
Power-efficient Virtual Machine Placement and
Migration in Data Centers

Shuo Fang1, Renuga Kanagavelu2, Bu-Sung Lee1, Chuan Heng Foh3, Khin Mi Mi Aung2
1School of Computer Engineering, Nanyang Technological University, Singapore

2Data Storage Institute, A*STAR, Singapore
3Centre for Communication Systems Research, Department of Electronic Engineering University of Surrey, United Kingdom

Abstract—In this paper, we propose a power-efficient solution
for virtual machine placement and migration in a fat tree data
center network. This solution reduces power consumption as well
as job delay by aggregating virtual machines to a few hypervisors
and migrating communicating parties to close locations. In this
work, we consider OpenFlow as the implementation protocol. In
an OpenFlow environment, a centralized controller oversees job
loads, virtual machine requirements and hardware availability.
Given observation of such global knowledge, the OpenFlow
controller can schedule jobs and distribute virtual machines
accordingly. As jobs change and flows shift, the OpenFlow
controller dynamically adjusts virtual machine assignments by
aggregating virtual machines to close locations in order to save
energy. With this placement and migration proposal, more jobs
can operate concurrently with close sources and destinations of
flows, thus both job and flow delay can be reduced.
Index Terms—Power Efficiency, Virtual Machine Migration,

Delay Minimization

I. INTRODUCTION

Virtualization has become a popular data center implemen-
tation technology. As it enables isolation of multiple instances
under the same physical device or infrastructure, virtualization
increases utilization efficiency thus reduces cost and simplifies
operation. It also offers more flexible and secure environment.
In a data center, virtualization concerns three tiers, namely
server virtualization, network virtualization and storage vir-
tualization. Among them, server virtualization is the most
mature technology and it is the fundamental of the other two.
Server virtualization is realized by implementation of virtual
machines (VMs). Multiple VMs may run concurrently on a
single physical machine (PM). The strategy for placing VMs
among PMs plays an important role in optimizing data center
performance. However, even the initial placement optimizes
the network usage, as network status varies over time, its
initial outcome may no longer be optimal. A well-designed
VM migration algorithm needs to accommodate up-to-date
network status, thus maintains an optimized distribution of
VMs.
VMs are placed with two criteria, hardware resource usage

and power consumptions. Hardware limits the number of VMs
that can be allocated and their placement. Power consumption
influences the operating cost of a data center and it attracts
more and more research these years. By migrating VMs to a
portion of the PMs, fewer PMs will be activated. Consequently,
fewer number of routers and switches are needed. In [1] [2],
studies have shown that equipment including servers, storages
and network devices consume around 45% of the total power
in data centers. Besides, they also point out that another 45%

<0,1>

<1,3>

<1,2><1,1>

<0,4><0,3><0,2>

H1 H2

<1,4>

H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16

Pod 1 Pod 2 Pod 3 Pod 4

<3,1>

<3,3>

<3,2>

<3,4>

Fig. 1. Illustration of an N = 2 fat tree topology.

of the power are consumed for cooling down these equipment.
Thus, server virtualization not only saves energy on powering
equipment but also reduces cooling cost.
In a study subject to equipment power consumption [2], it

has been shown that servers and network devices consume
40% and 23% of equipment power respectively. The server
and network power is mainly consumed on devices such as
servers and switches. From the view of a whole data center,
minimizing the number of active servers and switches saves the
major equipment power consumption as well as cooling cost.
Therefore, power consumption can be significantly reduced.
However, various models of servers and switches consume

power at different levels. A high-end server consumes from
2,000-15,000 Watts [3]. According to [4] and [5], a volume
server chassis consisting of 14 blade servers consumes around
4,500 Watts under full workload. Similarly, switch power
consumption also varies, as a high-end switch such as Cisco
Catalyst 6500 series consume 400-4,000 Watts and an edge
switch such as Dell PowerConnect series consumes around
100 Watts only.
A typical data center consists of three layers of switches,

namely, edge switches, aggregate switches and core switches.
Core switches usually use high-end switches which handles
huge volume of traffic across the whole data center, while
edges switches cost less on investment and consume less
power. A source-destination VM pair that close to each other
can communicate through edge switches instead of travelling
through core switches. By migrating VMs of communicating
parties to a close location, core switches usage can be reduced.
Thus, data center can save energy with the same workloads.
In addition, aggregating source-destination VMs contributes

more to power saving than simply aggregating traffic. Our
previous study [6] found out that a switch consumes power
at different levels according to its number of active links
and their rates. In this work, the power consumption on Dell
PowerConnect 8024F switch was studied. It also revealed that

2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber,

Physical and Social Computing

978-0-7695-5046-6/13 $26.00 © 2013 IEEE

DOI 10.1109/GreenCom-iThings-CPSCom.2013.246

1408

the base consumption takes the main portion of the total cost.
To be specific, an idle PowerConnect 8024F switch consumes
around 100 Watts, while it consumes around 130 Watts at the
full load. Suppose an N = 2 fat tree network topology [7],
source-destination VMs are at PMs ofH1 andH9 separately in
Fig. 1. By aggregating traffic, at least five active switches are
needed, i.e., source edge switch < 1, 3 >, source aggregation
switch < 1, 1 >, core switch < 0, 1 >, destination aggregation
switch < 3, 1 > and destination edge switch < 3, 3 >.
However, aggregating VMs to a closer location, for example,
migrating the destination VM to H2 requires only one edge
switch < 1, 3 > active. Thus, aggregating VMs may save more
power than simply aggregating traffic.
In this paper, we aim to design a VM placement and

migration solution that ensures power efficiency in data cen-
ters. Our proposal is based on fat tree topology, an attractive
solution for modern data centers, and OpenFlow Protocol, a
software defined networking technology for customize net-
work protocols. This proposal can adapt to most of data center
architectures with simple modifications. The rest of the paper
is organized as follows. Section II introduces background
information by describing fat tree topology and its construction
rules, as well as OpenFlow protocols. Section III describes
general mechanisms of this design, based on fat tree topology.
Section IV analyzes the network model and formulates an
optimization problem. After discussion on formulation, we de-
velop heuristic algorithms from three approaches in Section V.
We further test our solution with NS 3 simulator in Section VI
and present results regarding simulation tests with different
settings. Important conclusions are drawn in Section VII.

II. BACKGROUND
In this section, we describe background information for our

proposals. We will firstly introduce the fat tree topology and
then the concept of Software-defined Networking (SDN) and
OpenFlow project.

A. Fat Tree
Clos network topology [8] has been raised half a century

ago for telephone switches, it aims to deliver high network
throughput with commodity switches. Recently, in [7], Al-
Fares et al. adopt a standard instance of a Clos topology called
fat tree, which provides non-blocking network connection with
1:1 oversubscription ratio [7]. We based our work on this
topology since it is widely acknowledged. However, with some
adjustments our proposal can be applied to other topologies.
Details about fat tree as a data center architecture can be found
in [7]. However, for simplicity of reading, we summarize the
important terms here. In such a data center of an N−ary
fat tree as shown in Fig. 1, which is made up by 2N -port
switches, where N should be a positive number. A fat tree
topology contains three layers of switches, namely edge layer,
aggregation layer and core layer from bottom to top in the
above figure. The lower two layers are separated into 2N
pods, each containing two layers of N switches, with lower
edge switches and upper layer aggregation switches. In the
upmost layer, there are N2 core switches, each core switch
has a connection towards each of the 2N pods. Since each
edge switch connects to N end stations and each pod has N

edge switches, their are N2 end stations in a pod and 2N3

end stations in an N = 2 data center fat tree topology.

B. Software-Defined Networking and OpenFlow
The concept of Software-Defined Networking (SDN) comes

from Software Defined Radio, which modulates/demodulates
using software instead of hardware as in Cognitive Radio.
Similarly, different from traditional network in which data
plane and control plane are implemented on hardware, SDN
decouples intelligence that controls the flow to a distinct
software application and handles packet traffic on hardware.
This separation opens up the control flow to be easily managed
and remotely accessed. Employing a central controller, which
amasses knowledge of routing information on switches and
network status, SDN manages routing algorithms separately
while keeps data flow running on original network paths.
Hence, SDN provides much easier modification to switch
algorithms, as well as faster control over network status
changes.
OpenFlow project, the most popular enabler for SDN, is

proposed by McKeown et al. [9]. Installing a small piece of
OpenFlow firmware gives engineers access to flow tables, rules
for routing traffic. Moreover, this feature presents OpenFlow
as an ideal tool for academic and research institutions to obtain
network statistics and explore network performance as well as
innovative algorithms, while protecting the proprietary routing
instructions that differentiate one company’s hardware from
another. Many vendors such as Cisco, Hewlett-Packard have
announced their intention to support OpenFlow, thus make it
a step further to industry availability.

III. POWER-EFFICIENT VIRTUAL MACHINE PLACEMENT
AND MIGRATION SCHEME

The proposal aims to schedule VMs with power efficient
concerns. It attempts to utilize fewer PMs and schedule VMs
to migrate when necessary. In this section, we first present
terms used in our design, and then illustrate the VM placement
and migration solution.

A. Terms
A job describes the work load in a data center. Jobs usually

come from Internet request such as Email service, VoIP service
or file transfer. To complete a job, different types of VMs are
required. A job may evoke one or more traffic flows among its
VMs. Job information is usually described with three entries
Job ID, Job Priority and VM List. Job ID denotes the job
sequence number depending on job arrival time. Job Priority
denotes job priority level, which corresponds to requirements
on response time, delay and throughput. VM list lists number
of VMs on each type that are required by this job. Each list
entry is under the format of VM Type ID: VM number.
A Virtual Machine (VM) is a working unit which requires

several system resources. Different types of VM demands
various system resource. A type of VM is defined by pa-
rameters such as VM Type ID, CPU, RAM, storage and
bandwidth. CPU, RAM, storage and bandwidth parameters
denote respectively resources required by the type of VM that
is specified in the VM Type ID field.

1409

�������	�

�� ��������
������

��
����������

���
��������
��������

���������

�����
��������

����
�������
����
����

���������	
�

��	������������

��������������
����
�

���
 ����!���

"�#�
��������
�	��������

��	��������

����	������
�	���������	��

Fig. 2. Power-efficient VM placement and migration illustration.

A hypervisor is a piece of computer software, firmware or
hardware that creates and runs virtual machines. A hypervisor
is running on a PM and creates VMs on it. Hypervisors track
PM resources in a structure including Hypervisor ID, CPU,
RAM, storage and bandwidth. A hypervisor is identified by
its Hypervisor ID. CPU, Memory, Storage and Bandwidth
fields denote the total CPU, RAM, storage and bandwidth
units of its hosting PM. The last field Local Capped Utilization
specifies a percentage as the threshold to indicate approaching
of full utilization. In each job, flows are generated during its
execution. As defined by OpenFlow protocol, each job only
maintains at most one flow at the same time. That means,
communications among different VM pairs are sequentially
conducted. In our VM migration mechanism, migration can
only be scheduled when a flow starts.

B. Job Requirements and Process
In a data center, jobs are processed upon arrival as shown in

Fig. 2. To process a job, the OpenFlow controller deploys all
the VMs required. To deploy a VM on a PM, current resources
on PM must be sufficient to meet VM requirement. A job
can only work when all its VMs are deployed. If any one
of the VM cannot be deployed, this job will suspend for a
random time before checking to execute again. In such a case,
some jobs may be executed later than the subsequent jobs.
This happens when a job cannot be scheduled and a later job
require less resources, or when a job reschedules to a later
time and another job released just before a new job comes. In
our design, OpenFlow controller also periodically checks job
status, PM utilization, and network traffic volume. With these
information collected, the controller schedules VM Migration
when necessary. Therefore, a job is processed through two
stages, namely, VM placement and VM migration. The VM
placement stage happens when a job is launched. In this stage,
VMs are initially scheduled and deployed. The VM migration
stage happens during job execution when flows are initiated,
VMs might be rescheduled to form more inner pod flows thus
less core switches are needed.

IV. PROBLEM FORMULATION

In this section, we present our problem of power-efficient
VM placement and migration with the goal of reducing the

network energy and the end-to-end delay in a fat tree data
center network.

A. Problem Statement
Our problem statement can be briefly described as follows:

we model a data center network using a directed graph
G = (V,E), in which each node v ∈ V represents a
network switch, PM or an external client. Each directed edge
(u, v) ∈ E represents a physical link between the switches
and between a switches and a host. Each link (u, v) has a
nonnegative capacity c(u, v) ≥ 0. We implicitly assume that
c(u, v) = 0 for (u, v) /∈ E.
We consider a set of t hosts are available and their resource

capacities given along CPU, memory, storage and Network
bandwidth dimensions. There are m VMs to be placed. The
requirements of these VMs are given along the dimensions
of CPU, memory, storage and network bandwidth. We have to
find a mapping between VMs and PMs that satisfies the VMs’
resource requirements while minimizing the number of PMs
used, minimizing data center network energy, and minimizing
the end-to-end delay.
Input: let there be t PMs S = {S1, S2...St} and each

host Si = {ci, ri, si, bi, ui} with different resource capacity
attributes: ci for CPU, ri for RAM, si for storage, and bi for
bandwidth. Each server has a Capped Resource Utilization
value, ui (default at 95%) beyond which no more resources
are allocated.
We consider a set of m different VM types depend on

their resource needed (VMs) V = {V1, V2...Vm}. Each VM
type Vi = {cvi, rvi, svi, bvi} with different resource usage
attributes: cvi for CPU, rvi for RAM, svi for storage, and
bvi for bandwidth.
We are given the set of n jobs from tenants need to be

assigned to a data center, each job Ji with a list of VM types
and number of requested VMs for that type.
J = {J1, J2...Jn} where Ji = {x1, x2...xm} and ∀k, xk

is the number of VM type Vk needed by Job Ji.
The network traffic source or destination is one of the m

VMs. Here, over a link (u, v) ∈ E, we reserve the bandwidth
bi(u, v) for the demand n. b(u, v) =

∑i=n

i=1
bi(u, v) is then

the aggregated bandwidth over the link (u, v). For each job
j, we need to find mk feasible PMs to support its physical
resource requirements, as well as a set of path in G to route

1410

its traffic among VMs. Each path consists of a set of links that
inter-connect switches and PMs.
Furthermore we have defined Hosti = {hosti1, ..., hostim}

for each server Si that denotes the set of VMs assigned to that
server, where hostim = 1 if the node Si is hosting the VM
m and hostim = 0 otherwise. The power consumed by server
Si depends on its physical component as well as on the set of
VMs present:

P (Si) = P (Si, Hosti) (1)

The overall Energy cost for moving the VMs from one host
Si to another host Sj is calculated by summing the cost of
every movement M as

Pmig =
∑

l∈L

Migrationcost(Si, Sj , Vl) ·Ml (2)

As hosts are interconnected by networks, the Pdelay network
delay/cost is required to transmit the VM from previously
allocated host to the new host.
The linear function for power-efficient VM placement and

Migration can be written as,

minP (Si) + Pmig + Pdelay (3)

B. Constraints
We define the constraints that need to be satisfied during

VM placement with traffic routing on multiple paths and write
them in the form of inequalities.

• Capacity constraints: the total resource requirement of the
VMs placed on a host should not exceed its capacity. For
each resource capacities of a given host j, the sum of the
resource requirements of all VMs placed on it should be
less than or equal to the total available capacity of the
host.∑

i rikxij ≤ 1, ∀k∀j where rik is the fractional resource
requirement of an individual VM i along the dimension
k. Currently, k is equal to 4 since we consider dimensions
of CPU, RAM, storage and network bandwidth.

• Placement constraint: all virtual machines should be
placed.∑

i xij = 1, ∀i where each xij indicates whether VM i
is placed on the host j.

• Bandwidth constraint: the aggregated bandwidth∑i=n

i=1
bi(u, v) over link (u, v) should not exceed its

capacity c(u, v).∑i=n

i=1
bi(u, v) ≤ c(u, v) for each u, v ∈ V .

• No loss constraint: for every switch u in the Data Center
that is not the source switch or the destination switch of
the job i, the data flowing into it must be equal to the
data flowing out of it (i.e., no packet loss).∑

v∈V bi(u, v)−
∑

v∈V bi(v, u) for each i = 1, 2 . . . n.
• Bandwidth demand constraint: the data flowing out of the
source switch si across multiple paths of the job i must
be equal to the job’s bandwidth demand bi.∑

v∈V bi(si, v) −
∑

v∈V bi(v, si) = di for each i =
1, 2 . . . n.

The problem formulation even when offline is NP-hard. In
next section, we present heuristic algorithms to tackle VM
placement and Migration.

V. HEURISTIC ALGORITHMS
In this section, we introduce three heuristic algorithms for

VM placement and VM migration, namely First Fit (FF), Best
Fit (BF) and Worst Fit (WF). We will elaborate in details in
the following.

A. Virtual Machine Placement
This stage is invoked when a job is launched. In this

stage, two mechanisms are designed and discussed, namely
Random Placement Mechanism and Power-efficient Placement
Mechanism.
To deploy a VM, Random Placement Mechanism, randomly

selects a hypervisor; if the selected hypervisor cannot satisfy
the VM requirements, the mechanism continuously explore
other hypervisors for t times. The parameter of t is called
times to try. To simplify the denotation, we name this Random
Placement as Random.
Similarly, Power-efficient Placement Mechanism also aims

to find out a proper hypervisor to deploy a VM. But it firstly
checks active hypervisors and consults if the VM can be
assigned to any of them. A new PM only starts when all the
active hypervisors are unable to accommodate the VM. We
name this mechanism as Power-efficient.
Since this mechanism first targets on active PMs, it not only

aggregate traffic to a smaller number of active PMs, but also
assures the active PMs are close enough to fully utilization
before activating a new PM. Thus the overall system utilization
rate is also higher than Random mechanism. In Power-efficient
mechanism, three algorithms are discussed.
The differences among the three algorithms lies in the

sequence when finding a proper PM. In FF, the controller
deploys the VM directly to the first suitable PM, while the
controller calculates a weight difference wi in the other two
algorithms. It deploys the VM in the PM with lowest weight in
BF, in comparison, it deploys the VM in the PM with highest
weight in WF. We calculation the weight difference can be
varied, here we use

wi = Δci/ci +Δri/ri +Δsi/si +Δbi/bi, (4)

where Δci, Δri, Δsi, and Δbi denote the unutilized resource
of CPU, RAM, storage and bandwidth.
When a job is completed, it signals the OpenFlow controller

to schedule a VM release event. After VM release, active
hypervisors check the VMs assigned to its hosting PM. In
case of none VMs assigned, the hypervisor instructs the PM
to switch into the inactive mode.

B. Virtual Machine Migration
VM migration stage is invoked when a flow starts. In this

stage, two communicating VMs might be moved into the same
pod. Since each pod contains N2 hosts, we use the PM index
to check whether they are in the same pod. The mechanism
first checks if the source and destination VM are in the same
pod. Otherwise, they attempts to migrate either source VM or
destination VM to an active PM in the same pod of the other.
If neither source pod nor destination pod can accommodate
the other VM, the algorithm tries to allocate either VM to an
inactive PM. Depending which algorithm is implemented, the
migration mechanism varies.

1411

The three algorithms differentiate themselves when if an
active PM can host VM. In FF, the controller checks sequen-
tially and migrates the VM to the first one with sufficient
resource. In the contrary, the BF and WF algorithms calculate
the weight difference first, and migrate to the PM with least
or most difference respectively.
When a migration is scheduled, the mechanism employs

pre-copy memory migration [10]. In pre-copy migration, the
hypervisor firstly copies all the memory from the migration
source to the migration destination, while the VM is still
operating on the migration source. The VM will be resumed
on the migration destination when the copy at the destination
is sufficient for VM execution.
The VM placement and migration solution aims to reduce

number of active devices to save power consumption in a high
performance data center network. It locates VMs closely on
fewer number of PMs.

VI. SIMULATION EXPERIMENTS
In this section, we evaluate the proposal through two sets

of experiments. In the first experiment, the simulation runs
under an N = 4 fat tree topology where hosts 128 PMs. In
the second experiment, the simulation runs under anN = 8 fat
tree topology where 1024 PMs are hosted. In each experiment,
we evaluate them from two perspectives, namely active PM
number and inner pod flow percentage. Active PM number
indicates the server power consumption level in a data center.
Inner pod flow percentages shows the percentage of flows that
travels within a pod instead of traveling across different pods,
which are called inter pod flows. Thus, a higher inner pod flow
percentage indicates less core switch power consumption.
Experiment parameters are shown in Table I. In the first

experiment, we randomly generate 20 jobs. Each job requires
at most 10 VMs and each VM may belong to a preset 15
VM types. Moreover, each job contains at most 10 flows. In
the second experiment, most parameters are the same with
the previous one with the exception that only job numbers are
increased. Similarly, in this experiment, 400 jobs are generated

TABLE I
PARAMETER SETTING IN EXPERIMENT I AND EXPERIMENT II

Parameters Experiment I Experiment II
Job Number 20 400
Duration 1-20 1-20

VM Number per Job 1-100 1-100
Flow per Job 1-10 1-10
Times to Try t 10 10

�

�

��

��

��

��

��

��

��

��

�

��

��

��

��

��

��

	�

� � � � � � 	
 � �� �� �� �� �� �� �� �	 �
 �� ��

�
��

�
��

��
	

��

��

��
��

�
�

��

�	����

��

�����

���

Fig. 3. Job start/end time and VM number illustration

with at most 10 VMs from the preset 20 VM types. Each job
contains at most 10 flows. The simulation time is capped at
800 seconds.
Firstly, we show an illustration of job start time, end time

and VM number in Fig. 3, so that it will be a clearer view
of the job distribution. Secondly, active PM number of both
N = 4 and N = 8 fat tree are shown in Fig. 4 and
Fig. 5. In this report of active PM number, we focus on the
performance comparison of Random mechanism and Power-
efficient mechanism. For a center value of N , we run the
same configuration for both mechanisms. Thus we do not add
migration feature in this report. From these two figures, we
can see that the active PM numbers on the Power-efficient
mechanism are always fewer than the Random mechanism.
At 5-15s and 20-30s, a significant difference can be observed
between Random mechanism and Power-efficient mechanism.
For Power-efficient mechanism, there are no evident differ-

ence between the two schemes. Since there are five resources
that limit VM assignment, the current weight difference
function w may not sufficient enough to guarantee a fully
utilization. As for BF algorithm, the ‘hole’ (we refer ‘hole’s as
unutilized system resources) may not be small enough. As for
WF algorithm, the ‘hole’ may not also big enough for another
VM. Moreover, we can see that for FF, it performs better with
less active PMs used when the jobs end. This tendency might
come from the fact that it tends to allocate VMs used in a job
the same set of PMs. Therefore, when a job end, a PM can be
deactivated. In comparison, in BF and WF algorithms, VMs
belong to the same job might be allocate to different PMs.
When a job ends, the PMs which hosts VMs from other jobs

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

140

Simulation Time (s)

N
um

be
r

of
 A

ct
iv

e
H

yp
er

vi
so

rs
 N

=
4

Random
First Fit
Best Fit
Worst Fit

Fig. 4. Active PM number for N=4 fat tree.

0 100 200 300 400 500 600 700
0

200

400

600

800

1000

1200

Simulation Time (s)

N
um

be
r

of
 A

ct
iv

e
H

yp
er

vi
so

rs
 N

=
8

Random
First Fit
Best Fit
Worst Fit

Fig. 5. Active PM number for N=8 fat tree.

1412

�����

������

������

������

�����

�������

� �� �� �� �� �� ��

��
��

���
�	

�

��

�
��

��
�

��
��

�

�������������������

������ ��������������� ������ !!�"���� ������ !!�"�������������

Fig. 6. Inner pod flow percentage when N=4.

cannot be deactivated. As a result, we just compare FF with
Random mechanism in terms of inner pod flow percentage in
the later illustration.
The drop in Fig. 5 at around 300s is due to the reschedule

of an amount of later jobs when system capacity is full. As in
the Power-efficient mechanism, the centralized controller first
attempts to fill in all the active PMs. VMs with fewer resource
requirements can schedule to active PMs before start another
PM. Therefore, this mechanism firstly fills the ‘hole’s in active
PMs. Comparatively, the Random mechanism does not give
more priority for filling in the ‘hole’s than starting an inactive
PM. Even when there are smaller VMs that can be assigned
to an active PM, the VMs may be allocated to some inactive
PMs. When a VM requires more system resources it is more
probable that none of the PMs have enough resources to deploy
it. Thus, there are bigger ‘hole’s in PMs and less VMs can be
hosted in the Random mechanism. As the Random mechanism
reaches full utilization earlier, it delays more jobs to a later
time. When previous jobs complete, there are bigger gaps and
delays before job retransmission. Therefore, it reacts slower
when system resource release and results in longer delays.
Thirdly, we consider the job delay for both N=4 and N=8

experiments. Table. II shows the total time of job delay in
both experiments. We can see from the results for the first
example all of the algorithms delays for the same time. They
have the same delay time because there is only one job delay
due to fully utilization. However, for N=8, the difference
between the algorithms becomes obvious, in which FF have
the shortest overall delay of 55.06s while Random has the
longest delay of 76.04. That means, it is much easier for FF
to find sufficient resources for processing job and it consumes
around 26% lesser of time. Fourthly, we show the inner pod
flow percentage in Fig. 6 and Fig. 7. The two figures show
the percentage of inner pod flow number to the overall flow
number for both Random and Power-efficient mechanisms
with or without VM migration. In VM migration mechanism,
flows are categorized to inner pod flow and inter pod flow.
An inner pod flow transits within a pod and does not go
through core switches, while an inter pod flow transit across
two differen pods and must go through a core switches to
reach the destination. An inter pod flow which requires a core

TABLE II
TOTAL TIME OF JOB DELAY IN EXPERIMENT I AND EXPERIMENT II

Parameters Experiment I Experiment II
Random 6.61s 76.04s
FF 6.61s 55.06s
BF 6.61s 63.25s
WF 6.61s 64.85s

�����

������

������

������

�����

�������

��� ��� ��� ��� ��� ��� 	��

��
��

���
�	

�

��

�
��

��
�

��
��

�

�������������������

������ ��������������� ������ !!�"���� ������ !!�"�������������

Fig. 7. Inner pod flow percentage when N=8.

switch tends to consumes more power.
In each figure, we present results from four schemes,

namely, Random, Power-efficient, Random Migration and
Power-efficient Migration. We show the inner pod flow per-
centage from 5 to 35 seconds with an interval of 5s in Fig. 6,
and from 100 to 700 seconds with an interval of 100s in Fig. 7.
We can see from the figures that with Migration algorithm,
more than half of the flows can be migrated as inner pod flows.
Thus, less core switches are needed in these schemes. The lack
of data in Fig.7 on 600s and 700s dues to job completion in
Power-efficient schemes.

VII. CONCLUSIONS
In this paper, we have proposed a power-efficient solution

for virtual machine placement and migration. Our proposal
saved energy by aggregating virtual machines to a few physical
machines to reduce server power consumption. As network
evolves, communicating virtual machines would be migrated
into close locations to save link and switches power con-
sumption. The simulation results have shown that this solution
utilizes less number of physical machines and completes job
faster. It achieves up to half number of activating physical
machines and around 26% reduction in job delay as well as
up to 50% flow migrating to inner pod flows. Considering that
less equipment consumes less energy, server and core switches
can consume less power in our proposal.

REFERENCES
[1] T. Babasaki, T. Tanaka, Y. Nozaki, T. Aoki, and F. Kurokawa, “Devel-

oping of higher voltage direct-current power-feeding prototype system,”
in Telecommunications Energy Conference, 2009. INTELEC 2009. 31st
International. IEEE, 2009, pp. 1–5.

[2] J. Raji, “Evolving towards the GREEN Data Center,” 2009.
[3] J. Koomey, “Estimating total power consumption by servers in the us

and the world,” 2007.
[4] R. B. John Beckett and the Dell Server Performance Analysis Team,

“Power Efficiency Comparison of Enterprise-Class Blade Servers and
Enclosures,” 2007.

[5] “Blade Server Power Study,” 2007.
[6] S. Fang, H. Li, C. Foh, W. Y., and K. Aung, “Energy Optimizations

for Data Center Network: Formulation and its Solution,” in 2012 IEEE
Globecom Global Communication Conference, organization=IEEE.

[7] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in ACM SIGCOMM Computer Communi-
cation Review, vol. 38, no. 4. ACM, 2008, pp. 63–74.

[8] C. Clos, “A study of non-blocking switching networks,” Bell System
Technical Journal, vol. 32, no. 2, pp. 406–424, 1953.

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[10] C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” in Proceedings
of the 2nd conference on Symposium on Networked Systems Design &
Implementation-Volume 2. USENIX Association, 2005, pp. 273–286.

1413

