch. Alternatively, the Boltzmann distribution mechanism
is used in [88] to determine the probability of choosing one
action considering the current state. Given that many solutions
to this dilemma have recently been proposed and proved
successful in different applications [107]–[109], it is possible
to conclude that there is space to investigate different methods
in the robotic exploration context.

2) Curse of Dimensionality: To avoid the curse of dimen-
sionality, one approach is to employ RL, especially the value-
based algorithms, only for tasks that inherently have a limited
and discrete set of states and actions, such as choosing for
which node the agent should move next [93], [95], [98].
A widely used strategy is to efficiently reduce the space
representation. In [89], FSR approximation maps the original
Q-values to a low-dimension parameter vector. As already
discussed, DRL solutions can be employed to learn the low-
dimensional state features of the high-dimensional state from
the sensory data, and provide robust function approximation.
Due to its great performance improvements in recent years,
CNNs are being increasingly adopted as feature extractors of
raw images or other high-dimensional sensor data [90]–[92],
[95], [100], [101].

3) Reward Shaping: When it comes to reward shaping, the
approach of the MRS works is very similar to the identified
in single-agent research. Heuristic functions are by far the
most adopted approach, being designed in accordance with
the application objective. For example, in goal-guided tasks it
is usual to give a positive reward when an agent finds a target,
as well as giving a positive reward for finding new unexplored
areas in nonguided tasks. For both kinds of multirobot tasks,
it is common to apply a negative reward in case of collision
between agents or with objects and to specify rewards for
maintaining connectivity or learning to cooperate with other
agents. Again, the most common approach is employing dense
rewards, probably because it usually accelerates the agent’s
comprehension of how it should behave.

4) Learning Convergence: In order to decrease the amount
of time spent on training and to improve learning effectiveness,
some MRS works make use of transfer learning techniques.
One example is the curriculum learning (CL) techniques,
in which the agents learn from increasingly difficult scenarios
to progressively acquire complex skills. In [101], CL is applied
to simplify and direct the learning process in a teacher–student
fashion, exposing the agents to four different environments

TABLE IX

SOFTWARE TOOLS USED FOR TRAINING AND TESTING
MRS EXPLORATION STRATEGIES

with different complexity or difficulty. The strategy is tested
with and without CL, and only succeed when the technique is
applied. In [99], new obstacles are gradually introduced to the
training environment, stimulating the agents to explore with
the smallest number of collisions when faced with different
kinds of dynamic environments. A similar approach is used
in [93], in which a target selection policy is pre-trained in
obstacle-free environments, and then new obstacles are added
during training. This technique makes the algorithm converge
much faster than classic multiagent DDPG. In [91], the agents
trained in sparse environments are able to quickly adapt to
clutter scenarios. Some methods use EP to improve data
efficiency. Both Venturini et al. [91] and Liu et al. [96] enable
experience sharing between different robots, which allows
faster convergence of the learning algorithms. Prioritized EP
is proposed in [103], which samples important experience
data more frequently by calculating the priority of each state
transition.

C. Simulation and Real-World Experiments

Table IX summarizes commonly adopted software tools for
both MRS training and testing experiments. It is possible to
note that there is no unanimity for the employed simulation
environments. This makes comparisons between strategies
more difficult, once the simulators do not model the world
physical aspects in the same way, and the world model directly
interferes in the agents learned behavior. In the perspective
of adopting standardized tools for scaling both single and
multiagent RL solutions, Gazebo [87] can be highlighted
as an often-used simulator with a growing user community.
Similar to the single-agent analysis, ROS is established as
the most used framework for robot software development.
OpenAI Gym, TensorFlow, and MATLAB are employed for
RL algorithm development.

To evaluate the learning process performance, some works
adopt other RL algorithms as baselines for comparison. Com-
monly employed evaluation metrics for the training phase are
learning convergence speed, mean cumulative rewards, and
learning efficiency. For example, in [103] it is demonstrated
that the proposed method requires 25% of the training time
required by classic DDPG. In [93], classic multiagents DDPG
is also used as baseline, and the mean cumulative reward is

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on March 31,2024 at 03:48:10 UTC from IEEE Xplore. Restrictions apply.

CAETANO GARAFFA et al.: RL FOR MOBILE ROBOTICS EXPLORATION 3807

TABLE X

RELATION OF MRS WORKS THAT PERFORM AND DO NOT
PERFORM TESTS IN DYNAMIC ENVIRONMENTS

higher in the proposed method. When it comes to the evalu-
ation of the cooperation strategies performance in simulated
tests, the adopted evaluation metrics can be summarized to
the average moving distance (AMD), average mean reward,
number of collisions, success rate, connectivity, and travel
time, not necessarily with these specific names. Works that
focus on nonguided tasks can also evaluate exploration ratio
and speed, and the most common baselines are classic frontier-
based methods [95], [99], [101]. For works focused on goal-
guided tasks, the particle swarm optimization algorithm is the
most common baseline [88], [90], and number of identified
targets and average time to find them are usually evaluated.

Most works validate the strategy performance only through
simulation, and not using real robots. The works that perform
real-world tests generally evaluate whether the robot team
is able to accomplish the goal task successfully or not, and
the path taken by the agents. In [100], three ground robots
navigate through different environments with static obstacles
to reach a goal position. Each robot has an onboard computer
(Nvidia Jetson TX2). Two underwater vehicles find two targets
in a 10 m × 20 m pool with and without obstacles in [90],
successfully avoiding collisions. In [89], two UAVs cover a
part of the environment without overlap, and in [103] each
robot have a Raspberry Pi 3 receiving control commands
from a host computer with a GPU in order to successfully
explore a dynamic room environment. In [106], experiments
are performed with 2, 3, 4, and 5 ground robots, that are
able to safely reach their goal positions without any collision.
A great aspect of the latter work is that the policy trained in
simulation is successfully applied to the real robots without
any calibration or retraining.

Considering the difficulty in transferring behavior learned
through simulation to real-world scenarios, especially to a
team of robots, the aforementioned results illustrate the great
advances of multirobot exploration using RL. However, there
are still unresolved questions. Depending on a central host
to send control actions may not be the best solution to a
team of robots that can eventually lose communication. The
end-to-end method tested in real world used computationally
heavy CNNs, and had success by using on-board computers
with GPUs in each robot. In ground robots that can be viable,
but for applications with computational and energy constraints
like, for example, lightweight and low-energy UAVs, it is safe
to assume that this approach is not the best fit. These aspects
of the works are not necessarily problems, but reinforce
how the robotic RL solutions are still very heterogeneous
and not directly suitable to different systems, even when the
application is very similar or equal.

As aforementioned, direct comparisons between the pro-
posed strategies are probably inaccurate because of the dif-
ferences in the employed simulation environments, kinds of
robots, computer hardware, and other project choices. How-
ever, it is possible to state that, in general, the strategies
that use RL make more intelligent decisions than classic
multirobot exploration techniques, which leads to faster and
more efficient explorations. By letting the agents automati-
cally learn to cooperate instead of explicitly designing these
behaviors has resulted in successful complex team dynamics,
which may include concerns about maintaining connectivity,
avoiding collisions with obstacles and other agents, avoiding
that the same area is explored by different agents multiple
times, among others.

At the same time, it is clear that this research field is still
in its early steps. Among the current limitations, there is a
small number of works that explore continuous action spaces,
which are more appropriate to robotic path planning in realistic
complex scenarios. Also, the problems of sim-to-real transfer
are still a reality. The majority of works are tested only in
static environments, as demonstrated in Table X. Most works
that only use simulation validation do not consider real-world
constraints, like noisy sensor measurements or the possibility
of losing communication with other agents, which raises the
question of whether these methods would be effective in a
real environment. Therefore, further research is needed to
find multirobot exploration solutions with RL that are largely
scalable to real MRSs.

VIII. DISCUSSIONS

From the review of single-robot and multirobots exploration
strategies using RL techniques presented in the previous
sections, some overall discussion topics can be raised:

1) From the authors’ point-of-view, the employment of RL
is still more justifiable in MRS coordinated exploration
than in single-robots exploration. This happens because
the complexity of MRS is inherently high, and RL
enables team dynamics that are really difficult to design.
For a relevant number of the analyzed single-robot
works, the performance improvement is not significant
enough to justify the RL method’s choice over simpler
classic methods, considering the long training periods
and high computational costs.

2) The ε-greedy algorithm for balancing between explo-
ration and exploitation during the learning process was
almost unanimity in the researched works. Simultane-
ously, there are a large body of research pertaining to
this problem [107], [108]. An important example is the
“First return, then explore” [109] that, to the best of our
knowledge, has not been applied in the context of robotic
exploration. Since the approach employed to handle
this dilemma directly impacts the learning efficiency,
investigating different alternatives could improve the
learning process.

3) The greatest identified field trend is combining DRL
with CNN to design end-to-end solutions. The network
receives large state spaces (usually images or other raw
sensor measurements), and directly returns the agent’s

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on March 31,2024 at 03:48:10 UTC from IEEE Xplore. Restrictions apply.

3808 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 8, AUGUST 2023

movement control. Diverse works demonstrated suc-
cessful experiments with this kind of system. However,
it may not be the best fit for applications with weight,
energy, and computational constraints, given the need
to control the vehicle reactively through on-board real-
time computing. The limited generalization capabilities
of end-to-end strategies are also a remaining issue.

4) There is still space for works that investigate robotic
exploration with RL using continuous action spaces.
Discrete action spaces were largely adopted in the
reviewed solutions, and they facilitate learning conver-
gence. However, this discretization can limit the robots’
performance, cause abrupt behaviors and make the solu-
tions less effective in real and complex scenarios.

5) Transfer learning techniques were applied in greater
quantity in MRS than in single-robot systems but is still
not a widespread approach in the targeted application.
Both types of systems can benefit from further study
of different transfer learning techniques in the robotic
exploration context. To properly quantify the impact of
methods used for improving learning convergence and
perform accurate comparisons, it is important to use
methods to explicitly analyze the convergence in the RL
algorithms, like the ones proposed in [110] and [111].

6) An essential next step of the research field is an increase
in the number of strategies designed to consider real-
world uncertainties, like noisy sensor measurements and
dynamic environments. The lack of these considerations
separates academic solutions from real applications.

IX. CONCLUSION

This survey reviewed the most recently published works
that tackle the mobile robot exploration problem using RL
techniques. Both single and multirobot solutions and chal-
lenges were compared and examined. Discussion topics about
the current research status and possible future steps were
presented. Much progress has been made, but it is clear that
this research field is still in its early steps. Further research
is needed to find single and multirobot exploration solutions
with RL that are vastly scalable to real-world applications.
The presented literature review and the provided discussions
around it tried to shed light in directions for possible future
works in this area.

REFERENCES

[1] B. Krogh and C. Thorpe, “Integrated path planning and dynamic
steering control for autonomous vehicles,” in Proc. IEEE Int. Conf.
Robot. Autom., vol. 3, Apr. 1986, pp. 1664–1669.

[2] B. Yamauchi, “A frontier-based approach for autonomous exploration,”
in Proc. IEEE Int. Symp. Comput. Intell. Robot. Autom. Towards New
Comput. Princ. Robot. Autom. (CIRA), Jul. 1997, pp. 146–151.

[3] S. Tzafestas, Introduction to Mobile Robot Control. Amsterdam,
The Netherlands: Elsevier, Oct. 2013.

[4] S. Li, J. Yan, and L. Li, “Automated guided vehicle: The direction of
intelligent logistics,” in Proc. IEEE Int. Conf. Service Oper. Logistics,
Informat. (SOLI), 2018, pp. 250–255.

[5] E. Garcia, M. A. Jimenez, P. G. D. Santos, and M. Armada, “The evo-
lution of robotics research,” IEEE Robot. Autom. Mag., vol. 14, no. 1,
pp. 90–103, Mar. 2007.

[6] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). Cambridge, MA, USA: MIT Press,
2005.

[7] R. Siegwart and I. R. Nourbakhsh, Introduction to Autonomous Mobile
Robots. Holland, MI, USA: Bradford Company, 2004.

[8] A. A. Makarenko, S. B. Williams, F. Bourgault, and
H. F. Durrant-Whyte, “An experiment in integrated exploration,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., vol. 1, Oct. 2002,
pp. 534–539.

[9] R. C. Arkin and R. C. Arkin, Behavior-Based Robotics. Cambridge,
MA, USA: MIT Press, 1998.

[10] M. Chupeau, O. Bénichou, and R. Voituriez, “Cover times of random
searches,” Nature Phys., vol. 11, no. 10, pp. 844–847, Oct. 2015.

[11] R. Brooks, “A hardware retargetable distributed layered architecture for
mobile robot control,” in Proc. IEEE Int. Conf. Robot. Autom., vol. 4,
Mar. 1987, pp. 106–110.

[12] S. Park and K. S. Roh, “Coarse-to-fine localization for a mobile robot
based on place learning with a 2-D range scan,” IEEE Trans. Robot.,
vol. 32, no. 3, pp. 528–544, Jun. 2016.

[13] A. Solanas and M. A. Garcia, “Coordinated multi-robot exploration
through unsupervised clustering of unknown space,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst. (IROS), vol. 1, Sep. 2004, pp. 717–721.

[14] B. Kaleci, C. M. Senler, O. Parlaktuna, and U. Gurel, “Construct-
ing topological map from metric map using spectral clustering,” in
Proc. IEEE 27th Int. Conf. Tools Artif. Intell. (ICTAI), Nov. 2015,
pp. 139–145.

[15] M. Rappaport and C. Bettstetter, “Coordinated recharging of mobile
robots during exploration,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst. (IROS), Sep. 2017, pp. 6809–6816.

[16] C. Wang, H. Ma, W. Chen, L. Liu, and M. Q.-H. Meng, “Efficient
autonomous exploration with incrementally built topological map in
3-D environments,” IEEE Trans. Instrum. Meas., vol. 69, no. 12,
pp. 9853–9865, Dec. 2020.

[17] R. R. Murphy, Introduction to AI Robotics, 1st ed. Cambridge, MA,
USA: MIT Press, 2000.

[18] S. M. LaValle et al., “Rapidly-exploring random trees: A new tool for
path planning,” Iowa State Univ., Ames, IA, USA, Tech. Rep. 98-11,
1998.

[19] A. Stentz, “Optimal and efficient path planning for partially known
environments,” in Intelligent Unmanned Ground Vehicles. Boston, MA,
USA: Springer, 1997, pp. 203–220.

[20] M. Noto and H. Sato, “A method for the shortest path search by
extended Dijkstra algorithm,” in Proc. SMC Conf. IEEE Int. Conf.
Syst., Man Cybern. Cybern. Evolving Syst., Humans Complex Interact.,
vol. 3, Oct. 2000, pp. 2316–2320.

[21] M. W. Otte, “A survey of machine learning approaches to robotic
path-planning,” Univ. Colorado Boulder, Boulder, CO, USA,
Tech. Rep., 2015. [Online]. Available: http://ottelab.com/html_stuff/
pdf_files/Otte.prelim08.pdf

[22] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[23] M. L. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming. Hoboken, NJ, USA: Wiley, 2014.

[24] M. T. Spaan, “Partially observable Markov decision processes,” in Rein-
forcement Learning. Berlin, Germany: Springer, 2012, pp. 387–414.

[25] T. M. Moerland, J. Broekens, and C. M. Jonker, “Model-based rein-
forcement learning: A survey,” 2020, arXiv:2006.16712.

[26] A. S. Polydoros and L. Nalpantidis, “Survey of model-based reinforce-
ment learning: Applications on robotics,” J. Intell. Robot. Syst. Theory
Appl., vol. 86, no. 2, pp. 153–173, May 2017.

[27] M. Sewak, Deep Reinforcement Learning. Singapore: Springer, 2019.
[28] R. J. Williams, “Simple statistical gradient-following algorithms for

connectionist reinforcement learning,” Mach. Learn., vol. 8, nos. 3–4,
pp. 229–256, 1992.

[29] J. A. Bagnell, S. Kakade, A. Y. Ng, and J. Schneider, “Policy search by
dynamic programming,” in Proc. 16th Int. Conf. Neural Inf. Process.
Syst. (NIPS). Cambridge, MA, USA: MIT Press, 2003, pp. 831–838.

[30] E. Theodorou, J. Buchli, and S. Schaal, “Learning policy improvements
with path integrals,” in Proc. 13th Int. Conf. Artif. Intell. Statist., 2010,
pp. 828–835.

[31] F. Stulp and O. Sigaud, “Policy improvement methods: Between black-
box optimization and episodic reinforcement learning,” Robot. Comput.
Vis., Paris, France, Tech. Rep., 2012, p. 34.

[32] C. J. C. H. Watkins, “Learning from delayed rewards,”
Ph.D. dissertation, Dept. King’s College, Cambridge U.K., 1989.

[33] V. Mnih et al., “Playing atari with deep reinforcement learning,” 2013,
arXiv:1312.5602.

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on March 31,2024 at 03:48:10 UTC from IEEE Xplore. Restrictions apply.

CAETANO GARAFFA et al.: RL FOR MOBILE ROBOTICS EXPLORATION 3809

[34] T. G. Dietterich, “Hierarchical reinforcement learning with the
MAXQ value function decomposition,” J. Artif. Intell. Res., vol. 13,
pp. 227–303, Nov. 2000.

[35] B. Bouzy and G. Chaslot, “Monte-carlo go reinforcement learning
experiments,” in Proc. IEEE Symp. Comput. Intell. Games, May 2006,
pp. 187–194.

[36] G. A. Rummery and M. Niranjan, “On-line Q-learning using connec-
tionist systems,” Cambridge Univ. Eng. Dept., Cambridge, U.K., Tech.
Rep. CUED/F-INFENG-TR 166, 1994.

[37] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in Proc. Int. Conf. Mach. Learn., 2018, pp. 1861–1870.

[38] V. Mnih et al., “Asynchronous methods for deep reinforcement learn-
ing,” in Proc. Int. Conf. Mach. Learn., 2016, pp. 1928–1937.

[39] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017, arXiv:1707.06347.

[40] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in Proc. Int. Conf. Mach. Learn., 2015,
pp. 1889–1897.

[41] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and
M. Riedmiller, “Deterministic policy gradient algorithms,” in Proc. Int.
Conf. Mach. Learn., 2014, pp. 387–395.

[42] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” 2015, arXiv:1509.02971.

[43] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approxima-
tion error in actor-critic methods,” in Proc. Int. Conf. Mach. Learn.,
2018, pp. 1587–1596.

[44] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” Int. J. Robot. Res., vol. 32, no. 11, pp. 1238–1274,
Sep. 2013.

[45] G. Dulac-Arnold, D. Mankowitz, and T. Hester, “Challenges of real-
world reinforcement learning,” 2019, arXiv:1904.12901.

[46] N. Venkat, “The curse of dimensionality: Inside out,”
Ph.D. dissertation, Dept. CSIS, BITS Pilani, Pilani, India, 2018.

[47] R. Akrour, F. Veiga, J. Peters, and G. Neumann, “Regularizing rein-
forcement learning with state abstraction,” in Proc. IEEE Int. Conf.
Intell. Robots Syst. (IROS), Oct. 2018, pp. 534–539.

[48] T. Arai, Y. Toda, I. Mutsumi, S. Shao, R. Tonomura, and N. Kubota,
“Reinforcement learning based on state space model using growing
neural gas for a mobile robot,” in Proc. 10th Int. Conf. Soft Comput.
Intell. Syst. (SCIS), 19th Int. Symp. Adv. Intell. Syst. (ISIS), Dec. 2018,
pp. 1410–1413.

[49] J. Lim, S. Ha, and J. Choi, “Prediction of reward functions for deep
reinforcement learning via Gaussian process regression,” IEEE/ASME
Trans. Mechatronics, vol. 25, no. 4, pp. 1739–1746, Aug. 2020.

[50] Y. Yang, L. Juntao, and P. Lingling, “Multi-robot path planning based
on a deep reinforcement learning DQN algorithm,” CAAI Trans. Intell.
Technol., vol. 5, no. 3, pp. 177–183, Sep. 2020.

[51] O. Tutsoy, “CPG based RL algorithm learns to control of a humanoid
robot leg,” Int. J. Robot. Autom., vol. 30, no. 2, pp. 1–7, 2015.

[52] O. Tutsoy, D. E. Barkana, and S. Colak, “Learning to balance an NAO
robot using reinforcement learning with symbolic inverse kinematic,”
Trans. Inst. Meas. Control, vol. 39, no. 11, pp. 1735–1748, Apr. 2017.

[53] E. Chalmers, E. B. Contreras, B. Robertson, A. Luczak, and A. Gruber,
“Learning to predict consequences as a method of knowledge transfer
in reinforcement learning,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 29, no. 6, pp. 2259–2270, Jun. 2018.

[54] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel,
“Overcoming exploration in reinforcement learning with demonstra-
tions,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2018,
pp. 6292–6299.

[55] T. Shimizu, R. Saegusa, S. Ikemoto, H. Ishiguro, and G. Metta,
“Robust sensorimotor representation to physical interaction changes
in humanoid motion learning,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 26, no. 5, pp. 1035–1047, May 2015.

[56] K. Hirata, H. Iizuka, and M. Yamamoto, “Reinforcement learning
method with internal world model training,” in Proc. IEEE/SICE Int.
Symp. Syst. Integr. (SII), Jan. 2020, pp. 201–204.

[57] T. D. Le, A. T. Le, and D. T. Nguyen, “Model-based Q-learning
for humanoid robots,” in Proc. 18th Int. Conf. Adv. Robot. (ICAR),
Jul. 2017, pp. 608–613.

[58] R. Pérez-Dattari, C. Celemin, J. Ruiz-del-Solar, and J. Kober, “Con-
tinuous control for high-dimensional state spaces: An interactive
learning approach,” in Proc. Int. Conf. Robot. Autom. (ICRA), 2019,
pp. 7611–7617.

[59] D. Jain, A. Iscen, and K. Caluwaerts, “Hierarchical reinforcement
learning for quadruped locomotion,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst. (IROS), Nov. 2019, pp. 7551–7557.

[60] Z. Yang, K. Merrick, L. Jin, and H. A. Abbass, “Hierarchical deep
reinforcement learning for continuous action control,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 29, no. 11, pp. 5174–5184, Nov. 2018.

[61] G. Cardona et al., “Autonomous navigation for exploration of unknown
environments and collision avoidance in mobile robots using reinforce-
ment learning,” in Proc. SoutheastCon, 2019, pp. 1–7.

[62] H. X. Pham, H. M. La, D. Feil-Seifer, and L. Van Nguyen, “Rein-
forcement learning for autonomous UAV navigation using function
approximation,” in Proc. IEEE Int. Symp. Saf., Secur., Rescue Robot.
(SSRR), Aug. 2018, pp. 1–6.

[63] A. Guerra, F. Guidi, D. Dardari, and P. M. Djuric, “Reinforcement
learning for UAV autonomous navigation, mapping and target detec-
tion,” in Proc. IEEE/ION Position, Location Navigat. Symp. (PLANS),
Apr. 2020, pp. 1004–1013.

[64] C. Craye, D. Filliat, and J.-F. Goudou, “RL-IAC: An exploration
policy for online saliency learning on an autonomous mobile robot,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2016,
pp. 4877–4884.

[65] Y. Liu, H. Liu, and B. Wang, “Autonomous exploration for mobile robot
using Q-learning,” in Proc. 2nd Int. Conf. Adv. Robot. Mechatronics
(ICARM), Aug. 2017, pp. 614–619.

[66] L. Tai and M. Liu, “Mobile robots exploration through CNN-based
reinforcement learning,” Robot. Biomimetics, vol. 3, no. 1, pp. 1–8,
Dec. 2016.

[67] H. Li, Z. Qichao, and D. Zhao, “Deep reinforcement learning-based
automatic exploration for navigation in unknown environment,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 31, no. 6, pp. 2064–2076,
Jun. 2019.

[68] R. B. Issa, M. S. Rahman, M. Das, M. Barua, and M. G. R. Alam,
“Reinforcement learning based autonomous vehicle for exploration
and exploitation of undiscovered track,” in Proc. Int. Conf. Inf. Netw.
(ICOIN), Jan. 2020, pp. 276–281.

[69] B. Zhou, W. Wang, Z. Wang, and B. Ding, “Neural Q learning
algorithm based UAV obstacle avoidance,” in Proc. IEEE CSAA Guid.,
Navigat. Control Conf. (CGNCC), Aug. 2018, pp. 1–6.

[70] Z. Yijing, Z. Zheng, Z. Xiaoyi, and L. Yang, “Q learning algorithm
based UAV path learning and obstacle avoidence approach,” in Proc.
36th Chin. Control Conf. (CCC), Jul. 2017, pp. 3397–3402.

[71] S. Josef and A. Degani, “Deep reinforcement learning for safe local
planning of a ground vehicle in unknown rough terrain,” IEEE Robot.
Autom. Lett., vol. 5, no. 4, pp. 6748–6755, Oct. 2020.

[72] X. Ruan, D. Ren, X. Zhu, and J. Huang, “Mobile robot navigation
based on deep reinforcement learning,” in Proc. Chin. Control Decis.
Conf. (CCDC), 2019, pp. 6174–6178.

[73] E. Cetin, C. Barrado, G. Munoz, M. Macias, and E. Pastor, “Drone
navigation and avoidance of obstacles through deep reinforcement
learning,” in Proc. IEEE/AIAA 38th Digit. Avionics Syst. Conf. (DASC),
Sep. 2019, pp. 1–7.

[74] L. Tai and M. Liu, “Towards cognitive exploration through deep
reinforcement learning for mobile robots,” 2016, arXiv:1610.01733.

[75] L. Jiang, H. Huang, and Z. Ding, “Path planning for intelligent
robots based on deep Q-learning with experience replay and heuristic
knowledge,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 1179–1189,
Jul. 2019.

[76] F. Niroui, K. Zhang, Z. Kashino, and G. Nejat, “Deep reinforcement
learning robot for search and rescue applications: Exploration in
unknown cluttered environments,” IEEE Robot. Autom. Lett., vol. 4,
no. 2, pp. 610–617, Apr. 2019.

[77] D. Zhu, T. Li, D. Ho, C. Wang, and M. Q.-H. Meng, “Deep rein-
forcement learning supervised autonomous exploration in office envi-
ronments,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2018,
pp. 7548–7555.

[78] H. Shi, L. Shi, M. Xu, and K.-S. Hwang, “End-to-end navigation
strategy with deep reinforcement learning for mobile robots,” IEEE
Trans. Ind. Informat., vol. 16, no. 4, pp. 2393–2402, Apr. 2019.

[79] O. Zhelo, J. Zhang, L. Tai, M. Liu, and W. Burgard, “Curiosity-driven
exploration for mapless navigation with deep reinforcement learning,”
2018, arXiv:1804.00456.

[80] H. Hu, S. Song, and C. L. P. Chen, “Plume tracing via model-free
reinforcement learning method,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 30, no. 8, pp. 2515–2527, Aug. 2019.

[81] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement
learning: Continuous control of mobile robots for mapless navigation,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Sep. 2017,
pp. 31–36.

[82] T. Fan, P. Long, W. Liu, J. Pan, R. Yang, and D. Manocha, “Learning
resilient behaviors for navigation under uncertainty,” in Proc. IEEE Int.
Conf. Robot. Autom. (ICRA), May 2020, pp. 5299–5305.

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on March 31,2024 at 03:48:10 UTC from IEEE Xplore. Restrictions apply.

3810 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 8, AUGUST 2023

[83] K. Rana, B. Talbot, V. Dasagi, M. Milford, and N. Sünderhauf, “Resid-
ual reactive navigation: Combining classical and learned navigation
strategies for deployment in unknown environments,” in Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), May 2020, pp. 11493–11499.

[84] Y. Zhu et al., “Target-driven visual navigation in indoor scenes using
deep reinforcement learning,” in Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), May 2017, pp. 3357–3364.

[85] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Proc. AAAI Conf. Artif. Intell., 2016,
vol. 30, no. 1, pp. 2094–2100.

[86] D. C. Guastella and G. Muscato, “Learning-based methods of percep-
tion and navigation for ground vehicles in unstructured environments:
A review,” Sensors, vol. 21, no. 1, p. 73, Dec. 2020.

[87] N. P. Koenig and A. Howard, “Design and use paradigms for Gazebo,
an open-source multi-robot simulator,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst. (IROS), vol. 3, Sep. 2004, pp. 2149–2154.

[88] W. Yue, X. Guan, and Y. Xi, “Reinforcement learning based approach
for multi-UAV cooperative searching in unknown environments,” in
Proc. Chin. Autom. Congr. (CAC), Nov. 2019, pp. 2018–2023.

[89] H. X. Pham, H. M. La, D. Feil-Seifer, and A. Nefian, “Cooperative and
distributed reinforcement learning of drones for field coverage,” 2018,
arXiv:1803.07250.

[90] X. Cao, C. Sun, and M. Yan, “Target search control of AUV in under-
water environment with deep reinforcement learning,” IEEE Access,
vol. 7, pp. 96549–96559, 2019.

[91] F. Venturini et al., “Distributed reinforcement learning for flexible UAV
swarm control with transfer learning capabilities,” in Proc. 6th ACM
Workshop Micro Aerial Vehicle Netw., Syst., Appl., Jun. 2020, pp. 1–6.

[92] C. Yu, Y. Dong, Y. Li, and Y. Chen, “Distributed multi-agent deep
reinforcement learning for cooperative multi-robot pursuit,” J. Eng.,
vol. 2020, no. 13, pp. 499–504, Jul. 2020.

[93] Y. Jin, Y. Zhang, J. Yuan, and X. Zhang, “Efficient multi-agent
cooperative navigation in unknown environments with interlaced deep
reinforcement learning,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), May 2019, pp. 2897–2901.

[94] J. A. Cruz, H. L. Cardoso, L. P. Reis, and A. Sousa, “Reinforce-
ment learning in navigation and cooperative mapping,” in Proc. IEEE
Int. Conf. Auto. Robot Syst. Competitions (ICARSC), Apr. 2020,
pp. 200–205.

[95] T. Luo, B. Subagdja, D. Wang, and A.-H. Tan, “Multi-agent collabora-
tive exploration through graph-based deep reinforcement learning,” in
Proc. IEEE Int. Conf. Agents (ICA), Oct. 2019, pp. 2–7.

[96] Y. Liu, G. Nejat, and J. Vilela, “Learning to cooperate together: A semi-
autonomous control architecture for multi-robot teams in urban search
and rescue,” in Proc. IEEE Int. Symp. Saf., Secur., Rescue Robot.
(SSRR), Oct. 2013, pp. 1–6.

[97] Y. Cai, S. X. Yang, and X. Xu, “A combined hierarchical reinforcement
learning based approach for multi-robot cooperative target searching
in complex unknown environments,” in Proc. IEEE Symp. Adapt. Dyn.
Program. Reinforcement Learn. (ADPRL), Apr. 2013, pp. 52–59.

[98] X. Zhou, W. Wang, T. Wang, Y. Lei, and F. Zhong, “Bayesian
reinforcement learning for multi-robot decentralized patrolling in
uncertain environments,” IEEE Trans. Veh. Technol., vol. 68, no. 12,
pp. 11691–11703, Dec. 2019.

[99] M. Geng, K. Xu, X. Zhou, B. Ding, H. Wang, and L. Zhang, “Learning
to cooperate via an attention-based communication neural network in
decentralized multi-robot exploration,” Entropy, vol. 21, no. 3, p. 294,
Mar. 2019.

[100] J. Lin, X. Yang, P. Zheng, and H. Cheng, “End-to-end decentralized
multi-robot navigation in unknown complex environments via deep
reinforcement learning,” in Proc. IEEE Int. Conf. Mechatronics Autom.
(ICMA), Aug. 2019, pp. 2493–2500.

[101] Z. Chen, B. Subagdja, and A.-H. Tan, “End-to-end deep reinforcement
learning for multi-agent collaborative exploration,” in Proc. IEEE Int.
Conf. Agents (ICA), Oct. 2019, pp. 99–102.

[102] O. Walker, F. Vanegas, F. Gonzalez, and S. Koenig, “Multi-UAV target-
finding in simulated indoor environments using deep reinforcement
learning,” in Proc. IEEE Aerosp. Conf., Mar. 2020, pp. 1–9.

[103] J. Hu, H. Niu, J. Carrasco, B. Lennox, and F. Arvin, “Voronoi-based
multi-robot autonomous exploration in unknown environments via deep
reinforcement learning,” IEEE Trans. Veh. Technol., vol. 69, no. 12,
pp. 14413–14423, Oct. 2020.

[104] A Review of Research in Multi-Robot Systems, Birla Inst. Technol. Sci.,
Pilani, India, Aug. 2012.

[105] Z. Yan, N. Jouandeau, and A. A. Cherif, “A survey and analysis of
multi-robot coordination,” Int. J. Adv. Robotic Syst., vol. 10, no. 12,
p. 399, Dec. 2013.

[106] H. W. Jun, H. J. Kim, and B. H. Lee, “Goal-driven navigation for
non-holonomic multi-robot system by learning collision,” in Proc. Int.
Conf. Robot. Autom. (ICRA), May 2019, pp. 1758–1764.

[107] T. Hester, M. Lopes, and P. Stone, “Learning exploration strategies in
model-based reinforcement learning,” in Proc. Int. Conf. Auton. Agents
Multi-Agent Syst., vol. 2, May 2013, pp. 1069–1076.

[108] R. McFarlane, A Survey of Exploration Strategies in Reinforcement
Learning. Montreal, QC, Canada: McGill Univ., 2018.

[109] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune,
“First return, then explore,” Nature, vol. 590, no. 7847, pp. 580–586,
Feb. 2021.

[110] O. Tutsoy and M. Brown, “Chaotic dynamics and convergence analysis
of temporal difference algorithms with bang-bang control,” Optim.
Control Appl. Methods, vol. 37, no. 1, pp. 108–126, Jan. 2016.

[111] O. Tutsoy and M. Brown, “An analysis of value function learning with
piecewise linear control,” J. Experim. Theor. Artif. Intell., vol. 28, no. 3,
pp. 529–545, May 2016.

Luíza Caetano Garaffa received the B.Sc. degree in
electrical engineering from the Federal University of
Rio Grande do Sul (UFRGS), Porto Alegre, Brazil,
in 2019, where she is currently pursuing the M.Sc.
degree in computer science.

Her current research interests include machine
learning, reinforcement learning, mobile robotics,
and (multi)unmanned aerial vehicles. Other research
interests also include machine learning applied to
biomedical engineering and hardware security.

Maik Basso received the bachelor’s degree in infor-
mation systems from the Federal University of Santa
Maria (UFSM), Santa Maria, Brazil, in 2015, and
the M.Sc. degree in electrical engineering from
the Systems of Automation, Federal University of
Rio Grande do Sul (UFRGS), Porto Alegre, Brazil,
in 2018, where he is currently pursuing the Ph.D.
degree in graduate program in electrical engineer-
ing.

His current research interests include embedded
systems for autonomous (multi) unmanned aerial

vehicles (UAVs), image processing, artificial intelligence, WEB technologies,
and WEB development.

Andréa Aparecida Konzen received the M.Sc.
degree in computer science from the Pontifical
Catholic University of Rio Grande do Sul (PUCRS),
Porto Alegre, Brazil, in 2002, the Ph.D. degree in
informatics in education from Federal University of
Rio Grande do Sul (UFRGS), Porto Alegre, in 2015,
and the Ph.D. degree in computer science from the
University of Santa Cruz do Sul (UNISC), Santa
Cruz do Sul, Brazil.

She is currently a Post-Doctoral Researcher with
the Institute of Informatics, UFRGS. She is also

a Researcher in artificial intelligence—machine learning, focusing on the
development of navigation algorithms and autonomous exploration, and fusion
of maps based on machine learning techniques.

Edison Pignaton de Freitas received the Ph.D.
degree in computer engineering from the Military
Institute of Engineering, Rio de Janeiro, Brazil, in
2003, the M.Sc. degree in computer science from
Federal University of Rio Grande do Sul (UFRGS),
Porto Alegre, Brazil, in 2007, and the Ph.D. degree
in computer science and engineering from Halmstad
University, Halmstad, Sweden, in 2011.

He is currently an Associate Professor with
UFRGS, acting in the Graduate Programs on Com-
puter Science (PPGC) and Electrical Engineering

(PPGEE), where he is developing research computer networks, real-time
systems, and (multi)unmanned aerial vehicles.

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on March 31,2024 at 03:48:10 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

