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On Dynamic Service Function Chain
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Abstract—Network function virtualization (NFV) is a
promising technology to decouple the network functions from
dedicated hardware elements, leading to the significant cost
reduction in network service provisioning. As more and more
users are trying to access their services wherever and when-
ever, we expect the NFV-related service function chains (SFCs)
to be dynamic and adaptive, i.e., they can be readjusted to adapt
to the service requests’ dynamics for better user experience.
In this paper, we study how to optimize SFC deployment and
readjustment in the dynamic situation. Specifically, we try to
jointly optimize the deployment of new users’ SFCs and the
readjustment of in-service users’ SFCs while considering the
trade-off between resource consumption and operational over-
head. We first formulate an integer linear programming (ILP)
model to solve the problem exactly. Then, to reduce the time
complexity, we design a column generation (CG) model for the
optimization. Simulation results show that the proposed CG-
based algorithm can approximate the performance of the ILP
and outperform an existing benchmark in terms of the profit
from service provisioning.

Index Terms—Network function virtualization (NFV), service
function chain (SFC), dynamic support, column generation.

I. INTRODUCTION

TRADITIONALLY, service providers rely on middleboxes
to realize the network functions that are needed as a part

of a specific service [1]. However, this scheme is restricted
by the drawbacks of dedicated hardware, which results in
difficulties in deployment and maintenance, prolonged time
to market, and high expenses, and thus it cannot adapt to
the requirements of emerging applications related to cloud
computing [2], [3] and big data [4]. To address these issues,
network function virtualization (NFV) [5] was proposed to
migrate network functions from expensive dedicated hardware
to software-defined elements by leveraging IT resource virtu-
alization, i.e., processing traffic with virtual network functions
(vNFs) [6]. Hence, service providers do not need to worry
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too much about the hardware environment during service
provisioning.

Note that, with NFV, we can represent a network ser-
vice with a series of connected vNFs, i.e., formulating a
service function chain (SFC) [7]. This could be challeng-
ing for network control and management (NC&M) when the
constraints on IT and bandwidth resources need both to be
addressed well [8]. Previously, researchers have considered the
problem of vNF placement in [9] and [10], while the studies
in [7], [11], and [12] have addressed how to deploy SFCs.
Nevertheless, in order to fully explore the advantages of NFV,
we have more challenges to work on. For instance, with the
rapidly growth of mobile devices, more and more users are
trying to access their services wherever and whenever [13].
Consequently, SFCs need to be readjusted to ensure service
continuity when the users are moving, and vNFs might be
added in or removed from SFCs to adapt to their demands.
However, how to set up and readjust SFCs adaptively such that
the dynamic nature of user demands can be properly addressed
has not been fully explored yet.

For SFCs, the optimal deployment of vNFs will change
when their users move [14]. Hence, a static SFC deploy-
ment scheme can make the paths among the users and their
vNFs sub-optimal, which would not only cause unnecessary
bandwidth consumption but also degrade user experience.
Moreover, the static deployment approaches can not address
the situation in which users can change their SFC patterns
on-the-fly, since the consideration on vNFs reassignment is
missing. On the other hand, if we readjust SFC deploy-
ment schemes too frequently, the overhead from vNF migra-
tions could become a serious issue [15]. Therefore, for the
dynamic SFC deployment and readjustment, we have to care-
fully balance the tradeoff between resource consumption and
operational overhead.

This paper studies how to optimize vNFs deployment and
reassignment to efficiently orchestrate SFCs in respond to
dynamic user demands. Here, as we consider the service pro-
visioning step after the formulation of SFCs, the order of vNFs
in each SFC is predetermined. We also assume that an SFC
is provisioned for one user and thus each SFC would take
the one-dimensional chain topology. Since our network model
allows multiple SFCs to share certain vNFs, more complex
and two-dimensional vNF graphs are also addressed in our
work. However, the SFCs can actually be more generic with
more complex and flexible topologies [16], [17], which will
be addressed in our future work. For the vNF deployment, we
consider the cost of two parts, i.e., IT and bandwidth resource
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consumption. For the vNF reassignment, we consider the asso-
ciated operational overhead. To solve the SFC provisioning
problem with these considerations, we first formulate an inte-
ger linear programming (ILP) model to maximize the service
provider’s profit under the resource and operational overhead
constraints. Then, to reduce the time complexity, we design a
column generation (CG) [18], [19] model for the optimization
to approximate the performance of the ILP. In summary, our
main contributions are as follows.

• We consider a practical network scenario for dynamic
SFC deployment and readjustment and formulate an ILP
model to solve the optimization exactly.

• We design a CG model based on the feasible service pro-
visioning schemes of the users and leverage it to reduce
the time complexity of the optimization.

The rest of the paper is organized as follows. Section II
provides a brief survey on the related work. In Section III,
we describe the network model and formulate the problem of
dynamic SFC deployment and readjustment. An ILP model is
formulated in Section IV to solve the problem exactly, with
formal complexity analysis. Section V discusses the CG model
for the problem. The performance evaluation is presented in
Section VI. Finally, Section VII summarizes the paper.

II. RELATED WORK

Since its inception, NFV has attracted intensive interests
from both academia and industry. For comprehensive surveys
on it, one is suggested to refer to [20] and [21]. Meanwhile,
the standardization activities related to NFV are making impor-
tant progress recently [5], and drafts on the use cases of NFV
and the description of SFCs can be found in [22] and [23],
respectively. The work in [24] and [25] investigated NFV
from the perspective of system implementation. Specifically,
Martins et al. considered how to realize NFV with ClickOS
in [24], while Mamatas et al. [25] proposed an information-
exchange-management-as-a-service facility as an extension to
the standard NFV management framework, which can support
information flow establishment, operation, and optimization.

The studies in [7], [9], [11], and [26]–[30] have investigated
the problems of vNF or SFC deployment from the perspective
of resource allocation. Cohen et al. [26] formulated a problem
on vNF placement to minimize both the deployment and con-
nection costs of vNFs, and proposed approximation algorithms
that could solve it with performance guarantee. However, their
studies did not consider the resource constraints of substrate
nodes and links. Moens and De Turck [9] considered a hybrid
scenario in which network services can be provisioned with
both the hardware-specified elements and vNFs. A binary
search algorithm was designed in [27] to minimize the num-
ber of deployed vNFs under the constraint of data-transfer
latency. The work in [28] introduced a dynamic program-
ming based heuristic called Viterbi to solve the problem of
SFC deployment. Mehraghdam et al. [7] used a context-free
language to formulate the problem of SFC deployment as a
mixed integer quadratically constrained program model and
use the Pareto set analysis to balance the tradeoffs among sev-
eral optimization goals. Xia et al. [11] studied the problem of

vNF placement in optical inter-datacenter (inter-DC) networks
and proposed a binary integer programming model to mini-
mize the cost due to optical-electronic-optical conversions. The
study in [30] developed a prediction scheme that can forecast
NFV’s future resource requirements, with which the service
provider can spin up new resources more wisely and/or plan
global availability more effectively. Nevertheless, none of the
aforementioned studies considered to support dynamic user
demands in vNF/SFC deployment. Note that, for the dynamic
schemes, the problem of SFC deployment becomes much
more complex since the readjustment of vNF/SFC deploy-
ment has to be taken into account and we need to balance
the tradeoff between resource consumption and operational
overhead.

The work in [31]–[34] have previously addressed dynamic
vNF/SFC deployment. Sun and Ansari [31] proposed a novel
network architecture for cloudlet (i.e., a mobility-enhanced
small-scale cloud DC located at the edge of the Internet).
Specifically, they assumed that each user communicated with
a specific virtual machine (VM) called Avatar in the cloudlet,
investigated how to realize live Avatar migration, and proposed
a strategy to optimize the tradeoff between data-transfer
latency and VM migration overhead. Note that, even though
they considered the mobility feature of the users, their problem
is fundamentally different from ours. Basically, each SFC con-
sists of multiple connected VM/vNFs and the relation among
them has to be considered in the deployment and readjustment
of SFCs. Ghaznavi et al. [32] studied the problem of elas-
tic vNF placement problem and tried to balance the trade-off
between elastic overhead and resource consumption. However,
they assumed that there was only one type of vNFs and
did not consider SFC. Note that, deploying an SFC usually
involves the orchestration of several vNFs in different types,
which apparently makes the problem-solving more complex.
Ayoubi et al. [33] designed an availability-aware resource allo-
cation and reconfiguration framework for the elastic services
in failure-prone DC networks. Although they also considered
to reconfigure the embedding schemes of virtual network ser-
vices when the users’ requests change over time, their focus
was on providing the highest availability improvement with the
lowest reconfiguration cost. Hence, both their network model
and optimization objective are different from ours. In [34], the
migration scheme of vNF instances (vNFIs) in dynamic SFCs
have been studied to minimize the costs from energy consump-
tion and reconfiguration. The authors proposed algorithms to
handle the VNFI placement, SFC routing, and VNFI migra-
tion in response to the change of user workload. Nevertheless,
they did not consider the bandwidth consumption of SFCs
when designing their algorithms, which makes their network
model also different from ours.

Finally, we hope to point out that even though the problem
of dynamic SFC deployment looks similar to the virtual
network embedding (VNE) problem that has already been
studied intensively before [35]–[39], they are fundamentally
different. Basically, in VNE, the virtual networks’ topologies
would not change during the embedding, while in dynamic
SFC deployment, the actual topology of an SFC can change
with the vNF placement.
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III. PROBLEM DESCRIPTION

This section describes the network model and formulates
the problem of dynamic SFC deployment and readjustment.

A. Network Model

The network can be denoted as G = (V, E), where V repre-
sents the set of nodes and E is the set of physical links. Here,
we assume V = Vd

⋃
Vs, which means that there are two

types of nodes in the network, i.e., the DCs and the switches,
and their sets are Vd and Vs, respectively. The switches can be
used as the access points for mobile users and they also for-
ward data traffic in the network, while the DCs contain the IT
resources for vNF deployment. Each DC is locally attached
to a switch.1 For every link e ∈ E between two adjacent
switches, we use Be to denote its bandwidth capacity. The
IT resource capacity of a DC v ∈ Vd is denoted as Cv. We
use P to represent the set of vNF types that can be instan-
tiated in the DCs, e.g., network address translation (NAT)
and firewall. For a p-th type vNF, we denote its IT resource
requirement as cp and assume that it can serve np users
at most.

B. User Model

The user i’s service request can be represented by a 5-tuple
〈vi,

−→gi , si, βi, ri〉, where vi ∈ Vs is the switch for its cur-
rent access, −→gi is a vector to denote the required SFC that
consists of a sequence of specific vNFs, si ∈ Vd is the
source of the traffic flow, βi is the bandwidth requirement
on a connection between two adjacent vNFs in the SFC,
and ri represents the profit that the service provider gains
after serving this request. Hence, to serve the request, the
service provider needs to secure all the required vNFs in−→gi by either deploying new ones or reusing the existing
ones that are not fully loaded, find a proper routing path
that goes through the required vNFs in correct order, and
reserve enough bandwidth on the path to satisfy the bandwidth
requirement.

C. Dynamic SFC Deployment and Readjustment

We consider a periodical service provisioning scenario in
which the service provider can serve new requests or change
the provisioning schemes of in-service requests at time instants
with a fixed interval in between. Hence, at each service time,
the service provider needs to handle two kinds of users. We
use �1 to represent the set of new users that are at the first time
to access the network, while the in-service users are denoted
with set �2. We have � = �1 ∪ �2 as the whole set of users
to handle. In the service provisioning, the operational over-
head of the service provider is mainly from allocating new
users to their required vNFs and migrating the services of
in-service users to vNFs at new locations. Hence, for each
user in �, we count how many vNFs the service provider
operates for it, and use the total number as its operational

1In this work, we assume that the bandwidth capacity of the link between
a DC and its local switch would never be used up.

Fig. 1. Example on dynamic SFC deployment and readjustment.

overhead. More specifically, for a new user in �1, the opera-
tional overhead equals the number of required vNFs in its SFC,
while for an in-service user in �2, the operational overhead is
the number of migrated and newly added vNFs since the last
service time.

The objective of dynamic SFC deployment and readjustment
is to maximize the service provider’s profit, which is equal
to the total profit from the served requests minus the total
deployment cost. The major constraints are those on IT and
bandwidth resources and operational overhead. It should be
noted that certain requests may be blocked due to the lack of
resources. To maximize the profit, the service provider needs
to utilize both the IT and bandwidth resources properly, i.e.,
deploying vNFs adaptively in the DCs, and setting up routing
paths intelligently to connect the vNFs for formulating the
required SFCs for users.

Fig. 1 shows an intuitive example on the dynamic SFC
deployment. Here, for simplicity, we omit the wireless access
points in the figure and assume that each switch can be used as
an access point (i.e., wired or wireless) for the users. Fig. 1(a)
shows the SFC deployment scheme at the previous service
time, where the in-service User 1 accesses the network from
Switch 4 and takes an SFC as vNF 1→vNF 2. Hence, to set
up the SFC for User 1, the service provider deploys a vNF 1
and a vNF 2 on DCs 3 and 1, respectively. Then, at the cur-
rent service time, the service provider finds that a new User 2
joins at Switch 5 to request an SFC as vNF 1→vNF 3 and
the in-service User 1 changes its access point to Switch 5 but
its SFC stays unchanged. Hence, as shown in Fig. 1(b), the
service provider decides to migrate the vNF 1 to DC 5 where
it can be efficiently shared by Users 1 and 2, and deploys a
vNF 3 on DC 6 for User 2.
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IV. ILP FORMULATION

In this section, we formulate a path-based ILP model to
solve the problem of dynamic SFC deployment and readjust-
ment exactly.

Parameters:
• G(V, E): Network topology, where V = Vd

⋃
Vs and Vd

and Vs are for the sets of DCs and switches, respectively.
• Cv: IT resource capacity of a DC v ∈ Vd.
• Be: Bandwidth resource capacity of a link e ∈ E.
• �: Set of pre-calculated paths in G(V, E).

– �u,v: Set of K shortest paths between u and v in
G(V, E), where u, v ∈ V and �u,v ⊂ �.

– π : A path in �, s(π) and d(π) represent the
source and destination of π , respectively, and len(π)

denotes the hop-count of π .
– δe,π : A boolean constant to indicate whether a path

π uses a link e. If yes, we have δe,π = 1, and 0
otherwise.

• Hmax: Maximum operational overhead that the service
provider can take at each service time.

• P : Set of supported vNF types in the network.
– np: Maximum number of users that a p-th type vNF

can serve (p ∈ P ).
– cp: IT resource consumption of a p-th type vNF.

• �: Set of users to handle at the current service time, which
includes both the new ones in �1 and the in-service ones
in �2. We use |�| to denote the total number of users.

• 〈vi,
−→gi , si, βi, ri〉: A 5-tuple to represent the service

request of a user i at current service time.
– vi: Access switch of a user i, vi ∈ Vs.
– −→gi : Required SFC of a user i, which is a vector that

consists of a sequence of specific vNFs.
∗ Li: Number of vNFs in the SFC of a user i. For

convenience, we treat the access switch of a user
as a dummy vNF that consumes 0 IT resource,
i.e., the first vNF in each user’s SFC is its access
switch while the other ones are real vNFs. Hence,
we have Li = |−→gi | + 1.

∗ gi,j,p: A boolean constant that equals 1 if the j-
th vNF on the SFC of a user i is a p-th type
vNF, and 0 otherwise. Since the first vNF is the
user’s access switch, we have gi,1,p = 0, ∀i, p.
We also assume that there are no duplicated vNFs
in a user’s SFC, and thus if j1 �= j2, we have
gi,j1,p + gi,j2,p � 1, ∀i, p.

– si: The source of the required traffic flow,2 si ∈ Vd.
– βi: Bandwidth requirement on a connection between

two adjacent vNFs in the SFC of a user i.
– ri: Profit that the service provider gains after provi-

sioning the SFC of a user i.
• 〈di,j,p, ai,j,v〉: A 2-tuple to represent the SFC provisioning

scheme of an in-service user i before current service time.
– di,j,p: A boolean constant to represent the required

SFC of an in-service user i before current service
time. It equals 1 if the j-th vNF on the SFC of a user

2In this work, we assume that for each user’s SFC, the source of the traffic
flow si is fixed and will not move during the service provisioning.

i is a p-th type vNF, and 0 otherwise. It corresponds
to parameter gi,j,p described above for the current
service time. It should be noted that di,j,p might not
equal gi,j,p since vNFs might be added in or deleted
from an SFC due to the dynamic operation.

– ai,j,v: A boolean constant to indicate that for an in-
service user i, whether the j-th vNF in its SFC was
deployed on node v before current service time. If
yes, we have ai,j,v = 1, and 0 otherwise. This param-
eter corresponds to variable zi,j,v below for current
service time.

– fi,v,p: For convenience, we integrate di,j,p and ai,j,v to
obtain another parameter fi,v,p to describe whether an
in-service user i used the p-th vNF on DC v before
the current service time, i.e., fi,v,p = ∑

j ai,j,v · di,j,p.
Variables:
• xi: A boolean variable that equals 1 if the SFC of a user

i is served at current service time, and 0 otherwise.
• yv,p: An integer variable to indicate the number of p-th

type vNFs that are deployed on a DC v ∈ Vd.
• zi,j,v: A boolean variable that equals 1 if the j-th vNF of

a user i is deployed on a DC v ∈ Vd, and 0 otherwise.
• wi,j,π : A boolean variable that equals 1 if for a user i,

the connection from its j-th vNF to (j + 1)-th vNF (i.e.,
j ∈ [1, Li − 1]) uses the path π , and 0 otherwise.

Constraints:
1) vNF Assignment and Readjustment Constraints:

∑

v∈Vd

zi,j,v = xi, ∀j ∈ [2, Li], ∀i ∈ �. (1)

Eq. (1) ensures that if a user i is served at the current service
time, the required vNFs in its SFC are all realized on the DCs.

zi,1,vi = xi, ∀i ∈ �, (2)

zi,Li,si = xi, ∀i ∈ �. (3)

Eqs. (2)-(3) ensure that if a user i is served at the current
service time, its first vNF is a dummy one that is allocated on
its access switch while its last vNF represents the source of
the traffic flow si.

∑

i

∑

j

gi,j,p · zi,j,v ≤ np · yv,p, ∀v ∈ Vd, ∀p ∈ P . (4)

Eq. (4) ensures that the number of users that use any type of
vNFs deployed in a DC v cannot exceed their total capacity.

∑

p

cp · yv,p ≤ Cv, ∀v ∈ Vd. (5)

Eq. (5) ensures that the vNFs deployed on a DC v cannot use
more IT resources than its IT resource capacity.

∑

v∈Vd

⎧
⎨

⎩

∑

i∈�1

Li∑

j=2

zi,j,v +
∑

i∈�2

Li∑

j=2

⎡

⎣
∑

p

(
1 − fi,v,p

) · gi,j,p

⎤

⎦ · zi,j,v

⎫
⎬

⎭

≤ Hmax. (6)

Eq. (6) ensures that the service provider’s operational overhead
at the current service time would not exceed the preset upper-
limit Hmax. Here, the first term corresponds to the overhead to
handle the new users while the second one is for the overhead
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to process the in-service ones. We use
∑

p(1 − fi,v,p) · gi,j,p to
determine whether the j-th vNF on the SFC of a user i has
been readjusted or not at the current service time.

2) Routing and Bandwidth Allocation Constraints:
∑

i

∑

j

∑

π∈�

δe,π · βi · wi,j,π ≤ Be, ∀e ∈ E. (7)

Eq. (7) ensures that the total bandwidth consumption on each
link e ∈ E would not exceed its bandwidth capacity.

∑

π

wi,j,π = xi, ∀j ∈ [1, Li − 1], ∀i ∈ �. (8)

Eq. (8) ensures that for each served user i at the current service
time, each of its connections between two adjacent vNFs takes
one and only one path in the network.

zi,j,v =
∑

s(π)=v

wi,j,π , ∀i ∈ �, ∀v ∈ V, ∀j ∈ [1, Li − 1],

(9)

zi,(j+1),v =
∑

d(π)=v

wi,j,π , ∀i ∈ �, ∀v ∈ V, ∀j ∈ [1, Li − 1].

(10)

Eqs. (9) and (10) ensure that if a path π is selected to carry
the connection between the j-th vNF and the (j + 1)-th vNF
of a user i, the j-th and (j + 1)-th vNFs are deployed on s(π)

and d(π), respectively.
Objective: The optimization objective is to maximize the

service provider’s profit, which is the total profit from the
served requests minus the total deployment cost. The deploy-
ment cost can be described as follows.

C = ρ1 ·
∑

v∈Vd

∑

p

cp · yv,p

+ ρ2 ·
∑

i

Li−1∑

j=1

∑

π

βi · len(π) · wi,j,π , (11)

where ρ1 and ρ2 are the positive coefficients to quantify
the unit costs of IT and bandwidth resource consumptions,
respectively. The profit can be calculated as

R =
∑

i

ri · xi, (12)

and we finalize the optimization objective as

Maximize R − C. (13)

Theorem 1: The optimization described by the aforemen-
tioned ILP model for dynamic SFC deployment and readjust-
ment is NP -hard.

Proof: Firstly, we apply the restrictions that Be = +∞ and
ρ2 = 0, which means that the bandwidth constraint can be
ignored in the optimization. Secondly, we apply the restriction
that both the number of supported vNF types in the network
and the number of vNFs in the SFC of each user are 1. Lastly,
we apply the restriction that Hmax = +∞. Then, the problem
is transformed into the capacitated facility location problem,
which is known to be NP -hard [40]. Hence, as the restricted

case of the optimization is the general case of a known NP -
hard problem, we prove that the problem of dynamic SFC
deployment and readjustment is NP -hard as well [41].

V. COLUMN GENERATION BASED APPROACH

In this section, we leverage column generation
(CG) [18], [19] to optimize the dynamic SFC deploy-
ment and readjustment and develop a time-efficient algorithm
based on it.

A. General Procedure of CG-Based Approach

Note that, a solution to our problem is just a combination of
certain feasible SFC provisioning schemes of the users in �.
Therefore, if we denote a feasible SFC provisioning scheme
of a user as a column c, we can leverage the idea of CG to
obtain the set C that includes the proper columns to construct a
near-optimal solution. It can be seen that Algorithm 1 follows
the general operational principle of CG, i.e., decomposing the
original problem into a master problem and a pricing problem
and then solving them in iterations to obtain the near-optimal
solution to the original problem. Lines 1-7 are for the ini-
tialization. Here, Line 1 defines all the notes (i.e., constants)
needed to represent a column c, i.e., a feasible SFC provision-
ing scheme of a user. For the master and pricing problems,
Lines 2-3 formulate two ILP models, as ILP-MP and ILP-
PP, respectively. In Line 4, the set C is used to record the
columns that we get in the iterations. Note that, as we will
explain later, a column c for which all the parameters in the
notes are 0 corresponds to the SFC provisioning scheme that
none of the users would be served, which is trivially a fea-
sible solution to the original problem. Hence, we use it as
the initial solution in Line 5 and insert it in C in Line 6.
Then, Lines 7-20 just use the general procedure of CG to
solve the problem. The pricing problem’s outcome (i.e., Q

in Line 11) determines whether an improvement can still be
made with more iterations. Specifically, Q ≥ 0 means that
the objective of the original problem cannot be reduced any-
more, and thus Line 13 would break the while-loop under such
circumstance.

B. Problem Models for Column Generation

We design a CG model that uses the following notes to
represent a column c, i.e., a feasible SFC provisioning scheme
of a user based on the current network status.

Notes:
• mi,c: If c is a provisioning scheme of user i, we have

mi,c = 1 and 0 otherwise.
• ac,v,p: If c allocates a p-th type vNF on DC v, we have

ac,v,p = 1 and 0 otherwise.
• hc: The operational overhead that the service provider

would take to serve the user i that is selected in c.
• bc,e: The bandwidth consumption on each used link e for

the provisioning scheme in c.
1) Master Problem: Basically, in order to limit the com-

putational complexity, we design the master problem (i.e.,
ILP-MP) to perform the optimization based on the solution
space that only contains the current obtained columns, i.e., C.
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Algorithm 1: General Procedure of CG-Based Approach

1 define the notes to represent a column c;
2 formulate the ILP model for master problem (ILP-MP);
3 formulate the ILP model for pricing problem (ILP-PP);
4 C = ∅;
5 generate a column c for ILP-MP that all the parameters

in the notes are 0;
6 insert c into C to obtain the initial solution;
7 use C to construct the LP relaxation of ILP-MP;
8 while TRUE do
9 solve the LP relaxation of ILP-MP to get the values

of primal and dual variables;
10 construct ILP-PP with the results from the LP

relaxation of ILP-MP;
11 solve ILP-PP to get its optimization objective Q;
12 if Q ≥ 0 then
13 break;
14 end
15 generate a new column c with the results of ILP-PP;
16 insert c into C;
17 use C to update the LP relaxation of ILP-MP;
18 end
19 use C to construct ILP-MP;
20 solve ILP-MP to obtain the final solution;

Variables:
• λc: A boolean variable to indicate whether a column c ∈

C is selected. If yes, we have λc = 1, and 0 otherwise.
• yv,p: An integer variable to indicate the number of p-th

type vNFs that are deployed on a DC v ∈ Vd.
Objective: For convenience, we add a minus sign to

the objective in Eq. (13) to obtain the equivalent form of
minimization. As we only consider the provisioning schemes
included in C in the master problem, the objective of the
dynamic SFC deployment and readjustment is transformed
into

Minimize
∑

c∈C

λc ·
(

ρ2 ·
∑

e

bc,e −
∑

i

ri · mi,c

)

+ ρ1 ·
∑

v∈Vd

∑

p

cp · yv,p. (14)

Constraints: The constraints get changed as follows. Note
that, we also list the corresponding dual variables here in “()”,
which indicate the reduced cost on the objective in Eq. (14).
For these inequations with “≤”, we use negative dual variables
to ensure that the values of the dual variables are not smaller
than 0.

∑

c

hc · λc ≤ Hmax, (−ϕ), (15)

∑

p

cp · yv,p ≤ Cv, ∀v ∈ Vd, (−τv), (16)

∑

c

bc,e · λc ≤ Be, ∀e ∈ E, (−αe). (17)

Eqs. (15)-(17) ensure that the constraints on operational
overhead, IT resources and bandwidth resources are satisfied.

∑

c

mi,c · λc ≤ 1, ∀i ∈ �, (−γi), (18)

∑

c

λc ≤ |�|, (−η). (19)

Eqs. (18), (19) ensure that for each user i, at most one column
can be selected.
∑

c

ac,v,p · λc ≤ np · yv,p, ∀v ∈ Vd, ∀p ∈ P ,
(−χv,p

)
. (20)

Eq. (20) ensures that for each p-th type vNF on a DC v, the
number of users that use it cannot exceed its capacity.

2) Pricing Problem: As explained in Algorithm 1, by
solving the pricing problem (i.e., ILP-PP) in each iteration,
we try to reduce the objective in Eq. (14). If this can be
done, the objective Q of the pricing problem is negative,
and we generate a new column with the results of ILP-
PP and include it in C. Otherwise, CG cannot improve
the quality of the solution to the original problem anymore
and we terminate the iterations. The ILP-PP is formulated
as follows.

Variables:
• xi, zi,j,v, wi,j,π : Variables that have the same definitions as

those in Section IV.
The relations between these variables and the notes
mi,c, ac,v,p, hc and bc,e defined for a specific column c are
as follows.

mi,c = xi, ∀i ∈ �, (21)

which is because in each iteration, we only consider one
column that corresponds to the provisioning scheme of a user.

hc =
∑

i∈�1

Li∑

j=2

∑

v∈Vd

zi,j,v

+
∑

i∈�2

Li∑

j=2

∑

v∈Vd

⎡

⎣
∑

p

(
1 − fi,v,p

) · gi,j,p

⎤

⎦ · zi,j,v, (22)

which is because hc denotes the total operational overhead.

ac,v,p =
∑

i

∑

j

gi,j,p · zi,j,v, ∀v ∈ Vd, ∀p ∈ P , (23)

where the item gi,j,p · zi,j,v indicates whether the j-th vNF on
the SFC of a user i is assigned to a p-th type vNF on the DC
v. Hence, with a summation, we can determine whether a p-th
type vNF on the DC v is used in the column c.

bc,e =
∑

i

∑

j

∑

π

βi · δe,π · wi,j,π , ∀e ∈ E, (24)

which gets the bandwidth usage on link e. Note that, based on
the relation between the primal and dual problems [42], the
reduced cost of λc has the expression as
∑

i

mi,c · (γi − ri) +
∑

e

bc,e · (ρ2 + αe) +
∑

v∈Vd

∑

p

χv,p · ac,v,p

+ ϕ · hc + η. (25)
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Objective: Then, we put Eqs. (21)-(24) into Eq. (25) and
get the objective of the pricing problem as

Minimize Q =
∑

i,j,π

ζi,j,π · wi,j,π +
∑

i∈�1,j,v

ζ̃i,j,v · zi,j,v

+
∑

i∈�2,j,v

ζ̂i,j,v · zi,j,v +
∑

i

ζi · xi + η, (26)

where we use the following notations to simplify the objective:
⎧
⎪⎪⎨

⎪⎪⎩

ζi,j,π = βi ·∑e(ρ2 + αe) · δe,π ,

ζ̃i,j,v = ϕ +∑
p χv,p · gi,j,p,

ζ̂i,j,v = ∑
p

[(
1 − fi,v,p

) · ϕ + χv,p
] · gi,j,p,

ζi = γi − ri.

(27)

Constraints: The ILP-PP inherits the constraints in
Eqs. (1)-(3) and (8)-(10) defined in Section IV. Moreover, we
introduce the following constraints to expedite the solving of
the ILP-PP.

∑

i

xi = 1. (28)

Eq. (28) ensures that the pricing problem only consider the
service provisioning of one user.

∑

i

∑

j

⎛

⎝
∑

p

cp · gi,j,p

⎞

⎠ · zi,j,v ≤ Cv, ∀u ∈ Vd,

∑

i

∑

j

∑

π

δe,π · βi · wi,j,π ≤ Be, ∀e ∈ E. (29)

Eq. (29) ensures that in each obtained column, the capacity
constraints on IT and bandwidth resources are satisfied, i.e.,
the obtained column is a feasible solution. Hence, the ILP-MP
can be constructed correctly in Line 19 of Algorithm 1.

3) Accelerating the Solving of Pricing Problem: It should
be noted that in Algorithm 1, the pricing problem to be
solved in Line 11 is still an ILP, which consumes most of
the time used for solving the problem with the CG procedure.
Meanwhile, according to the basic idea of CG, we actually
do not need to obtain the minimum solution of the pricing
problem in each iteration. Hence, we can design a heuristic to
accelerate the problem-solving. Algorithm 2 shows the detailed
procedure of the heuristic. To incorporate Algorithm 2 in our
CG model, we use the procedure in Algorithm 3 to replace
Lines 10-15 in Algorithm 1. Basically, in each iteration, we
first try to achieve a reduced cost with Algorithm 3, and will
only try to solve the ILP-PP when Algorithm 3 cannot provide
a column with negative reduced cost anymore (i.e., Q ≥ 0).

VI. PERFORMANCE EVALUATION AND DISCUSSION

In this section, we use numerical simulations to evaluate
the performance of the proposed approaches for dynamic SFC
deployment and readjustment problem.

A. Simulation Setup

The simulations use two network topologies, i.e., a small
six-node one as shown in Fig. 1 and a practical NSFNET

Algorithm 2: Heuristic to Solve ILP-PP

1 assign the weight of each link e ∈ E as ρ2 + αe

according to Eq. (27);
2 calculate the weighted shortest paths between all the

node pairs in the network;
3 for each user i ∈ � do
4 for each vNF j ∈ [2, Li] do
5 use the greedy strategy to find the DC v for this

vNF such that Q in Eq. (26) is minimized except
the Li-th vNF which is fixed;

6 connect the (j − 1)-th and j-th vNFs of user i
with the weighted shortest path between them;

7 calculate the incremental cost as Qi,j;
8 end
9 get the overall cost of user i as Qi = ∑

j
Qi,j;

10 end
11 Q = min

i∈�
(Qi);

Algorithm 3: Sub-Procedure to Accelerate CG

1 construct pricing problem with the results from the LP
relaxation of ILP-MP;

2 solve the pricing problem with Algorithm 2 to get Q;
3 if Q ≥ 0 then
4 construct ILP-PP with the results from the LP

relaxation of ILP-MP;
5 solve ILP-PP to get its optimization objective Q;
6 if Q ≥ 0 then
7 break;
8 end
9 end

10 generate a new column c with results of pricing problem;

topology [43]. Besides, in order to reduce the time com-
plexity, we use the 5-shortest paths between two nodes in
the NSFNET topology to replace the total paths when using
the proposed-CG model. Here, we assume that the DCs
are all light-weighted ones (i.e., cloudlet) and they are ran-
domly distributed in the topologies, which means not all the
switches have local DCs. The DCs’ IT resource capacities are
uniformly distributed within [30, 35] units,3 while the band-
width capacities of each physical links are randomly selected
within [25, 30] units. Note that, the upper-limit on the ser-
vice provider’s operational overhead (i.e., Hmax) is determined
based on the network scale and traffic load. Specifically, it is
set within [30, 60] for each service time. We treat the costs of
IT and bandwidth resources equally in the optimization, and
thus the simulations use ρ1 = ρ2 = 1 in the objective.

The network with the six-node topology can support 4 vNF
types, while the one with the NSFNET topology can support
5 vNF types. For each vNF type, the IT resource consumption

3Note that, in order to normalize the related costs and make the simulation
scenarios more generic, we use “units” instead of specific metrics, e.g., CPU
cycles, Mbps, to quantify IT and bandwidth resources in the simulations.
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of a vNF is within [5, 8] units and each can serve 3 to 5 users
at most. The number of vNFs requested on the SFC by each
user is assumed to be uniformly distributed within [2, 4] and
[2, 5] for the six-node topology and the NSFNET topology,
respectively. Meanwhile, the bandwidth requirement on links
is within [3, 5] units. To obtain sufficient statistical accuracy,
we obtain each data point by averaging the results from 20
independent simulations. The simulations are carried out on a
computer with 3.4 GHz Inter Core i3-3240 and 8 GB RAM,
and we use MATLAB 2013a with the CPLEX toolbox to solve
the ILP and CG models.

In order to compare the proposed algorithms to an exist-
ing benchmark, we modify the algorithm developed in [28]
to obtain the benchmark algorithm (i.e., Viterbi). Specifically,
Viterbi computes the provisioning cost by constructing a
multi-stage graph for each user, sorts the users according to
their costs in descending order, and then serves them one by
one using the logic of the Viterbi algorithm in [28].

B. Effects of Overhead-Restricted Policy

Note that, to limit the service provider’s operational over-
head, we apply a restriction on it with Hmax. We first
demonstrate that it is necessary to do so by comparing the
proposed overhead-restricted approach with one that does
have the restriction of Hmax (i.e., an overhead-unrestricted
approach). Specifically, we use the six-node topology and con-
sider the provisioning at a service time for different numbers of
users, some of which might have changed their access switches
or SFCs. The ILP model in Section IV is used to obtain
the optimal solutions for the overhead-restricted/unrestricted
approaches. Basically, for the overhead-unrestricted approach,
the ILP sets Hmax = +∞ to ignore the limitation on
operational overhead while orchestrating the SFCs.

Fig. 2 shows the simulation results. The results on service
provider’s profit are plotted in Fig. 2(a). It can be seen that
the service provider may obtain about 25% more profit with
the overhead-unrestricted approach. This is because when the
restriction of Hmax is relaxed, the service provider would have
more freedom to deploy the SFCs with reduced resource costs.
Meanwhile, it is interesting to notice that when the number of
user requests is 7, the two approaches obtain equal profit. This
is due to the fact that when the number of user requests is rel-
atively small, the network system can afford the operational
overhead to optimally deploy each user request’s SFC even
when the restriction of Hmax is considered. When the number
of user requests becomes larger, the operations of vNF deploy-
ment/reassignment should be carefully considered to maintain
an acceptable operational overhead. This analysis can be ver-
ified with the results in Fig. 2(b), which are the operational
overheads of the overhead-restricted/unrestricted approaches.
We can see that the operational overhead of the overhead-
unrestricted approach is significantly higher than that of the
overhead-restricted one, when the number of user requests is
28 or more. This reveals the fact that the operational over-
head may become a serious issue for the overhead-unrestricted
approach. Hence, we should try to balance the tradeoff

Fig. 2. Comparison of overhead-restricted and overhead-unrestricted
approaches.

between resource consumption and operational overhead in
dynamic SFC deployment and readjustment.

C. One-Time Operation

Next, to evaluate the performance of our proposed CG-based
algorithm, we first conduct simulations on one-time operation,
which means that we only consider the SFC provisioning at
a service time. Here, we assume that 3

7 of the users are new
ones while the rest of them are in-service ones that may have
changed their access switches or SFCs since the last service
time. We simulate the algorithms in the two topologies, except
for the ILP in NSFNET since the time complexity is too high.

Fig. 3 shows the results on the service provider’s profit. In
Fig. 3(a), we also plot the linear-programming (LP) bound of
the CG model (LP-CG), which is the LP relaxation solution
of the original problem. We observe that the ILP’s solution
always lies in between those of LP-CG and CG. This is
because the LP relaxation solution only provides an upper-
bound on the service provider’s profit but might not be a
feasible solution to the original problem. Hence, we can
use it as a baseline to evaluate the algorithms’ performance,
when the ILP is intractable (e.g., in the NSFNET topology).
Meanwhile, we find that when the number of user requests is
less than 14, the algorithms perform similarly, but as the num-
ber of user requests increases, the CG’s advantage over Viterbi
in service provider’s profit becomes more and more significant.
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Fig. 3. Results on service provider’s profit in one-time operation.

This is because as a heuristic algorithm, Viterbi can be eas-
ily trapped by local optima when the problem’s scale becomes
larger and thus it cannot follow the increasing trend of the ILP
as CG does. Note that, the superior performance of the ILP
and CG on service provider’s profit is actually obtained at the
cost of increased time complexity. The performance of Viterbi
and CG is also compared with simulations using the NSFNET
topology, and the results are shown in Fig. 3(b), which exhibit
the similar trend as that in Fig. 3(a). This suggests that CG
still performs well in a network whose topology is practical
and larger than the six-node one.

Tables I and II list the computation time per request of the
algorithms when using the six-node and NSFNET topologies,
respectively. Since Viterbi does not use the iterative method, it
runs significantly faster than CG and ILP, which confirms our
analysis that CG obtains higher profits for the service provider
at the cost of increased time complexity. Therefore, when the
performance gap on service provider’s profit between Viterbi
and CG is not large (e.g., the number of user requests is 14 in
Figs. 3(a) and 3(b)), we should just use Viterbi. It is interesting
to notice that the computation time of ILP is less than or com-
parable to CG when the number of user requests is 28 or less
in Table I. This is because CPLEX can solve ILP in one shot
while CG approximates the optimal solution with iterations.
However, when the number of user requests keeps increasing,
the computation time of the ILP increases much faster than
that of CG and becomes one magnitude longer when there

TABLE I
COMPUTATION TIME PER REQUEST WITH

SIX-NODE TOPOLOGY (SECONDS)

TABLE II
COMPUTATION TIME PER REQUEST WITH

NSFNET TOPOLOGY (SECONDS)

are 56 user requests to handle. The results in Table II show
the same trend as those in Table I. Since the NSFNET topol-
ogy is larger, CG needs more computation time to converge.
This time, however, the computation time of CG might be too
long for practical network operation, especially in a dynamic
network environment. Fortunately, the running time of CG can
still be reduced from two perspectives. Firstly, by switching
the software platform from MATLAB to C/C++, we can make
the implementation of CG more time-efficient. Secondly, the
computation time could be reduced if we use a more powerful
computing platform other than a personal computer, as in the
common case of a practical NC&M system.

D. Dynamic Operation

Finally, we consider the scenario in which dynamic opera-
tions are performed over a period of time and at each service
time, new users can join in and in-service users can change
their SFCs. The simulations use the NSFNET topology and
the dynamic user requests are generated by leveraging the
self-similar traffic model in [44]. To evaluate the effect of
the restriction on operational overhead, we consider the low
(Hmax = 35) and high (Hmax = 60) overhead scenarios.

Fig. 4 shows the results on service provider’s average profit
per service time, which indicates that our proposed CG-based
approach can constantly outperform Viterbi for both scenarios.
When the traffic load increases, the service provider’s profit
also increases but its momentum toward increasing becomes
less. Note that, in the high overhead scenario, since there are
more freedom for the algorithms to readjust the SFC deploy-
ments, the service provider can get higher profit than in the
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Fig. 4. Results on service provider’s average profit in dynamic operation.

TABLE III
AVERAGE PROFIT RATIO BETWEEN CG AND VITERBI

low overhead scenario. Then, we compare the algorithms in
terms of request acceptance ratio, which is defined as the ratio
of total served time to total requested time of the user requests.
As indicated in Fig. 5, the request acceptance ratios from
both algorithms decrease with the traffic load. This is because
the network system becomes more saturated when the traffic
load is higher. Due to its superior performance, CG constantly
accepts more user requests than Viterbi, which suggests that
in dynamic operation, CG not only serves each user request
with less resource costs but also serve more requests success-
fully. The results on the ratio of service provider’s average
profit per service time between CG and Viterbi are summa-
rized in Table III. It can be seen that when the traffic load is
the same, the performance gain of CG over Viterbi is higher
in the low overhead scenario. This suggests that when the
restriction on operational overhead is tighter, CG’s advantage
over Viterbi for dynamic SFC deployment and readjustment
becomes more significant, which further verifies the effective-
ness of our proposed algorithm. Meanwhile, we would like to
point out that the superior performance of CG is obtained at
the cost of increased time complexity.

Fig. 5. Results on request acceptance ratio in dynamic operation.

VII. CONCLUSION

In this paper, we studied the problem of SFC service pro-
visioning by taking the dynamic nature of user requests into
consideration. We first formulated a path-based ILP model to
solve the problem exactly. Then, to reduce the time complexity,
we designed a CG model, developed an approximation algo-
rithm based on it and proposed an effective heuristic to further
accelerate the problem-solving. Simulation results showed that
our CG-based approach significantly outperformed the bench-
mark algorithm in terms of the service provider’s profit and
request acceptance ratio.
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