
Abstract— Consolidated server systems using server
virtualization involves serious risks of host server failures that
induce unexpected downs of all hosted virtual machines and
applications. To protect applications requiring high-availability
from unpredictable host server failures, redundant configuration
using virtual machines can be an effective countermeasure. This
paper presents a virtual machine placement method for
establishing a redundant configuration against host server failures
with less host servers. The proposed method estimates the requisite
minimum number of virtual machines according to the
performance requirements of application services and decides an
optimum virtual machine placement so that minimum
configurations survive at any k host server failures. The evaluation
results clarify that the proposed method achieves requested
fault-tolerance level with less number of hosting servers compared
to the conventional N+M redundant configuration approach.

Index Terms—Virtual Machine, Fault-tolerant, Redundant
Configuration, Placement Algorithm

I. INTRODUCTION

ever virtualization has emerged as a powerful technique for
consolidating servers in data centers. Virtualization

platforms such as VMware Infrastructure [1] and Citrix
XenServer [2] virtualize hardware resources and generate
multiple virtual execution environments called virtual machines.
Each virtual machine can behave as an independent physical
server, and hence multiple OS instances can run concurrently on
a hosting server. Data centers and large-distributed enterprise
systems have many temporal unutilized servers. By converting
these servers to virtual machines and running them on the fewer
hosting servers, resource utilizations of the whole data centers
improves [3]. The reduction of the number of hosting servers
also contributes to cutting back the power consumptions in the
data centers [4][5].

A failure of a hosting server becomes a serious problem in
consolidated server systems using virtualization. Virtual
machines depend on physical devices and virtualization
platform on the hosting server. When the hosting server goes
down due to any failures of their components, all virtual
machines on this server are unable to escape from service down.
The more virtual machines the hosting server hosts, the more
serious damage a failure of this hosting server causes. Any

countermeasures against multiple server downs caused by host
server failures are required.

This paper presents a method to make a redundant
configuration of virtual machines in anticipation of host server
failures in consolidated server systems hosting various online
applications. The proposed method estimates the requisite
minimum number of virtual machines according to performance
requirements of application services and decides an optimum
virtual machine placement so that minimum configurations
survive at any k host server failures. In terms of the cost
reduction by server consolidation, the number of hosting server
should be minimized. An optimum virtual machine placement
for minimizing the number of required hosting server depends
on several factors such as the required fault-tolerance level k,
the capacity of hosting server, the number of applications and
their performance requirements. The paper defines this problem
as a combinatorial optimization problem and presents an
algorithm for determining an optimum virtual machine
placement under given conditions. From some evaluation
results, we have observed the proposed method achieves
requested fault-tolerance level k with less number of hosting
servers compared to the conventional N+M redundant
configuration approach. N+M redundant configuration prepares
M redundant components so as to keep N components at any M
component failures.

The rest of the paper is organized as follows. Section II
describes a configuration and requirements for consolidated
server systems using virtualization. Section III provides a
problem definition for determining redundant virtual machine
configurations while minimizing the number of required hosting
servers. Section IV discusses a performance model for
estimating required resources to meet performance
requirements for applications. In Section V, a method for
determining a redundant configuration under the given
constraints is proposed. Experiments and evaluations are shown
in Section VI, related work is presented in Section VII, and
finally the summary of this paper is given in Section VIII.

II. REQUIREMENTS FOR HOSTING SERVER CLUSTER

This section describes the configuration of a hosting server
cluster that hosts various online applications, and their
performance requirements and level of fault-tolerance.

Redundant Virtual Machine Placement for
Fault-tolerant Consolidated Server Clusters

Fumio Machida, Masahiro Kawato and Yoshiharu Maeno
Service Platforms Research Laboratories, NEC Corporation

1753, Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666, Japan
{h-machida@ab, m-kawato@ap, and y-maeno@aj}.jp.nec.com

S

32978-1-4244-5367-2/10/$26.00 c©2010 IEEE

A. Hosting Server Cluster

Data center providers recently provide virtual machine
hosting service by introducing server virtualization to own
physical server clusters. Application providers, who want to
launch application services in the data center, can rent virtual
machines and start services quickly by signing a contract with
the data center provider. The application services introduced by
the application providers often take redundant server
configurations for assuring scalability and availability. There
are many redundant configuration methods for online
applications such as web servers, mail servers and data base
servers. Web servers distribute their workloads to multiple
servers using load balancing module [6]. Mail servers can
improve their performance and fault-tolerance by distributing
processes to replication servers using DNS round robin. Data
base servers often use clustering method for scalability and
high-availability [7]. This paper assumes that each hosted
application has own redundant configuration method and
focuses on the virtual machine placement issue in data center
providers to provide a fault-tolerant hosing server cluster.

B. Performance Requirements

A data center provider and an application provider make an
agreement for performance of applications in the service level
agreement (SLA). Performance requirements of online
applications such as web applications are usually specified
average response time of application service. The response time
depends on the various factors like resource capacities,
utilization limitations and network congestions. The data center
provider has to allocate sufficient resources to the applications
to keep the requested average response time.

Performance requirements for an application restrict the
minimum resource configurations including the number of
virtual machines or CPUs for the application. By allocating
more computing resources, most of CPU-intensive online
applications like web applications improve their processing
power and average response time. Since the relation between
average response time and the CPU allocation can be modeled
using queuing theory, the requisite number of virtual machines
or CPUs can be estimated from the requested average response
time. The detail of the performance model is described in the
Section IV.

C. Fault-tolerance of Hosting Servers

A host server failure is a serious issue in the consolidated
server systems because it causes the downs of multiple virtual
machines on the hosting server. Host server failures are induced
by various causes like OS hang up, device failures and
unexpected power down. To protect application services from
any host server failures, data center provider should configure
the hosting server cluster with redundant application instances.

The fault-tolerance level of the data center service against
host server failure can be measured by the acceptable number of
simultaneous host server failures. The metric indicates a
capability of keeping application services survive at server
failures in the data center. In the area of the distributed
computing systems, a system that can continue services in case

of any k components failures is called k-fault-tolerance [8]. In
order to make a system k-fault-tolerance without virtualization,
the data center provider should prepare k additional servers for
each application. For the data center using virtualization, a
placement of virtual machines is important as well as the
preparation of redundant application instances to achieve k-fault
tolerance.

The fault-tolerance level can be changed by virtual machine
placements. Let us consider an example of redundant
configuration of four applications {a1, a2, a3, a4} using three
hosting servers {s1, s2, s3}. Each physical server can run three
virtual machines and each application requires at least one
virtual machine for minimum configuration. Fig. 1 illustrates
two different patterns of virtual machine placements. Fig. 1 (a)
indicates that two virtual machines for application a1 and one
virtual machine for application a4 are placed on the hosting
server s1. The descriptions are same for s2 and s3.

a1

a1

a4

s1

(a) no-fault-tolerance placement

a2

a2

a4

s2

a3

a3

a4

s3

a1

a2

a4

s1

(b) 1-fault-tolerance placement

a1

a3

a4

s2

a2

a3

a4

s3hosting server

virtual machine

application

Fig. 1. Redundant configuration of virtual machines using three hosting servers

The difference between two placements appears at a host
server failure. When any one of hosting servers fails, the
placement (a) violates the minimum configuration of any one of
applications (a1, a2 or a3). On the other hand, the placement (b)
keeps the minimum configuration of all applications and hence
achieves 1-fault-tolerance.

The placement (a) becomes 1-fault-tolerance by adding a
hosting server and allocating more virtual machines for
application instances as shown in Fig. 2 (c). The more number
of hosting servers generally increases the number of redundant
application instances and improves the fault-tolerance level.
However, the number of hosting servers in the data center
should be reduced in terms of the total cost. Data center
providers need to find a virtual machine placement that satisfies
the required fault-tolerance level, while minimizing the number
of hosting servers.

a1

a1

a4

s1

(c) 1-fault-tolerance placement with 4servers

a2

a2

a4

s2

a3

a3

a4

s3

a1

a2

a3

s4 hosting server

virtual machine

application

Fig. 2. Redundant configuration of virtual machines using four hosting servers

III. PROBLEM DEFINITION

The problem of virtual machine placement for minimizing the
number of hosting server under the specified performance
requirements and fault-tolerance level is defined as a
combinatorial optimization problem. The assumptions made

2010 IEEE/IFIP Network Operations and Management Symposium - NOMS 2010: Mini-Conference 33

here are that all hosting servers have the same capacity and all
virtual machines are equal in terms of the required capacity. The
assumptions are realistic especially for the simple hosting
services charging by the amount of used virtual machines and
providing the common quality of the hosting service. For
providing the basis of the problem definition, the performance
requirements are assumed to specify by the average response
time.

A. Redundant Virtual Machine Placement

Let the set of applications hosted in the data center be A= {a1,
a2, .. , an}, and the set of equipped hosting servers be S={s1,
s2, .. , sm}. The max number of virtual machines is denoted as p
that equals to the number of virtual CPUs on the server if each
virtual machine uses one virtual CPU. Virtual machines on the
server sj are denoted as {vj1, vj2, .. ,vjp}. The virtual machine
placement is expressed by the projection function)(xyvφ that

indicates the application running on the virtual machine vxy. The
goal of the optimization problem is to minimize the number of
hosting servers m, while satisfying the fault-tolerance level k
and all performance requirements that are specified by the
average response time ri for each application ai.

Redundant virtual machine placement problem:

Solve a virtual machine placement φ so as to minimize the

number of hosting servers m under the given values of n, p, k
and)1(niri ≤≤ .

The problem is a combinatorial optimization problem that
has objective function m.

TABLE I
NOTATION USED IN THE REDUNDANT VIRTUAL MACHINE PLACEMENT PROBLEM

Symbol Description
ai Application class
sj Hosting server
n Number of application classes
m Number of hosting servers
p Max number of virtual machines on a hosting server
k Required fault-tolerance level
ri Required average response time for application ai

vxy A virtual machine on the hosting server sx

)(xyvφ Virtual machine placement that indicates the application class
that runs on the vxy

B. Lower Bound

The number of virtual machines allocated to an application ai

is limited by the performance requirements ri. Let the minimum
number of virtual machines for application ai be ci. The lower
bound of the number of hosting server m in the redundant virtual
machine placement problem can be derived theoretically from
the consideration of the number of virtual machines surviving
after k host server failures. The number of surviving virtual
machines at k host server failures out of m host servers is given
by pkm ⋅−)(. Since these virtual machines must contain the

minimum number of virtual machines ci for all ai, the following
condition is obtained.

∑
=

≥⋅−
n

i
icpkm

1

)((1)

Because m is an integer value, the lower bound of m is given as
follows.

kc
p

m
n

i
i +⎥
⎥

⎤
⎢
⎢

⎡
⋅≥ ∑

=1

1
 (2)

IV. PERFORMANCE MODEL

This section describes the performance model for
determining the requisite minimum number of virtual machines
to satisfy the given performance requirements.

The performance of an online application such as a web
application service is often analyzed using queuing models. A
simple performance model for single web server which assumes
Poisson arrival, general service time and bounded accepted
request number of K has been modeled as M/G/1/K queue
model [9]. To incorporate the burst request arrival, the extended
model MMPP/G/1/K has been presented [10]. For multi-tier
application systems, the request arrival rate for each server
depends on the load balancing/scheduling algorithms. Several
studies used G/G/1 to model the performance of multi-tier web
applications [11][12].

Since there is no general performance model that can apply
various online applications, this paper introduce M/M/1 queue
model as a basic example which assumes Poisson request arrival
and exponential service time. These assumptions are not
realistic in some online applications systems. The appropriate
performance model for each application should be determined
through some experiments or observations of real workload.
According to M/M/1 model, the average response time ri of
application ai with a service rate

iμ and a request arrival rate
iλ

is modeled as follows [13].

ii
ir

λμ −
=

1 (3)

When the application gets c times larger computation power by
using more virtual machines or virtual CPUs, the average
response time is approximated as follows.

c

r
i

i

i λ
μ −

=
1 (4)

Consequently, given the requested average response time ri, the
requisite minimum number of virtual machines ci is bounded by
following expression.

i
i

i
i

r

cc
1

−

=≥

μ

λ (5)

Although the value of
iμ depends on the application and

available resources, it can be estimated by observing the values
of

iλ and ri from some performance experiments. Expression (5)

allows us to determine the requisite minimum number of virtual
machines ci for satisfying the requested average response time ri.
The estimated minimum configuration is used to determine the
virtual machine placement method described in the next section.

)1(ni ≤≤

)1(mj ≤≤

)1,1(pymx ≤≤≤≤

34 2010 IEEE/IFIP Network Operations and Management Symposium - NOMS 2010: Mini-Conference

TABLE II
NOTATION USED IN THE M/M/1 PERFORMANCE MODELS

Symbol Description

iλ Request arrival rate of application ai
iμ Service rate of application ai

ci Requisite minimum number of virtual machines for application
ai

V. VIRTUAL MACHINE PLACEMENT

This section introduces k-redundancy method and multiple
k-redundancy method for determining redundant virtual
machine placement. The multiple k-redundancy method
achieves theoretically minimum number of hosting servers.

A. Approach

Performance experiments

ic

Estimation of
redundant
resources

k

p

'ic

m

Placement
Algorithm

φ
Performance

Model

iλ iμ

ir

Fig. 3. Procedure to solve the redundant virtual machine placement problem

An overview of the proposed procedure to solve the
redundant virtual machine placement problem is depicted in Fig.
3. First, performance model for each application is generated
through experimental performance evaluations. Using the
generated model, the requisite minimum number of virtual
machines ci is estimated for satisfying the required average
response time ri. Next, to achieve the required fault-tolerance
level k, the number of redundant virtual machines ci' is estimated
in consideration with ci and p. The number of required hosting
servers m is solved at the same time. Finally, an algorithm for
virtual machine placement determines a placement φ by ci and

m. The detail of the algorithm is shown in the following section.
Clearly, the estimation step dominates the decision of the

required number of hosting servers m that is the objective
function of the redundant virtual machine placement problem.
As the estimation methods, the k-redundancy method is
described in Section C and the multiple k-redundancy method is
described in Section D.

B. Placement Algorithm

We define an algorithm for virtual machine placement so as
to achieve k fault-tolerance under the given ci and m. The
redundant virtual machines that provide the same application
service should be distributed to the different hosting servers in
order to diversify the risks of service down or performance
degradation due to the hosting server failures. Therefore, the
placement algorithm for virtual machine placement is designed
with the heuristic of distributing the same application instances
to different hosting servers.

The placement algorithm is shown in Fig. 4. The function
ha-vm-placement returns virtual machine placement
placement[] with input parameters of c[] and m. This function

sorts all of the virtual machines by the application classes, and
in this order, allocates them to the different hosting servers in
number order.

Algorithm 1

C. K-redundancy Method

K-redundancy method allocates k redundant virtual machines
to each application. To accomplish the k-fault-tolerance of the
hosting server clusters, at least k redundant virtual machines for
each application ai are needed besides the minimum
configurations estimated as ci. In the conventional server
clusters without virtualization, k-fault-tolerance is
accomplished by preparing k redundant physical servers. The
k-redundancy method is established on this conventional
approach. The total number of redundant virtual machines for
each application ai, 'ic is expressed as follows.

kcc ii +=' (6)

With the k-redundancy method, virtual machines that host the
same application instances must not run on the same hosting
server. Otherwise a failure of a single hosting server causes
multiple downs of the same application instances and leads to
SLA violations. Since the placement algorithm allocates virtual
machines to the different hosting servers in the order of sj, this
restriction is specified as the following constraint for m.

kccm i
i

i
i

+=≥ max'max (7)

Another constraint for m is derived from the fact that the total

number of required virtual machines ∑
=

n

i
ic

1

' is not over the total

available virtual machines on the m hosting servers. This
restriction is expressed as follows and leads to another
constraint condition for m.

pmc
n

i
i ⋅≤∑

=1

' (8)

⎟
⎠

⎞
⎜
⎝

⎛
⋅+⋅=⋅≥ ∑∑

==

nkc
p

c
p

m
n

i
i

n

i
i

11

1
'

1 (9)

From the constraints (7) and (9), the minimum number of
hosting servers mKR by k-redundancy method is expressed as
follows.

}
1

,maxmax{
1

KR ⎥
⎥

⎤
⎢
⎢

⎡
⎟
⎠

⎞
⎜
⎝

⎛
⋅+⋅+= ∑

=

nkc
p

kcm
n

i
ii

i

 (10)

Fig. 4. Algorithm for virtual machine placement

 1:# c[] : required VMs for each application
 2:# m : number of the hosting servers
 3:
 4: ha-vm-placement(c[], m) {
 5: cs[] = sort(c[]); # sort by application type
 6: total = cs[].length; # total num of VMs
 7: i=0, y=1;
 8: while (i=<total) {
 9: for (x=1; x++; x=<m) {
10: placement[x, y] = cs[i]; # allocate
11: i++;
12: }
13: y++;
14: }
15: return placement[];
16:}

2010 IEEE/IFIP Network Operations and Management Symposium - NOMS 2010: Mini-Conference 35

The algorithm 1 generates a virtual machine placement using
the parameters 'ic and mKR that are decided by the expression

(6) and (10). In this virtual machine placement, minimum
configurations given as ci necessarily survive at any k hosting
server failures. Since the system is admissible to k host server
failures, k-fault-tolerance of hosing server cluster is achieved.

A drawback of the k-redundancy method is that the number of
hosting server mKR is not always equal to the theoretical
minimum value. For example, the k-redundancy method does
not achieve the theoretical minimum number of hosting server
in the system n=3, k=1, p=3, and (c1, c2, c3) = (3, 1, 1).

a1

a

s1

(a) 8 VMs on 4 hosts

a

a2

s2

a

a3

s3

a

a

s

(b) 9 VMs on 3 hosts

a1

a

a

s

a

a

a

s

a

a

a

s3

Fig. 5. Redundant virtual machine configuration by k-redundancy method (a)
and an alternative (b)

The number of redundant virtual machines (c1', c2', c3') are
calculated as (4, 2, 2) by the expression (6). The mKR equals to 4
by the expression (10) and the virtual machine placement is
decided as Fig. 5 (a) by the algorithm 1. However, the
k-fault-tolerance can be achieved with only three hosting servers,
if the placement is provided as Fig. 5 (b) with an additional
virtual machine for a1. In this example, the k-redundancy
method requires an unnecessary hosting server. As a result the
k-redundancy method minimizes the total number of required
virtual machines for k-fault-tolerance, but does not always
minimize the number of hosting servers m.

D. Multiple k-redundancy Method

Multiple k-redundancy method improves the k-redundancy
method for minimizing the required number of hosting servers.

There is a risk of more than k failures at k hosting server
failures, if ci + k is greater than m. In order to keep ci virtual
machines at k hosting server failures, the multiple k-redundancy
method prepares the integral multiple (multiples of x, where x is
an integer) of k of redundant virtual machines. More specifically,
the total number of redundant virtual machines for each
application ai decided by the multiple k-redundancy method is
expressed as follows.

k
km

c
cc i

ii ⋅⎥
⎥

⎤
⎢
⎢

⎡

−
+=' (11)

The minimum configurations specified by ci can be sustained
in case of any k hosting server failures, if the virtual machine
placement is decided by algorithm 1 with ci' estimated by
expression (11). The proof is given as below.
♦ kmci −<≤1

From the expression (11), the number of redundant virtual
machines is given by

kcc ii +=' (12)

Since mci ≤' is true in this case, the ci of virtual machines

can survive at any k server failures.
♦)()()1(kmckm i −⋅<≤−⋅− αα where α is any integer greater

than 1.
From the expression (11), the number of redundant virtual
machines is given by

kcc ii ⋅+= α' (13)

Since mckm i ⋅<≤+⋅− αα ')1(is true in this case, k server

failures does not cause to more than k⋅α failures of virtual
machines and hence the ci of virtual machines certainly
survive.

From the consideration of the above two cases, it is proved
that for all)1(ii ca ≤ , ci of virtual machines certainly survive at

any k hosting server failures.
In the multiple k-redundancy method, there is no restriction

that prohibits the existence of multiple application instances on
the same hosting server. The number of hosting servers m is
bounded by the constraint of the total number of required virtual
machines. The total number of required virtual machines is not
over the total available virtual machines m*p.

pmc
n

i
i ⋅≤∑

=

'
1

 (14)

By rewriting the 'ic with the expression (11), the total number

of required virtual machines are expressed as follows.

∑

∑

∑∑

=

=

==

⋅
−

=

⎭
⎬
⎫

⎩
⎨
⎧

⋅
−

+≥

⎭
⎬
⎫

⎩
⎨
⎧

⋅⎥
⎥

⎤
⎢
⎢

⎡

−
+=

n

i
i

n

i

i
i

n

i

i
i

n

i
i

c
km

m

k
km

c
c

k
km

c
cc

1

1

11

'

 (15)

The expression (14) can be rewritten using the above inequality.

pmc
km

m n

i
i ⋅≤⋅

−
∑

=1

 (16)

Then the constraint condition for m can be expressed as below.

kc
p

m
n

i
i +⋅≥ ∑

=1

1 (17)

Consequently, the minimum number of hosting servers mMKR by
the multiple k-redundancy method is given by

kc
p

m
n

i
i +⎥
⎥

⎤
⎢
⎢

⎡
⋅= ∑

=1
MKR

1 (18)

By substituting mMKR into the expression (11), the number of
redundant virtual machines for application ai is expressed as

kc
p

ccc
n

i
iiii ⋅

⎥
⎥

⎥

⎤

⎢
⎢

⎢

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎥

⎤
⎢
⎢

⎡
⋅⋅+=

−

=

∑
1

1

1
' (19)

The parameters for algorithm 1, 'ic and mMKR are decided by

the expression (18) and (19), and the algorithm generates a
virtual machine placement that achieves k-fault-tolerance of
hosting server clusters. Since mMKR is equal to the theoretical
minimum value described in Section III-B, the multiple
k-redundancy method can minimize the required hosting servers
under any given conditions.

36 2010 IEEE/IFIP Network Operations and Management Symposium - NOMS 2010: Mini-Conference

VI. EVALUATION

In order to evaluate the proposed redundant configuration
method, we conducted performance experiments and
simulations studies.

A. Performance Profiling

The proposed approach described in Section 5 uses the
performance model for estimating the requisite minimum
number of virtual machines from the performance requirements
specified as ri. A parameter of the M/M/1 model

iμ which

varies depending on applications and available resources needs
to be estimated by some performance experiments. Here, an
example of performance model for a web server is considered.
The M/M/1 model for the web server is generated from the
experimental observation of the relationships among the
number of allocated CPUs, request rates and average response
times.

HTTP requests

CPU Core 2 Duo
1.8GHz x 2

RAM 10GB Fedora Core 8

Xen 3.1.2

Fedora Core 8

virtual machine

Apache 2.2.6

hosting server

CGIClientClientClient

Fig. 6. Configuration of testing environment

Fig. 6 illustrates the configurations of performance test
environment. A Xen-based virtual machine runs on the hosting
server that has 2 Dual Core Intel Xeon 1.8 GHz processors and
10GB of RAM with Fedora Core 8 and Xen 3.1.2 hypervisor.
An Apache 2.2.6 web server runs on top of the test server. The
performance experiments are conducted by a test CGI script that
receives web requests from another client host.

0

500

1000

1500

2000

2500

3000

R
es

p
o

n
se

 t
im

e
(m

se
c)

Arrival rate

1 cpu

2 cpu

3 cpu

4 cpu

Fig. 7. Observations and model for request response times

Fig. 7 shows the change of relations between the request rates
and the average response times by varying the number of virtual
CPU allocation from 1 to 4. The average response time is
always under 100 msec, unless the request rate over a certain
point. When the request rate exceeds the point the average
response time increases steeply. The value of the inflection
point of request rate is proportional to the number of allocated
virtual CPUs. The approximation curves by M/M/1 queue
model with

iμ =10.6 are also figured as dotted lines in the Fig. 7.

Although the shape of the curve does not completely fit to the
observed values, the model gives a good indication for the

boundary value of the request rate corresponding to the number
of allocated virtual CPUs.

By conducting similar performance experiments,
performance model for each application can be generated. The
requisite minimum number of virtual machines or virtual CPUs
is estimated from the generated performance model specified as
expression (5) and required average response time ri. For
example, to keep the average response time of this application
below 500 msec under the condition

iλ = 25, the performance

model reveals that it requires more than 3 virtual CPUs.

B. Allocation Methods

As described in Section II, the number of required hosting
servers for achieving the k-fault-tolerance under any given
conditions changes depending on the virtual machine placement.
In this section conventional approaches for virtual machine
placement are described for comparison.

The problem of virtual machine placement for minimizing
the number of required hosting server is formulized as a bin
packing problem [14][15]. The bin packing problem is known
to an NP-hard problem which is difficult to solve completely in
the realistic time, thus some heuristic algorithms are used to
cope with this problem. First-Fit decrease (FFD) is a well
known powerful heuristic approach to the bin packing problem
[16]. The FFD is an effective solution to virtual machine
placement where each application instance on the virtual
machine requires different size of resources (e.g. the number of
CPUs). However, since the cluster configured using FFD does
not have redundancy, additional k clusters that has the same
configuration are required to accomplish the k-fault-tolerance.
The required number of the hosting servers is shown as below.

♦ FFD
The FFD decides a virtual machine placement of a minimum
cluster that satisfies all performance requirements of hosted
applications, while minimizing the number of required
hosting servers as much as possible. By preparing k backup
clusters of this minimum cluster, the system can achieve
k-fault-tolerance. Let the required number of hosting servers
for the minimum configuration by the FFD be mFFD. The
value of mFDD is bounded as follows.

⎥
⎥

⎤
⎢
⎢

⎡
⋅≥ ∑

=

n

i
ic

p
m

1
FFD

1 (20)

In addition, an upper bound of mFFD is given by

1
1

9

11
1

9

11

1
OPTFFD +⎥

⎥

⎤
⎢
⎢

⎡
⋅≤+≤ ∑

=

n

i
ic

p
mm (21)

where mOPT is an optimum solution of the bin packing

problem [16] and the value of mOPT is more than
⎥
⎥

⎤
⎢
⎢

⎡
⋅∑

=

n

i
ic

p 1

1 .

Then the best and worst of the required number of hosting
servers by FFD are given as follows.

()1
1

1
best-FFD +⋅⎥

⎥

⎤
⎢
⎢

⎡
⋅= ∑

=

kc
p

m
n

i
i

 (22)

()11
1

9

11

1
worst-FFD +⋅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎥
⎥

⎤
⎢
⎢

⎡
⋅= ∑

=

kc
p

m
n

i
i

 (23)

2010 IEEE/IFIP Network Operations and Management Symposium - NOMS 2010: Mini-Conference 37

0
5

10

15

20

25

30

35

40

45

3 4 5 6 7 8 9 10 11121314151617181920

N
u

m
b

er
 o

f h
o

st
in

g
 s

er
ve

rs
 m

Number of applications n

MKR
KR-best
KR-worst
FFD-best
FFD-worst

0

5

10

15

20

25

30

35

1 2 3 4 5

N
u

m
b

er
 o

f h
o

st
in

g
 s

er
ve

rs
 m

Fault-tolerance level k

MKR
KR-best
KR-worst
FFD-best
FFD-worst

0

10

20

30

40

50

60

70

80

2 3 4 5 6 7 8 9 1011121314151617181920

N
u

m
b

er
 o

f h
o

st
in

g
 s

er
ve

rs
 m

Capacity p

MKR
KR-best
KR-worst
FFD-best
FFD-worst

(a) (b) (c)

Fig. 8. Comparison results by varying (a) the number of applications n, (b) the required fault-tolerant level k, and (c) the capacity of hosting server p.

♦ k-redundancy method
The system without virtualization has to prepare k redundant
servers to achieve k-fault-tolerance. This kind of redundant
configuration technique is called as N+M redundant
configuration. The k-redundancy method applies this
approach to the virtual machine configurations. The required
number of the hosting servers by the k-redundancy method is
provided as mKR as shown in Section V-C. The value of mKR

depends on the maximum value of ci which varies within the
following range.

1max
1

11

+−≤≤ ∑∑
==

nccc
n

n

i
ii

i

n

i
i (24)

Then the best and worst of the required number of hosting
servers by k-redundancy method are given as follows.

}
1

,
1

max{
11

best-KR ⎥
⎥

⎤
⎢
⎢

⎡
⎟
⎠

⎞
⎜
⎝

⎛
⋅+⋅+= ∑∑

==

nkc
p

kc
n

m
n

i
i

n

i
i

 (25)

}
1

,1max{
11

worst-KR ⎥
⎥

⎤
⎢
⎢

⎡
⎟
⎠

⎞
⎜
⎝

⎛
⋅+⋅++−= ∑∑

==

nkc
p

kncm
n

i
i

n

i
i

 (26)

♦ Multiple k-redundancy method
The multiple k-redundancy method improves the

k-redundancy method to achieve k-fault-tolerance with lower
number of the hosting servers. This method prepares the integral
multiple of k of redundant virtual machines. The required
number of hosting servers by multiple k-redundancy method is
provided as mMKR as shown in Section V-D.

A. Simulation Studies

The required number of hosting servers by the multiple
k-redundancy method is evaluated under various input
parameters with comparison to the FFD based approach and
k-redundancy method.

First, in order to observe the effects of the change of the
number of applications n, the required number of hosting
servers are evaluated with the given parameters p=4,k=1, and

3
1

1

=⎥
⎥

⎤
⎢
⎢

⎡
⋅= ∑

=

n

i
ii c

n
c (the average number of ci). Comparison

results shown in Fig. 8 (a) indicate the proposed multiple
k-redundancy method is prior to any other methods independent
to the value of n. The greater n, the more advantage the multiple
k-redundancy method has. The main drawback of the
k-redundancy method is the variation of the results depending
on the combination of the number of application instances for

each application class. The result marginally worse than the
multiple k-redundancy method in the best case, however, in the
worst case, the k-redundancy method requires more than twice
number of the hosting servers compared with the multiple
k-redundancy method.

Next, in order to observe the effects of the change of the
required fault-tolerance level k, the required number of hosting
servers are evaluated with the given parameters p=4, n=5, and

3=ic . Comparison results shown in Fig. 8 (b) indicate the

multiple k-redundancy method achieves best performance in the
given requirements k compared to other methods.

Furthermore, in order to observe the effects of the change of
the capacity of each hosting server p, the required number of
hosting servers are evaluated with the given parameters k=1,
n=20, and 3=ic . Comparison results shown in Fig. 8 (c)

indicate the multiple k-redundancy method is prior to any other
methods independent to the value of p. According to the
increase of the capacity p, the difference between the multiple
k-redundancy method and the best case of the k-redundancy
method become small. However, the worst case of the
k-redundancy method does not improve even if the capacity
increases.

VII. RELATED WORK

Although there has been a lot of works on high-availability
techniques for server clusters, the combination of
high-availability techniques and virtualization is one of the
emerging issues [17]. To make application systems running on
virtual machines high-available, VMware provides a VMware
HA (High Availability) [18]. In the event of a host server failure,
VMware HA restarts virtual machines automatically on the
other hosting server. Since the VMware HA is a reactive
approach, a temporal service down or performance degradation
is inevitable. Contrarily, a proactive approach based on the
failure perdition of the hosting server has been proposed for
Xen virtualization platform [19]. The method predicts a hosting
server failure by resource monitoring, and evacuates virtual
machines onto the different hosting server before the occurrence
of any failures. Some failures are predictable by monitoring the
status of server resources like CPU, memory, fan and disk logs.
However, it is difficult to predict all failures by monitoring in
advance. The proposed method is categorized as a proactive
approach and has an original advantage that keeps the minimum

38 2010 IEEE/IFIP Network Operations and Management Symposium - NOMS 2010: Mini-Conference

configuration of application service at any k hosting server
failures. A simple redundant configuration method for virtual
machines on multiple hosting servers is presented in [17]. In
contrast, our study defines a redundant virtual machine
placement problem as a combinatorial optimization problem
and provides an optimum solution.

Dynamic resource allocation problem has been studied well
in the cluster systems, grid computing and utility computing.
Cluster Reserves presented a resource allocation mechanism for
isolating the performance of clustered web services [20].
Cluster-On Demand presents an automated framework to
manage resources in a shared hosting platform [21]. For the
multi-tier web application systems, the dynamic resource
provisioning method based on G/G/1 performance model has
been proposed [22]. Since the existing resource allocation and
provisioning methods mainly focus on the optimization of
performance and resource utilization in systems, they do not
take into account the fault-tolerance criteria. Few works
incorporate the requirements for reliability and availability of
application systems in the resource allocation algorithm
[23][24]. However the virtual machine placement problem
corresponding to host server failures is not formulated and
optimum solution has been not discussed well. This paper
defines a virtual machine placement problem with the condition
of required fault-tolerance level and shows an algorithm to find
an optimum solution.

VIII. CONCLUSION

This paper presents a method to make a redundant
configuration of hosting server cluster for multiple applications
using virtual machines. Consolidated server systems using
server virtualization involves serious risks of host server
failures that causes multiple downs of virtual machines. The
proposed multiple k-redundancy method minimizes the number
of required hosting servers to keep the minimum configuration
for satisfying the performance requirements for all applications
at any k host server failures. The method allocates integral
multiple of k of redundant virtual machines to each application
and places them into different hosting server using the simple
placement algorithm. The advantage of the multiple
k-redundancy method is shown through the experimental results
of comparison with the conventional N+M redundant
configuration approach and the FFD-based virtual machine
placement approach. Consolidated server systems become more
reliable with low cost by using the proposed multiple
k-redundancy method.

REFERENCES

[1] VMware Infrastracture: http://www.vmware.com/products/vi/
[2] Citrix XenServer:

http://citrix.com/English/ps2/products/product.asp?contentID=683148
[3] G. Khanna, K. Beaty, G. Kar, and A. Kochut, Application Performance

Management in Virtualized Server Environments, In Proceedings of
10th IEEE/IFIP Network Operations and Management Symposium
(NOMS2006), pp. 373-381, 2006.

[4] D. Kusic, J. Kephart, J. Hanson, N. Kandasamy, and G. Jiang, Power and
Performance Management of Virtualized Computing Environments Via

Lookahead Control, In Proceedings of the 5th IEEE International
Conference on Autonomic Computing (ICAC2008), pp. 3-12, 2008.

[5] L. Hu, H. Jin, X. Liao, X. Xiong, and H. Liu, Magnet: A novel
scheduling policy for power reduction in cluster with virtual machines,
In Proceedings of the 2008 IEEE International Conference on Cluster
Computing, pp. 13-22, 2008.

[6] Apache Module mod_proxy_balancer, http://httpd.apache.org/docs/2.2/
mod/mod_proxy_balancer.html

[7] MySQL Cluster NDB 6.X/7.X Reference Guide,
http://dev.mysql.com/doc/#cluster

[8] A. S. Tanenbaum, and M. van Steen, Distributed Systems Principles and
Paradigms, Prentice Hall Inc., pp. 370-371, 2002.

[9] J. Cao, M. Andersson, C. Nyberg, and M. Kihl, Web Server Performance
Modeling using an M/G/1/K*PS Queue, In Proceedings of the 10th
International Conference on Telecommunications (ICT 2003), 2003.

[10] M. Andersson, J. Cao, M. Kihl, and C. Nyberg, Performance Modeling
of an Apache Web Server with Bursty Arrival Traffic, In Proceedings of
the International Conference on Internet Computing (IC), 2003.

[11] Z. Cai, Y. Chen, V. Kumar, D. Milojicic, and K. Schwan, Automated
Availability Management Driven by Business Policies, In Proceedings of
the 10th IFIP/IEEE International Symposium on Integrated Management
(IM2007), pp. 264-273, 2007.

[12] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal, Dynamic
Provisioning of Multi-tier Internet Applications, In Proceedings of the
2nd IEEE International Conference on Autonomic Computing
(ICAC2005), pp. 217-228, 2005.

[13] G. Tesauro, N. Jong, R. Das, and M. Bennani. A Hybrid Reinforcement
Learning Approach to Autonomic Resource Allocation, In Proceedings
of the 3rd IEEE International Conference on Autonomic Computing
(ICAC2006), pp. 65-73, 2006.

[14] G. Jungy, K. R. Joshiz, M. A. Hiltunen, R. D. Schlichting, and C. Pu,
Generating Adaptation Policies for Multi-Tier Applications in
Consolidated Server Environments, In Proceedings of the 5th IEEE
International Conference on Autonomic Computing (ICAC2008), pp.
23-32, 2008.

[15] N. Bobroff, A. Kochut, and K Beaty, Dynamic Placement of Virtual
Machines for Managing SLA Violations, In Proceedings of the 10th
IFIP/IEEE International Symposium on Integrated Management
(IM2007), pp. 119-128, 2007.

[16] B. Korte, J. Vygen, Combinatorial Optimization: Theory and
Algorithms, Japanese Edition 2005, Springer, 2005.

[17] S. Loveland, E. M. Dow, F. LeFevre, D. Beyer, and P. F. Chan,
Leveraging virtualization to optimize high-availability system
configurations, IBM System Journal, Vol. 47, No. 4, 2008.

[18] VMware High Availability:
http://www.vmware.com/files/pdf/ha_datasheet.pdf

[19] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott, Proactive
fault tolerance for HPC with Xen virtualization, In Proceedings of the
21st annual international conference on Supercomputing (ICS07), pp.
23-32, 2007.

[20] M. Aron, P. Druschel, and W. Zwaenepoel, Cluster Reserves: A
Mechanism for Resource Management in Cluster-based Network
Servers, In Proceedings of the ACM SIGMETRICS Conference 2000,
pp. 90-101, 2000.

[21] J. S. Chase, D. E. Irwin, L. E. Grit, J. D. Moore, and S. E. Sprenkle,
Dynamic virtual clusters in a grid site manager, In Proceedings of the
12th IEEE International Symposium on High Performance Distributed
Computing (HPDC-12), pp. 90-100, 2003.

[22] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal and T. Wood, Agile
Dynamic Provisioning of Multi-tier Internet Applications, ACM
Transactions on Autonomous and Adaptive Systems (TAAS), Volume
3(1), pp 1:1-1:39, March 2008.

[23] N. R. Gottumukkala, C. Leangsuksun, R. Nassar, and S. L. Scott,
Reliability-Aware Resource Allocation in HPC Systems, In Proceedings
of the IEEE International Conference on Cluster Computing 2007
(Cluster2007), pp. 312-321, 2007.

[24] F. Machida, and Y. Maeno, Availability-Constrained Virtual Machine
Placement for HA Clusters, In the Fast Abstract of The 39th IEEE/IFIP
International Conference on Dependable Systems and Networks
(DSN2009), 2009.

2010 IEEE/IFIP Network Operations and Management Symposium - NOMS 2010: Mini-Conference 39

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

