
Data Resilience Via Data Aggregation: Overcoming
Overall Storage Overflow in Sensor Networks

Abstract—Data resilience refers to the ability of long-term
viability and availability of data despite insufficiencies of (or
disruptions to) the physical infrastructure that stores the data.
In this paper, we identify, formulate, and solve a data resilience
problem that uniquely arises from sensor networks operating in
an inaccessible or inhospitable region, or under extreme weather.
In these challenging environments, it is not feasible to install a
long-term base station in the field. Data generated must be stored
inside the network for some period of time before uploading
opportunities become available. Consequently, the collected data
could soon overflow the storage capacity available in the entire
network, making discarding valuable data inevitable. We refer to
this data disruption as overall storage overflow in sensor networks.
To overcome this obstacle, we propose data resilience via data
aggregation problem (DRA), which employs data aggregation
techniques to reduce the overflow data size so that they can
fit into the storage in the network. The goal of DRA is to
minimize the total energy consumption during this process while
preserving as much information as possible. Our work is the
first one to employ data aggregation to achieve data resilience
against overall storage overflow problem in sensor networks.
We show that solving DRA is equivalent to solving a multiple
traveling salesman walk problem (MTSW) in an appropriately
transformed graph of the sensor network. We prove that MTSW
is NP-hard. We then solve it optimally in linear topologies, and
design a (2 − 1

q
)-approximation algorithm for general graph

topologies, where q is number of nodes to visit. We design a
heuristic algorithm to further improve upon the approximation
algorithm, and empirically show that it constantly outperforms
the approximation algorithm by 20%− 30%, in terms of energy
consumption, under different network parameters.

Keywords – Data Resilience, Data Aggregation, Overall
Storage Overflow, Sensor Networks, Energy-Efficiency

I. Introduction

Background and Motivation. Data resilience refers to the
ability of a network storing the data to recover quickly
and to continue maintaining availability of data despite of
any disruptions (such as equipment failure, power outage, or
even malicious attack). Due to resource constraints of sensor
networks such as unreplenishable battery power and limited
storage capacity of sensor nodes [10, 11], link unreliability
and scarce bandwidth of wireless medium [45], and the in-
hospitable and harsh environments in which they are deployed
[5], sensor nodes are often prone to failure and vulnerable
of data loss. Therefore, how to ensure that data collected at
sensor nodes reach the base station reliably despite all the
vulnerabilities has been an active research topic since the
inception of sensor network research. This line of research
are usually named under the umbrella of data resilience [10,
11], data persistence [2, 24], or reliable data transmission [9].
We use data resilience throughout the paper.

Meanwhile, with the advance in sensor technology and ma-
turity of sensor network design and deployment, scientists are
ready to utilize sensor networks to explore the physical world
in a scope and a depth that was never reached before, and to
solve some of the most fundamental problems facing human
beings. These fundamental problems include disaster warning,
climate change, and renewable energy. The emerging sensor
networks designed for those scientific applications include
seismic sensor networks [39], underwater or ocean sensor
networks [17], wind and solar harvesting [16, 31], and volcano
eruption monitoring and glacial melting monitoring [29, 40].
One common characteristic of these sensor networks is that
they are all deployed in challenging environments such as in
remote or inhospitable regions, or under extreme weather, to
continuously collect large volumes of data for a long period
of time without much human intervention. Consequently, it is
not practical to deploy data-collecting base stations with power
outlets in or near such inaccessible sensor fields. Thereupon
sensory data generated in such environments have to be stored
inside the network for some period of time and then being
collected by periodic visits of robots or data mules [15], or
by low rate satellite link [30]. Due to the lack of human
intervention and the inadequacy of maintenance in the inhos-
pitable environments, such sensor networks must operate much
more resiliently than the traditional sensor networks (with base
stations and in friendly environments).

Data Resilience Against Storage Overflow Disruption. In
this paper, we focus on data resilience against sensor storage
overflow, wherein storage spaces of some sensor nodes are
depleted and therefore it can not store any newly generated
data. Storage overflow is a major obstacle existing in above
emerging networks, due to the following reasons. On one
side, massive amounts of data in above scientific applications
are generated, sensing a wide range of physical properties in
real world ranging from solar light to wind flow to seismic
activity. On the other side, storage is still a serious resource
constraint of sensor nodes, despite the advances in energy-
efficient flash storage [32] with good compression algorithms
(data is compressed before stored) and good aging algorithms
(fidelity of older data is reduced to make space for newer
data). As a consequence, the massive sensory data could
soon overflow data storage of sensor nodes and causes data
loss. From scientific perspective, data are “first class citizens”
because every bit of data could potentially be important for
scientists to analyze the physical world. Thus how to resiliently
maintain such overflow data inside the network and prevent

2

data loss becomes a crucial task. Below we outline two levels
of data overflow disruptions, and provide corresponding data
resilience measures.
• Node Storage Overflow. Some sensor nodes are close to

the events of interest and are constantly generating sensory
data, depleting their own storages and causing data loss.
We refer to such disruption as node storage overflow, and
the sensor nodes with depleted storage spaces while still
generating data as data nodes. The newly generated data
that can no longer be stored at data nodes is called overflow
data. The resilience measure to avoid such data loss is
simple: the overflow data is offloaded to other nodes with
available storages (referred to as storage nodes).1 Different
data offloading techniques have been proposed with the goals
of either minimizing the total energy consumption during
data offloading [35], or maximizing the minimum remaining
energy of storage nodes to prolong network lifetime[14], or
offloading the the most useful information considering data
could have different priorities [43].
• Overall Storage Overflow. However, data offloading can

not help when the total size of the overflow data is larger
than the total size of the available storage in the network. We
refer to this disruption as overall storage overflow in sensor
networks, wherein discarding data becomes inevitable if no
actions taken. This is obviously a more severe disruption
compared to the storage flow of individual nodes. For the
large amount of overflow data generated in the sensor
networks, how to guarantee that as much useful information
as possible can be maintained while being fitted into the
available storage of the network becomes a new challenge.
In this paper, we endeavor to answer following question:
For sensor networks operating in challenging environments
where base station is absent and human intervention impos-
sible, how to retain all the information notwithstanding the
overall storage overflow?

Data Aggregation. Fortunately, due to spatial correlation that
commonly exist among sensory data collected from sensor
networks, we can employ data aggregation techniques to
reduce data size. We formulate a graph-theoretic problem
called data resiliency via data aggregation (DRA), and solve
it by designing a suite of new data aggregation algorithms
to aggregate overflow data, so that they can fit into the
available storage in the network. Our goal is to minimize total
energy consumption during data aggregation, since battery
power of sensor nodes is still one of the most stringent
resources in sensor networks and data aggregation, being
wireless communication, costs most of the battery power. After
being aggregated to the size accommodable by the available
storage capacity, the overflow data can then be offloaded to
storage nodes using techniques proposed in [14, 35, 43].

Difference Between Data Aggregation in DRA and Traditional
Data Aggregation. Data aggregation in DRA is significantly

1Sensor nodes that generate data but have not depleted their storage are
considered as storage nodes, since they can store overflow data from others.

different from traditional data aggregation in sensor networks
[19, 22, 25, 34, 36, 41, 42] in both goals and techniques.
• In traditional sensor networks (with base stations), data
aggregation is to combine the data from different sources
en route to the base station, by eliminating redundancy
and reducing the total number of transmissions, thus saving
energy. The goal of data aggregation in DRA, however, is to
aggregate the overflow data so that they can fit into available
storage, therefore preventing data loss caused by overall
storage overflow. It therefore calls for new data aggregation
techniques that not only reduce the size of sensory data
while sacrificing no information loss, but also guarantee that
aggregated data can be stored inside the network.
• Unlike most of the existing data aggregation techniques
[19, 22, 25, 41, 42] wherein the underlying routing structures
are trees rooted at base station covering all sensor nodes,
at the core of the DRA is a novel routing structure called
q-edge forest, which is a graph with q edges and with each
connected component a tree. Here q is number of data
nodes that aggregate their overflow data. Algorithmically,
DRA encapsulates a new graph-theoretic problem called
multiple traveling salesman walks (MTSW), which has not
been studied before.

Contributions of This Paper. The main contributions of this
paper include the following:
1). We identify, formulate, and solve DRA, the data resilience
problem via data aggregation, to address overall storage
overflow in sensor networks. (Section II

2), We show that DRA in sensor network is equivalent to a
new multiple traveling salesman walk problem (MTSW) in
a graph appropriately transformed from the sensor network
graph. (Section IV)

3). We show that the MTSW is NP-hard, by showing that it
generalizes traveling salesman walk problem [20], which is
NP-hard. (Section III-A)

4). We solve optimally the MTSW in linear topologies,
and design a (2 − 1

q)-approximation algorithm for general
graph topologies, where q is number of nodes to visit.
(Section III-B)

5). We design a heuristic algorithm to further improve upon
the approximation algorithm, and empirically shows that it
outperforms the approximation algorithm by 10% − 20%,
in terms of energy consumption, under different network
parameters. (Section V)

II. Data Resilience Via Data Aggregation Problem (DRA)

Problem Statement. In a sensor network field (without base
stations), there are two kinds of sensor nodes: data nodes
(with overflow data and with storage spaces depleted), and
storage nodes (with available storage spaces), as shown in
Figure 1. The total size of the overflow data from data nodes
is larger than the total size of the storage space available
at storage nodes, causing overall storage overflow. Therefore
overflow data needs to be aggregated to the size that can fit
into the available storages, before being offloaded to storage

3

Fig. 1. An illustration of DRA.

nodes. To aggregate data, one (or multiple) data node (called
an initiator) sends its overflow data to other data nodes.
When a data node (called an aggregators) receives the data,
it aggregates its own overflow data to reduce its size. After
that, the aggregator forwards initiators’ data to “visit” another
data node, which then becomes an aggregator and aggregates
its overflow data, and so on and so forth. This continues until
enough aggregators are visited such that the total size of the
data at data nodes after aggregation equals to or is slightly
less than the total available storage in the network. A storage
node can not be an aggregator since it does not have overflow
data – when it receives the data, it simply relays it.

Any node participating in this process (including initiator,
aggregator, and relaying storage node) consumes its own
battery energy. To save energy consumption, the challenge is
therefore to select initiators among all the data nodes, and
to decide the sequence of aggregators/storage nodes to visit
by each initiator, such that enough number of aggregators are
visited while incurring minimum total energy consumption.

Network Model. The sensor network is represented as
an undirected connected graph G(V,E), where V =
{1, 2, ..., |V |} is the set of |V | uniformly deployed sensor
nodes, and E is the set of |E| edges. Two sensor nodes are
connected by an edge if they are within transmission range
of each other and thus can communicate directly (we assume
that all the nodes have the same transmission range). There
are p data nodes, denoted as Vd (the other |V | − p nodes are
storage nodes). Let R denote the size of generated overflow
data in bits at each data node and let m be the available
storage space in bits at each storage node (our work can be
extended to the cases wherein data nodes have different sizes
of overflow data and/or storage nodes have different sizes of
storage spaces). Due to the overall storage overflow, we have
p×R > (|V | − p)×m, giving that p > |V |m

m+R and p ∈ Z+.

Data Correlation Model [7]. We adopt an entropy-based
spatial correlation model proposed in [7]. Let H(X|Y) denote
the conditional entropy of a random variable X given that
random variable Y is known. Overflow data at data node i is
represented as an entropy H(i) = R bits if no side information
is available from other data nodes; and H(i|j1, ..., jp) = r ≤
R bits, jk ∈ Vd ∧ jk 6= i, 1 ≤ k ≤ p, if data node i
has available side information coming from at least another
data node. That is, if a data node receives data from at

least another data node, its overflow data can be aggregated,
reducing the size from R to r. We are aware several entropy-
based correlation models such as the ones proposed in [8,
33]. We adopt the one in [7] for the following two reasons.
First, it is a simple and distributed coding strategy, which is
easy to implement in sensor network application. Second, it
is a realistic model since it approximates the case where the
correlation function between two nodes decreases with their
distance [7]. Consequently we make a few assumptions about
the data aggregation in DRA:

Observation 1: Each data node can be either an initiator,
or an aggregator, or none of them, but not both of them. An
initiator can not be an aggregator because its data serves as
side information for other nodes to aggregate. An aggregator
can not be an initiator since its aggregated data loses the side
information needed for others nodes’ aggregation. �

Observation 2: Each aggregator can be visited multiple
times by the same or different initiators (if that is more energy-
efficient). However, the data of an aggregator can only be
aggregated once, with size reduced from R to r. �

Observation 3: An initiator A can not be visited by an-
other initiator B. This is because if so, it is equivalent to that
B visits A and all other data nodes visited by A. �

Energy Model. We adopt first order radio model [13] as the
energy model for battery power consumption in wireless com-
munication. In this model, for node u sending R-bit data to its
one-hop neighbor v over their distance lu,v , the transmission
energy cost at u is Et(R, l) = Eelec × R + εamp × R × l2u,v ,
the receiving energy cost at v is Er(R) = Eelec × R,
which is independent of lu,v . Here, Eelec = 100nJ/bit is
the energy consumption per bit on the transmitter circuit and
receiver circuit, and εamp = 100pJ/bit/m2 calculates the
energy consumption per bit on the transmit amplifier. Let
w(R, u, v) = Et(R, lu,v) + Er(R), w(R, u, v) = w(R, v, u).
Let W = {v1, v2, ..., vn} be a sequence of n nodes with
(vi, vi+1) ∈ E, 1 ≤ i ≤ n − 1 and v1 6= vn. If all the
nodes in W are distinct, W is a path; otherwise, it is a walk.
Let c(R,W) =

∑n−1
i=1 w(R, vi, vi+1) denote the aggregation

cost along W , which is the energy consumption of sending
R-bit from v1 to vn along W . We assume that there exists
a contention-free MAC protocol to avoid overhearing and
collision (e.g. [4]), so that the energy consumption contains
only two parts: transmitting data and receiving data. Note that
in this paper we do not consider how to upload data from
storage nodes to base station (when uploading opportunities
are available). Data mules or mobile data collectors can be
used to upload data using techniques in [28] and [23].

Valid Range of Number of Data Nodes p for Feasible
Overall Storage Overflow. We have shown the number of
data nodes p > |V |m

m+R due to overall storage overflow. To
guarantee that the data after aggregation can fit in the available
storage (i.e., a feasible overall storage overflow), we compute
the upper bound of p next. Since there are p data nodes (each
with R bits overflow data) and there are |V | − p available
storage nodes (each with m bits storage capacity), the data size

4

that needs to be reduced is p×R− (|V |−p)×m = p× (R+
m)−|V |×m. Since each aggregator reduces its overflow data
size by (R − r), all together dp×(R+m)−|V |×m

R−r e aggregators
are needed. Meanwhile, since at least one data node needs
to be the initiator to start the aggregation process, there can
only be maximum of p − 1 aggregators. Therefore we have
dp×(R+m)−|V |×m

R−r e ≤ p − 1, which gives p ≤ b |V |m−R+r
m+r c.

The valid range of p is therefore:

|V |m
m+R

< p ≤ b|V |m−R+ r

m+ r
c. (1)

Problem Formulation of DRA. Let

q = dp× (R+m)− |V | ×m
R− r

e (2)

denote be the number of aggregators to visit. Given a valid
p for feasible overall storage overflow, at most (p − q) data
nodes can be selected as initiators. The DRA selects:
• the set of a (1 ≤ a ≤ (p− q)) initiators from all the p data

nodes Vd, denoted as I, and
• the corresponding set of a aggregation walks:
W1,W2, ...,Wa, where Wj (1 ≤ j ≤ a) starts from a
distinct initiator Ij ∈ I, and |

⋃a
j=1{Wj −{Ij}−Gj}| = q.

Here, Gj is the set of storage nodes in Wj and Wj−{Ij}−Gj
is the set of aggregators in Wj . Since an aggregator can
appear multiple times in the same or different aggregation
walks (Observation 2),

⋃a
j=1{Wj − {Ij} − Gj} signifies a

set of q distinct aggregators in the network.

TABLE I
NOTATION SUMMARY

Notation Explanation
V , |V | The set and the number of sensor nodes
Vd, p The set and the number of data nodes
q The number of aggregators needed
m The storage capacity of a storage node
R The overflow data size at each data node before aggregation
r, r < R The overflow data size at each data node after aggregation
I, a The set and the number of initiators, 1 ≤ a ≤ (p− q)
Ij The jth initiator, 1 ≤ j ≤ a
Wj The aggregation walk starting with Ij
w(R, u, v) The energy cost of sending R bits from u to its neighbor v
c(R,Wj) The aggregation cost of sending R bits along Wj

The objective of the DRA is therefore to select a set of a
initiators I ⊂ Vd and a set of a corresponding aggregation
walks, each starting from a distinct initiator in I, and each
initiator sends its overflow data to all the aggregators in
its corresponding aggregation walk, such that all together q
aggregators are visited and therefore can aggregate their own
overflow data, while the total energy consumption in this
process

∑
1≤j∈a c(R,Wj), referred to as total aggregation

cost, is minimized. Table I lists all the notations.
EXAMPLE 1: Fig. 2 gives an example of DRA in a grid

sensor network of nine nodes. Nodes B, D, E, G, and I are
data nodes, while A, C, F and H are storage nodes. R =
m = 1, r = 3/4, and energy consumption along any edge
is 1. Overall storage overflow exists, since there are 4 units

of storage while there are 5 units of overflow data. Number
of aggregators q is calculated to be 4, leaving one data node
to be initiator. One optimal solution could be selecting B as
initiator and setting its aggregation walk as: B, E, D, G, H ,
I , with total aggregation cost of 5. �

Fig. 2. An example of the
DRA problem.

We find that solving DRA
is equivalent to solving a new
graph-theoretic problem, which
we refer to as multiple trav-
eling salesman walks problem
(MTSW). We first formulate and
solve MTSW in Section III. In
Section IV, we show that the
DRA is equivalent to the MTSW in an appropriately trans-
formed graph of the sensor network graph, therefore the
algorithmic solutions of MTSW in Section III-B can be applied
to solve the DRA.

III. Multiple Traveling Salesman Walks Problem
(MTSW)

A. Problem Formulation and NP-Hardness.
Given an undirected weighted graph G = (V,E) with |V |

nodes and |E| edges,2 a cost metric (which represents the
distance or traveling time between two nodes), the objective
of the MTSW is to determine a subset of at most b starting
nodes (i.e., the initiator in DRA), from each of which a
salesman can be dispatched to visit a number of other nodes
following a walk, such that a) all together q nodes (excluding
starting nodes) are visited, and b) the total cost of the walks
is minimized. We have b = |V | − q.

Let w(u, v) denote weight of edge (u, v) ∈ E. We as-
sume that edge weights satisfy triangle inequality: for any
three edges (x, y), (y, z), (z, x) ∈ E, w(x, y) + w(y, z) ≥
w(z, x). Given a walk W = {v1, v2, ..., vn}, let c(W) =∑n−1
i=1 w(vi, vi+1) denote the cost of traversing along W . The

objective of MTSW is to decide:
• the set of a (1 ≤ a ≤ b) starting nodes I ⊂ V , and
• the set of a walks W1,W2, ...,Wa: Wj (1 ≤ j ≤ a) starts

from a distinct node Ij ∈ I, and |
⋃a
j=1{Wj − {Ij}}| = q,

such that total cost
∑

1≤j∈a c(Wj) is minimized.
Theorem 1: The MTSW is NP-hard.

Proof: We show that traveling salesman walk problem (TSW)
is a special case of MTSW. TSW is defined as follows: Given
a weighted graph with nonnegative edge weights, a starting
node s and an ending node t, the goal is to find a minimum-
length s-t walk that visits all vertices at least once. TSW is
NP-hard (Section 6, [20]). The differences between TSW and
MTSW are a) there could be multiple starting nodes in MTSW
while is only one starting node in TSW, and b) the starting and
ending nodes are not fixed in MTSW while s and t are given
as input in MTSW. Therefore, when b = 1 in MTSW (i.e.,
only one of the |V | nodes is allowed to dispatch a salesman),
MTSW can be solved by calling TSW as a sub-routine upon

2Note that G is not necessarily a complete graph. Otherwise, a salesman
does not need to visit a city more than once.

5

all possible pairs of s and t, and finding the one that yields
the minimum cost.

B. Algorithmic Solutions for MTSW
1) Linear Topologies: G(V,E) consists of |V | nodes: 1, 2,

..., |V |−1, and |V | from left to right. Two adjacent nodes u and
v are connected by an edge, with weight w(u, v). Algorithm 1
below finds optimal solution for MTSW in linear topologies. It
first finds the q edges in E with smallest weights, then checks
if any of pair of them share an end node; if so, they belong
to the same path.3 Assume that it finally gets a disjoint paths.
Then it starts at the leftmost node of each path to visit other
nodes in this path. Therefore, in linear topology, each of the
q nodes is visited exactly once.

Algorithm 1: Optimal Algorithm For Linear Topologies.
Input: A linear topology G(V,E) and q, number of nodes

to visit;
Output: set of a paths: W1,W2, ...,Wa,

∑
1≤j∈a c(Wj);

0. Notations:
W1 =W2 = ... =Wa = φ (empty set);
i: index for edges; j: index for paths;

1. i = 1; j = 1;
2. Find the first q smallest-weight edges, name them

e1, e2, ..., eq from left to right in linear topology;
L(i), R(i): left and right end node of edge ei;

3. while (i ≤ q)
4. Ij = L(ei); Wj = {L(ei), R(ei)};
5. while (i < q ∧R(ei) == L(ei+1))
6. Wj =Wj ∪ {R(ei+1)};
7. i++;
8. end while;
9. i++; j ++;
10. end while;
11. a = j;
12. RETURN W1,W2, ...,Wa,

∑
1≤j∈a c(Wj).

Time Complexity. Using heap data structure, it takes
O(|E|logq) to find the q smallest edges. Line 3-10 takes O(q).
Therefore the time complexity of Algorithm 1 is O(|E|logq).

Theorem 2: Algorithm 1 is optimal for MTSW in linear
topologies.
Proof: By way of contradiction, assume that Algorithm 1 is
not optimal and another algorithm, referred to as O, is optimal.
In O, since q nodes need to be visited and the topology is
linear, q edges are selected. Denote these q edges selected in
O as eo1, eo2, ..., eoq . Since the q edges selected in Algorithm 1
e1, e2, ..., eq are the q smallest-weight edges, it must be that∑q
i=1 ei ≤

∑q
i=1 e

o
i , contradicting that O is optimal.

2) General Graph Topologies: We first give a few defini-
tions.

Definition 1: (Edge-Induced Subgraph.) An edge-
induced subgraph of G(V,E), denoted as G[E′](V ′, E′), is a
subgraph of G(V,E) that has the edge set E′ ⊆ E, and for
all (u, v) ∈ E, u, v ∈ V ′ iff (u, v) ∈ E′. �

3In linear topologies, each obtained walk is a path, a sequence of distinct
nodes.

(a) B-Walk. (b) LP-Walk.

Fig. 3. Illustrating walk in a tree.

Definition 2: (Connected Components of An Edge-
Induced Subgraph.) The set of connected components of an
edge-induced subgraph G[E′], denoted as C(G[E′]), is a set of
connected subgraphs of G[E′]. The jth connected component
is denoted as Cj , 1 ≤ j ≤ |C(G[E′])|. �

Definition 3: (Cycleless Edges.) An edge e ∈ E is cycle-
less w.r.t. E′ ⊆ E, if e /∈ E′ and E′ ∪ {e} does not induce a
new cycle with connected components of G[E′]). �

Binary Walk In A Tree. Assume that edge (u, v) has the
maximum weight in a tree T (we randomly choose one if
there are multiple edges with maximum weights). T then can
be divided into (u, v) and two subtrees, rooted at u and v
respectively. Denote them as Tu and Tv , as shown in Fig. 3(a).
Let c(T), c(Tu), and c(Tv) denote the cost of T , Tu, and Tv ,
respectively (i.e., the sum of weights of all edges). Below
we define a cost-effective walk, called binary walk (B-walk),
which systematically visits all the nodes in T and serves as
the building block for the approximation algorithm.

Definition 4: (Binary Walk (B-Walk) In A Tree.) Given
edge (u, v) with maximum weight in tree T , the B-walk of
T starts from u and visits all the nodes in Tu in a sequence
following DFS and comes back, then visits v, from where
it visits all the nodes in Tv in a sequence following DFS.
Let WB(T) = {u1 = u, u2, ..., un} denote a B-walk and let
c(WB(T)) =

∑n−1
i=1 w(ui, ui+1) be its cost. �

Assume that in Fig. 3(a), w(u, v) = 2 while the weight of
any other edges is 1. One of the B-Walks shown in Fig. 3(a)
is: u, 6, 7, 6, 8, 6, u, v, 1, 2, 1, 3, 1, v, 4, 5, with a cost of 15. It
can be seen easily that in a B-walk, (u, v) is traversed only
once, each edge in Tu is traversed exactly twice, and each
edge in Tv is traversed at most twice.4 Note that for edges
that are traversed twice in B-walk, their weights are counted
twice towards to the cost of the walk.

Lemma 1: Let |T | denote the number of edges in a tree
T . We have c(WB(T)) ≤ (2− 1

|T |)× c(T).
Proof: In the B-Walk of T , since the maximum-weighted edge
(u, v) is traversed exactly once and other edges are traversed
at most twice, c(WB(T)) ≤

(
2×c(T)−w(u, v)

)
. Since (u, v)

is the edge in T with maximum weight, w(u, v) ≥ 1
|T |×c(T).

Therefore c(WB(T)) ≤ (2− 1
|T |)× c(T).

4In the special case that either u or v is a leaf node in T , (u, v) is traversed
once and all other edges are traversed at most twice.

6

Approximation Algorithm For General Graph. Next we
present an polynomial approximation algorithm (Algorithm 2),
which yields a total cost of the walks that is at most (2− 1

q)
times of the optimal cost. It works as follows. Line 1 sorts
all the edges in E into nondecreasing order of their weights.
Line 2 initializes the set Eq to the empty set and creates
|V | trees, each containing one node. The while loop in lines
3-9 checks each edge (in the nondecreasing order of the
weight), if it is cycleless w.r.t. Eq . If yes, add it into Eq .
This continues until q edges are added into Eq . It then obtains
all the connected components induced by these q edges. Since
there is no cycles introduced during this process, each of those
induced connected components could only be a linear or a tree
topology. If it is linear, it starts from one end and visits the
rest nodes in this linear topology exactly once; if it is a tree,
it does a B-walk along the tree.

Algorithm 2: Approximation Algorithm For General Graphs.
Input: A general graph G(V,E) and q, number of nodes

to visit;
Output: set of a walks: W1,W2, ...,Wa, and

∑
1≤j∈a c(Wj);

1. Let w(e1) ≤ w(e2) ≤ ... ≤ w(e|E|);
2. Eq = φ (empty set), i = j = k = 1;
3. while (k ≤ q)
4. if (ei is a cycleless edge w.r.t. E′)
5 Eq = Eq ∪ {ei};
6. k ++;
7. end if;
8. i++;
9. end while;
10. Let |C(G[Eq])| = a;
11. for (1 ≤ j ≤ a)
12. if (Cj is linear) Starts from one end of Cj and

visits the rest nodes in Cj ;
13. if (Cj is a tree) Do a B-walk along Cj ;
14. Let the resulted walk (or path) be Wj ;
15. end for;
16. RETURN W1,W2, ...,Wa, and

∑
1≤j∈a c(Wj).

Time Complexity and Discussions. Using disjoint-set data
structure, the running time of Algorithm 2 is O(|E|log|E|).
Algorithm 2 works similarly as finding edges of minimum
spanning trees in the well-known Kruskal’s algorithm [6],
however, with two significant differences. First, instead of
finding |V | − 1 edges that connect all the nodes in V ,
Algorithm 2 only finds a set of q edges Eq , where q ≤ |V |−1.
Therefore, instead of a single spanning tree that covers all the
nodes in V resulted from Kruskal’s algorithm, Algorithm 2
produces a forest, a graph with each connected component a
tree. Second, unlike Kruskal’s algorithm, which is an optimal
algorithm, traveling each of the trees following a B-walk gives
rise of an approximation algorithm for an NP-hard problem
(Theorem 3).

Definition 5: (Forest, q-Edge Forest, Cost of a Forest)
A forest F of G is a subgraph of G with each connected

component a tree. A q-edge forest, denoted as Fq , is a forest
with q edges. The cost of a forest F , denoted as c(F), is the
sum of weights of all edges in F , c(F) =

∑
e∈F we. �

The cost of the forest induced by Eq in Algorithm 2 is
c(Eq) =

∑
e∈Eq

w(e) (here, we use Eq to also denote its
induced forest when the context is clear). Next we prove that
c(Eq) is the minimum among the costs of all q-edge forests.

Lemma 2: c(Eq) ≤ c(F),∀F ∈ Fq .
Proof: Let E = {e1, e2, ..., e|E|}, with w(e1) ≤ w(e2) ≤ ... ≤
w(e|E|). Let Eq = {eg1, e

g
2, ..., e

g
q}, with w(eg1) ≤ w(eg2) ≤

... ≤ w(egq) (this is the order in which they are selected in
Algorithm 2). By way of contradiction, assume that Eq is not
a minimum-cost q-edge forest; instead Oq = {eo1, eo2, ..., eoq}
is a minimum-cost q-edge forest, with w(eo1) ≤ w(eo2) ≤ ... ≤
w(eoq).

Assume that egl ∈ Eq and eol ∈ Oq are the first pair of
edges that differ in Eq and Oq . That is, egl 6= eol and egi = eoi ,
∀ 1 ≤ i ≤ l − 1. According to Algorithm 2, w(egl) ≤ w(eol).
Now consider subgraph Oq ∪ {egl }. We have two cases.

Case 1: Oq ∪{egl } is a forest. Then c(Oq ∪{egl }−{eol }) ≤
c(Oq), contradicting that Oq is a minimum cost q-edge forest.

Case 2: Oq ∪{egl } is not a forest, i.e., there is a cycle in it.
egl must be in this cycle since Oq is a forest. Next we claim
that among all the edges in this cycle that is not egl , at least one
of them is not in {eg1, e

g
2, ..., e

g
l−1}; otherwise there will not be

any cycle. Denote this edge as e′. Let egl = en, 1 ≤ n ≤ |E|.
We have two subcases.

Case 2.1: e′ ∈ {e1, e2, ..., en−1}. To be exact,
e′ ∈ {e1, e2, ..., en−1} − {eg1, e

g
2, ..., e

g
l−1}. Thus w(e′) ≤

w(en−1) ≤ w(en) = w(egl), contradicting that egl and eol are
the minimum edges that differ.

Case 2.2: e′ ∈ {en+1, en+2, ..., e|E|}. Thus w(e′) ≥
w(en+1) ≥ w(en) = w(egl). In this case, c(Oq ∪ {egl } −
{e′}) ≤ c(Oq), contradicting that Oq is a minimum cost q-
edge forest.

Reaching contradiction in all the cases, it concludes that
c(Eq) ≤ c(F),∀F ∈ Fq .

Let O be an optimal algorithm of MTSW, which gives the
minimum cost of O. Next we show that c(Eq) is a lower
bound of O.

Lemma 3: c(Eq) ≤ O.
Proof: Without loss of generality, assume that the edges
selected in O induces o connected components, denoted as
Oj (1 ≤ j ≤ o). Assume that there are lj nodes in Oj , and
sj ≥ 1 of them are starting nodes (therefore there are sj walks
in Oj , visiting altogether lj − sj nodes). Let the cost of the
sj walks in Oj be c(W o

j),
∑o
j=1 c(W

o
j) = O.

Let c(Oj) denote the sum of weights of all edges in Oj ,
c(Oj) =

∑
e∈Oj

w(e). We have c(Oj) ≤ c(W o
j) since each

edge in Oj is traversed at least once in O. Next denote any
tree of Oj as T oj , and denote the sum of all edges in T oj
as c(T oj). We have c(T oj) ≤ c(Oj) ≤ c(W o

j), resulting in∑o
j=1 c(T

o
j) ≤

∑o
j=1 c(W

o
j) = O.

Let q′ denote the total number of edges in the o connected
components of O, q′ =

∑o
j=1(lj − 1). The subgraph induced

by all T oj (1 ≤ j ≤ o) is therefore a q′-edge forest. Since

7

all together q nodes are visited,
∑o
j=1(lj − sj) = q. Since

sj ≥ 1, we have q ≤
∑o
j=1(lj − 1) = q′. Therefore, c(Eq) ≤

c(Eq′)
Lemma 2
≤

∑o
j=1 c(T

o
j) ≤ O.

Theorem 3: Algorithm 2 is a (2− 1
q)-approximation algo-

rithm for MTSW under general graph topologies, where q is
number of distinct nodes to visit.
Proof: Algorithm 2 finds a connected components, Cj (1 ≤
j ≤ a), out of q selected edges Eq . Let qj and c(Cj) denote the
number of edges in Cj and the sum of weights of edges in Cj ,
respectively. We have q =

∑a
j=1 qj and c(Eq) =

∑a
j=1 c(Cj).

For any Cj , let c(Wj) denote sum of weights of all the edges
traversed in B-DFS walk Wj . Following Lemma 1, c(Wj) ≤
(2− 1

qj
)×c(Cj). Therefore, the total cost of the a walks found

in Algorithm 2 is:
a∑
j=1

c(Wj)
Lemma 1
≤

a∑
j=1

(
(2− 1

qj
)× c(Cj)

)

<

a∑
j=1

(
(2− 1

q
)× c(Cj)

)
= (2− 1

q
)× c(Eq)

Lemma 3
≤ (2− 1

q
)×O.

Smaller-Tree-First-Walk (STF-Walk). When a B-Walk tra-
verses subtree Tu then Tv , each edge in Tu is traversed twice
while each edge in Tv is traversed at most twice. Therefore, in
order not to traverse many edges twice, a simple improvement
could be to traverse, between Tu and Tv , the one with a
smaller cost first. We refer to this as smaller-tree-first-walk
(STF-Walk).

Heuristic Algorithm For General Graphs. Next we present
a heuristic algorithm to further improve the performance upon
Algorithm 2. It differs with Algorithm 2 only in line 13:
Instead of a B-walk along each tree Cj (1 ≤ j ≤ a), it follows
a longest-path-based walk defined as follows.

Definition 6: (Longest-Path Walk (LP-Walk) In A Tree.)
Given a tree T , let P = {v1, v2, ..., vn} be the longest path in
T . A LP-walk starts from v1, visiting all the nodes in T in a
sequence following DFS, and ends at vn, such that every edge
in P is traversed exactly once. �

The novelty of the heuristic algorithm is based on the
observation that when more edges are traversed only once, the
cost of a walk can be further reduced. One of the LP-walks in
the tree in Fig. 3(a) is now: 2, 1, 3, 1, v, 4, 5, 4, v, u, 6, 7, 6, 8, as
shown in Fig 3(b). It has a cost of 14. Because the maximum-
weight edge (u, v) is not necessarily on the longest path P ,
we can not obtain performance guarantee for this heuristic
algorithm. However, we show via extensive simulations in
Section V that it outperforms the approximation algorithm by
20%− 30%, in terms of energy consumption, under different
network parameters.

IV. Algorithmic Solutions for DRA
Next we transform the original sensor network graph

G(V,E) into an aggregation graph G′(V ′, E′), which is de-

fined below. We then show that solving DRA in G is equivalent
to solving MTSW in G′.

Definition 7: (Aggregation Graph.) For a sensor network
graph G(V,E), its aggregation graph G′(V ′, E′) is defined as
follows. V ′ is the set of p data nodes in V , i.e. V ′ = Vd.
For any two data nodes u, v ∈ Vd in G, there exists an edge
(u, v) ∈ E′ in G′ if and only if all the shortest paths between
u and v in G do not contain other data nodes. For each edge
(u, v) ∈ E′, its weight w(u, v) is the cost of the shortest path
between u and v in G. �

Theorem 4: DRA in G(V,E) is equivalent to MTSW in
G′(V ′, E′).
Proof: First, we argue that if all the shortest paths between
two data nodes X and Y in G do not contain any other data
nodes, then in G′ they can be replaced by one single edge
(X,Y), whose weight is the cost of any of such shortest paths.
As DRA concerns with visiting only data nodes following
shortest paths, all the storage nodes on the shortest paths
between X and Y in G do not appear in G′, as long as the
energy consumption of sending data from X to Y is accurately
captured. This is so since the weight of the edge (X,Y) in G′

represents the energy consumption along these shortest paths.
In Fig. 2, (B,E), (D,E), (D,G), (E, I), and (G, I) belong
to this case. Otherwise, if at least one of the shortest paths
between data nodes X and Y contains other data nodes, edge
(X,Y) is not included in G′. In Fig. 2, (B, I) belongs to this
case among others.

Second, if there exists multiple shortest paths between two
data nodes X and Y in G, some having at least another data
node as intermediate nodes and some not, we argue that the
intermediate nodes in the ones without data nodes are not
included in the G′. In order to visit as many data nodes
(aggregators) as possible while using as least amount of energy
as possible, it mandates that DRA takes a shortest path with
data nodes as intermediate nodes as part of the aggregation
walk. (B,D) and (E,G) in Fig. 2 belong to this case.

Above rules guarantee that essential information in G for
data aggregation, including data nodes and energy consump-
tion sending data among them, are both accurately captured
in the aggregation G′. Therefore, solving MTSW in G′ is
equivalent to solving DRA in G.

Fig. 4(a) shows the aggregation graph G′ of sensor network
graph G in Fig. 2. Since 4 aggregators are needed (q = 4),
using Algorithm 2, we find q-edge forest F of G′ (Fig. 4(b))
and B-walk on F (Fig. 4(c)) sequentially.5 Finally, we obtain
the aggregation walk in G (Fig. 4(d)) by replacing each edge
(u, v) in F with a shortest path between u and v in G (choose
one randomly if there are multiple).

We note the fundamental difference between aggregation
graph and metric completion of a graph. Metric completion of
G is a complete graph wherein the length of edge between
every pair of nodes in the graph equals to the length of
the shortest path between them in G. The aggregation graph
resembles the metric completion of graph in the definition of

5The LP-walk happens to be the same as B-walk in this example.

8

Fig. 4. (a) Aggregation graph G′ of sensor network graph G in Fig. 2, (b)
q-edge forest F from G′, (c) B-walk (LP-walk) on F , and (d) Aggregation
walk in G. The numbers on edges are their weights.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 26 28 30 32 34 36 38 40 42 44 46 48

N
u

m
b

e
r

o
f

A
g

g
re

g
a

to
rs

 q

Number of Data Nodes p

ρ=1
ρ=0.7
ρ=0.5
ρ=0.3
ρ=0.1

(a) Valid range of number of data
nodes p, and number of aggregators
q.

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24

 26 28 30 32 34 36 38 40 42 44 46 48

M
a

x
im

u
m

 N
u

m
b

e
r

o
f

In
it
ia

to
rs

 p
-q

Number of Data Nodes p

ρ=1
ρ=0.7
ρ=0.5
ρ=0.3
ρ=0.1

(b) Maximum number of initiators
p− q.

Fig. 5. Feasible overall storage overflow with varying ρ (R = m).

the edge weight or length. However, aggregation graph of G
is not necessarily a complete graph, due to the intrinsic multi-
hop nature of a wireless sensor network.

V. Performance Evaluation
We compare the performance of the approximation algo-

rithm (referred to as B-Walk) and the heuristic algorithm
(referred to as LP-Walk). In our setup, 50 sensors are uni-
formly distributed in a region of 1000m × 1000m square.
Transmission range is 250m; two sensor nodes can com-
municate directly if their distance is within the transmission
range. Unless otherwise mentioned, the storage capacity of
each storage node m is 512KB, the size of overflow data at
each data node R is 512KB. We define correlation coefficient
as ρ = 1 − r/R, where r is the size of overflow data after
aggregation at each aggregator. The more correlation among
data, the larger ρ is: ρ = 0 means no correlation at all, while
ρ = 1 means perfect correlation (i.e., data at aggregators
are duplicate copies of data at data nodes therefore can be
completely removed). However, ρ = 0 is not considered in
simulations since data correlation exists.

Feasible Overall Storage Overflow. Given |V |,m,R, r,
Equation 1 gives the valid range of number of data nodes
p for a feasible overall storage overflow. Given each valid
p, Equation 2 finds its corresponding number of aggregators
q that should be visited, therefore p − q are the maximum
number of allowable data nodes that can serve as initators. To

investigate the feasible overall storage overflow, we study a
sensor network with 50 nodes and set R = m.

Fig. 5(a) shows for different ρ, the valid range of p and the
corresponding value of q for each value of p. When ρ = 0.1,
the valid range of p is a single value of 26, with corresponding
value of q 20. When increasing ρ, the valid range of p expands,
from 26-29 in ρ = 0.3, to 26-33 in ρ = 0.5, to 26-37 in
ρ = 0.7, to 26-49 in ρ = 1. This is because more data
correlation leads to more data aggregation, thus more data
nodes are allowed while satisfying feasible overflow condition.
It also shows that for each ρ, q increases when increasing p.
This is because more data nodes means more overflow data
and less available storage, therefore more aggregators need to
be visited to achieve enough data size reduction.

Consequently, less number of data nodes can serve as
initiators, i.e., p − q decreases with the increase of p, as
shown in Fig. 5(b). It also shows that for the same p, p − q
increases with the increase of ρ. This is implied by Equation 2,
which can be written as: q = dp×(1+m/R)−|V |×m/R

ρ e. When
p is fixed, more data correlation means that less number of
aggregators are needed in order to reduce data size, therefore
more data nodes can serve as initiators. Finally, Fig. 5(b)
indicates that there are two cases in which only one initiator
is allowed: ρ = 0.5 and p = 33, and ρ = 1 and p = 49, while
multiple initiators are allowed for other cases.

Comparing SFT-Walk with B-Walk. We first compare SFT-
Walk with B-Walk, where SFT-Walk traverses the smaller
subtree first while B-Walk randomly chooses one of the two
subtrees to traverse first. We choose ρ = 0.5 and vary p from
26 to 33. Fig. 6(a) shows that when p is small, both yield
the same aggregation costs because the resulted trees are all
linear topologies. However, when p gets larger, the aggregation
cost of SFT-Walk is less than that of B-Walk. This is because
SFT-Walk traverses the edges of the smaller subtree twice
while B-Walk could possibly traverse the edges of the bigger
subtree twice. Fig. 6(b) shows the performance improvement
of SFT-Walk over B-Walk, which is the difference of their
costs divided by the cost of B-Walk. In general, SFT-Walk
improves B-Walk by 5− 10%. We therefore adopt SFT-Walk
for B-Walk for the rest of the simulations, and still refer it to
as B-Walk.

Comparing B-Walk with LP-Walk Visually. Next we visu-
ally compare the performances of B-Walk and LP-Walk in a
network of 50 nodes, for both cases of single initiator and
multiple initiators.
Single Initiator. When ρ = 0.5 and p = 33, q = 32 and
p− q = 1. That is, there are 32 aggregators and one initiator.
Fig. 7(a) and (b) show such a sensor network graph and its
aggregation graph, respectively. Fig. 7(c) and (d) show the
aggregation walks from B-Walk and LP-Walk, respectively. B-
Walk visits 32 edges twice, resulting in a total cost of 381.2J ;
while LP-Walk only visits 12 edges twice, with a total cost of
290.6J , a 23.8% of improvement upon B-Walk.
Multiple Initiators. When ρ = 0.5 and p = 32, q = 28 and
p − q = 4. That is, there are 29 aggregators and at most 4

9

(a) Sensor network graph. (b) Aggregation graph. (c) B-Walk (cost=381.2J). (d) LP-Walk (cost=290.6J).

Fig. 7. Visually comparing B-Walk and LP-Walk with one initiator. � and J– indicate initiators and aggregators that are last visited.

(a) Sensor network graph. (b) Aggregation graph. (c) B-Walk (cost=255.9J). (d) LP-Walk (cost=203.0J).

Fig. 8. Visually comparing B-Walk and LP-Walk when 4 initiators are allowed.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

26 27 28 29 30 31 32 33

T
o

ta
l
A

g
g

re
g

a
ti
o

n
 C

o
s
t

(J
)

Number of Data Nodes p

STF-Walk
B-Walk

(a) Total Aggregation Cost.

0 %

5 %

10 %

15 %

20 %

 26 27 28 29 30 31 32 33

P
e

rf
o

rm
a

n
c
e

 I
m

p
ro

v
e

m
e

n
t

o
f

S
T

F
-W

a
lk

 u
p

o
n

 B
-W

a
lk

Number of Data Nodes p

(b) Performance Improvement of
SFT-Walk Upon B-Walk.

Fig. 6. Comparing STF-Walk and LP-Walk.

initiators. Fig. 8 shows that B-walk aggregation traverses 19
edges twice, resulting in a total cost of 255.9J , while LP-
Walk aggregation traverses 9 edges twice, with a total cost
of 203.0J , a 20.7% of improvement. Among the four trees
in q-edge forest, B-Walk and LP-Walk find exactly the same
aggregation walks in two smaller ones. This shows that when
increasing number of initiators, the performance difference
between B-Walk and LP-Walk gets smaller. This is because
with more initiators, the resulted q-edge forest consists of more

trees with smaller sizes, each with a “short” longest path. By
traversing the edges on such short longest paths once, LP-
Walk does not save as much at it can compared to traversing
a big tree with much longer longest path. Finally, compared
to single initiator case, both B-Walk and LP-Walk incur less
energy cost, because more initiators can now be utilized to
find more cost-effective aggregation walks.

Comparing B-Walk and LP-Walk by Varying p and ρ. Next
we study the aggregation costs of B-Walk and LP-Walk, and
the performance difference between them, by considering the
whole ranges of p and ρ, that is, ρ = 0.1, 0.3, 0.5, 0.7, 1.0 and
p ∈ [26, 49]. Fig. 9(a) shows that for each ρ, with the increase
of p, the total aggregation costs of both B-Walk and LP-Walk
increase. However, LP-Walk constantly perform better than B-
Walk. It also shows that for the same p, with the increase of ρ,
the aggregation costs for both B-Walk and LP-Walk decreases.
This is because more correlation means that less number of
aggregators need to be visited, reducing aggregation costs.

Fig. 9(b) calculates the performance improvement of LP-
Walk upon B-Walk, which is defined as (total aggregation
cost of B-Walk - total aggregation cost of LP-Walk)/ total
aggregation cost of B-Walk. It shows that for each ρ, in
each of its own valid range of p, the smaller the ρ, the
larger of the performance improvement when p is fixed. For

10

example, when p = 26 (the only valid value for ρ = 0.1), the
performance improvement for ρ = 0.1 is 14% while zero for
ρ = 0.3, 0.5, 0.7, 1.0. When ρ = 0.5, in its valid p range (26-
33), it almost always has a larger performance improvement
compared to ρ = 0.5, 0.7, 1. When less data correlation exists,
more aggregators need to be visited, therefore the resulted
q-edge forest gets larger as well as its constituent trees. By
traversing the longest paths of larger trees once, LP-Walk can
save more aggregation cost compared to traversing a smaller
tree. This explains why LP-Walk has a larger performance
improvement upon B-Walk when ρ gets smaller.

 0

 100

 200

 300

 400

 500

 26 28 30 32 34 36 38 40 42 44 46 48

T
o

ta
l
A

g
g

re
g

a
ti
o

n
 C

o
s
t

(J
)

Number of Data Nodes p

ρ=1, B-Walk
ρ=1, LP-Walk

ρ=0.7, B-Walk
ρ=0.7, LP-Walk

ρ=0.5, B-Walk
ρ=0.5, LP-Walk

ρ=0.3, B-Walk
ρ=0.3, LP-Walk

ρ=0.1, B-Walk
ρ=0.1, LP-Walk

(a) Total Aggregation Cost.

0 %

5 %

10 %

15 %

20 %

25 %

 26 28 30 32 34 36 38 40 42 44 46 48

P
e

rf
o

rm
a

n
c
e

 I
m

p
ro

v
e

m
e

n
t

o
f

L
P

-W
a

lk
 u

p
o

n
 B

-W
a

lk

Number of Data Nodes p

ρ=1
ρ=0.7
ρ=0.5
ρ=0.3
ρ=0.1

(b) Performance Improvement of
LP-Walk Upon B-Walk.

Fig. 9. Comparing B-Walk and LP-Walk by Varying p and ρ.

Comparing B-Walk and LP-Walk by Varying R/m. Finally,
we compare the performances of B-Walk and LP-Walk based
on different ratios of R/m. When increasing R/m, the overall
storage overflow situations deteriorate since more overflow
data needs to be accommodated. We set ρ = 0.5 and vary
R/m from 1 to 5. The common range of p for different
ratios of R/m is [26, 30], therefore we pick 26 and 30
for p. Fig. 10(a) shows the total aggregation costs for both
B-Walk and LP-Walk, when p = 26 and 30. Fig. 10(b)
calculates the performance improvement of LP-Walk upon B-
Walk, which is shown to increase generally when increasing
R/m. This indicates that LP-Walk performs even better in
more challenging overall storage overflow scenarios.

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 2 3 4 5

T
o

ta
l
A

g
g

re
g

a
ti
o

n
 C

o
s
t

(J
)

R/m

p=26,B-Walk
p=26,LP-Walk

p=30,B-Walk
p=30,LP-Walk

(a) Total Aggregation Cost.

0 %

5 %

10 %

15 %

20 %

25 %

 1 1.5 2 2.5 3 3.5 4 4.5 5

P
e

rf
o

rm
a

n
c
e

 I
m

p
ro

v
e

m
e

n
t

o
f

L
P

-W
a

lk
 u

p
o

n
 B

-W
a

lk

R/m

p=26
p=30

(b) Performance Improvement of
LP-Walk Upon B-Walk.

Fig. 10. Comparing B-Walk and LP-Walk by Varying R/m.

VI. Related Work
Below, we categorize and review the prior work in data

resilience in sensor networks, data aggregation in sensor
networks, and related graph-theoretic research.

A. Data Resilience in Sensor Networks.

Many data resilience techniques have been proposed to over-
come against different causes of data loss in sensor networks.
Ghose et al. [11] are among the first to propose Resilient Data-
Centric Storage (R-DCS) to achieve resilience by replicating
data at strategic locations in the sensor network. Ganesan [10]
consider constructing partially disjoint multipaths to enable
energy efficient recovery from failure of the shortest path
between source and sink. Recently, network coding techniques
are used to recover data from failure-prone sensor networks.
Albano et al. [1] propose in-network erasure coding to improve
data resilience to node failures. Kamra et al. [18] propose to
replicating data compactly at neighboring nodes using growth
codes that increase in efficiency as data accumulates at the
sink. However, all these data resilience measures adopt the
traditional sensor network model wherein base stations are
always available near or inside the networks. Therefore, all
the data resilience measures are designed towards transmitting
data reliably to the base station.

Recently, some data resilience research has focused on
how to preserve data in disconnection-tolerant storage sensor
network in the absence of base station. We are aware of two
lines of work in this direction. The first line is a sequence
of system research [26, 27, 38, 44]. Since no base station is
available, they design cooperative distributed storage systems
specifically for disconnected operations of sensor networks, to
improve the utilization of the networks data storage capacity.
The other line of research instead takes an algorithmic ap-
proach by focusing on the hardness of the data preservation
problems and the optimality of their solutions [14, 35, 43].
Tang et al. [35] address the energy-efficient data redistribution
problem in data-intensive sensor networks. Hou et al. [14]
study how to maximize the minimum remaining energy of the
nodes that finally store the data, in order to store the data
for long period of time. Xue et al. [43] consider that sensory
data from different source nodes have different importance,
and study how to preserve data with highest importance.
However, all above work assume that there is enough storage
space available from the network to hold all the overflow data
and none of above work address the overall storage overflow
problem.

B. Data Aggregation in Sensor Networks.

There is vast amount of literature of data aggregation in
sensor networks. Here we only review the most recent and
most related works. Tree-based routing structures are often
proposed to either maximize the network lifetime (the time
until the first node depletes its energy) [25, 41], or minimize
the total energy consumption or communication cost [19, 22],
or reduce the delay of data gathering [42]. In DRA, since the
base station is not available and data must be stored inside

11

the network, tree-bases routing structure is no longer suitable.
Instead, our data aggregation process follows a routing scheme
that resembles traveling salesman problem [21]. Some works
are based on non-tree routing structures and propose using
mobile base stations to collect aggregated data in order to
maximize the network lifetime [34, 36]. In contrast, we instead
address a very different scenario for sensor networks: before
the mobile base stations or data mules become available,
some sensor nodes already deplete their storage, therefore their
newly generated data must be offloaded to other sensor nodes
with available storage. The challenge lies in the fact that the
total generated data in the network overflows the total available
storage in the network. To the best of our knowledge, the
overall storage overflow problem has not been addressed by
any of the existing data aggregation research.

C. Overview of Related Theoretical Problems.

Below we give a brief overview of the well-known traveling
salesman problem (TSP) [21] and the related vehicle routing
problem (VRP) [37], which are both NP-hard, and identify the
differences between these problems and the MTSW.

TSP asks the following question: Given a list of cities
and the distances between each pair of cities, what is the
shortest possible route that visits each city exactly once and
returns to the origin city? A recent book by Gutin et al.
[12] provide a compendium of results on the problem. The
multiple traveling salesman problem (mTSP) [3] extends TSP
to multiple salesman and determines a tour for each salesman
such that the total tour cost is minimized and that each city is
visited exactly once by one salesman. VRP refers to a whole
class of problems involving the visiting of “customers” by
“vehicles”, wherein each customer has a positive demand and
each vehicle has a limited capacity serving the demands. The
goal of VRP is to find a route for each vehicle in order to
supply all the customers and minimize the total cost of the
routes. VRP is a generalization of the mTSP by considering
demands from “customers” and “capacity” of the vehicles.
Toth and Vigo [37] given an up-to-date survey of the variants
and solution techniques for VRP.

The differences between mTSP/VRP and MTSW is as
follows. Unlike mTSP, not only does MTSW need to figure
out the order in which to visit cities, but it must answer some
other fundamental questions: from which cities are salesmen
dispatched and which cities does each salesman visit? In VRP,
the set of vehicle locations (the depots) and the set of customer
locations are usually disjoint. There is no such distinction for
nodes in MTSW – each node can either dispatch a salesman
(i.e. a vehicle) or be visited (i.e. as a customer). In VRP, a fixed
set of customers (or cities) must be visited while in MSTW, it
only requires all together q cities are visited, not necessarily a
specific subset of cities. In VRP, each vehicle route starts and
ends at the same or different depots while MSTW does not
have such constraint.

The traveling salesman path problem (TSPP) [20] is defined
as follows. Given an undirected graph G = (V,E), a cost
function on the edges, and two nodes s, t ∈ V , the TSPP is to

find a Hamiltonian path from s to t visiting all cities exactly
once (the case s = t is equivalent to the TSP). Instead of
a Hamiltonian path from s to t, the traveling salesman walk
(TSW) problem [20] asks for the minimum cost s−t traveling
salesman walk, wherein the traveling salesman walk visits all
vertices at least once. The MTSW we study is essentially a
multiple traveling salesman walk problem, wherein up to some
number of salesman can be dispatched from some cities, such
that total q cities are visited with minimum amount of cost.

VII. Conclusion and Future Work
In this paper we solve overall storage overall problem in

sensor networks by designing close-to-optimal data aggrega-
tion algorithms. Even though DRA is uniquely derived from
sensor networks, it is a theoretically fundamental problem as
well as a practical problem potentially with other applications.
Its theoretical rigor lies in the underlying multiple traveling
salesman walk problem, a new variation of the classic traveling
salesman problem that has not been studied. Because of this
theoretical root, the techniques proposed in this paper could be
applicable not only in sensor networks, but in any applications
in which data correlation and resource constraints coexist, such
as scientific application, data centers, and big data analytics.

As future work, we will augment the proposed techniques
to tackle situations with some nodes depleting their battery
power, and design distributed algorithms for DRA. Currently
the DRP is a static problem, in which the overflow data is
generated at the beginning and only once. We will address a
real-time problem where data is generated and transmitted dy-
namically and periodically, and investigate how the dynamics
affect the problem and its solutions.

After being aggregated to the size accommodable by the
available storage capacity, the overflow data need to be of-
floaded to storage nodes to be stored. Therefore the DRA is
only the first stage of a more broad overall storage overflow
in sensor networks. The second stage of offloading aggregated
data from data nodes/aggregators to storage nodes has been
studied extensively by existing research [14, 35, 43]. An inter-
esting question to ask is: Should the data resilience measure
be treated as two separate stages of data aggregation and then
data offloading, or should it be treated in a holistic approach?
In another word, is an optimal data aggregation plus an optimal
data offloading optimal for the whole problem? The answer
is no. For example, in Fig. 2, there are two optimal data
aggregation solutions: B is the initiator and its aggregation
walk is: B, E, D, G, H , I; or I is the initiator and its
aggregation walk is: I , H , G, D, E, B. However, the former
achieves optimal for the whole problem while the latter not.
As an ongoing and future work, we would like to integrate
these two stages together to explore a more energy-efficient
solution for the overall storage overflow problem.

REFERENCES

[1] Michele Albano and Jie Gao. Resilient data-centric storage in wireless
ad-hoc sensor networks. In Proc. of the International Workshop on Algo-
rithms for Sensor Systems, Wireless Ad Hoc Networks and Autonomous
Mobile Entities (ALGOSENSOR’10), pages 105–117, 2010.

12

[2] Salah A. Aly, Zhenning Kong, and Emina Soljanin. Fountain codes
based distributed storage algorithms for large-scale wireless sensor
networks. In Proc. of IPSN, 2008.

[3] Tolga Bektas. The multiple traveling salesman problem: an overview
of formulations and solution procedures. Elsevier Omega, 34:209–219,
2006.

[4] Costas Busch, Malik Magdon-Ismail, Fikret Sivrikaya, and Bulent Yener.
Contention-free mac protocols for wireless sensor networks. In Proc. of
DISC, pages 245–259, 2004.

[5] Harsha Chenji and Radu Stoleru. Mobile sensor network localization
in harsh environments. In Proceedings of the 6th IEEE international
conference on Distributed Computing in Sensor Systems (DCOSS’10),
pages 244–257, 2010.

[6] Thomas Corman, Charles Leiserson, Ronald Rivest, and Clifford Stein.
Introduction to Algorithms. MIT Press, 2009.

[7] R. Cristescu, B. Beferull-Lozano, M. Vetterli, and R. Wattenhofer.
Network correlated data gathering with explicit communication: Np-
completeness and algorithms. IEEE/ACM Transactions on Networking,
14:41–54, 2006.

[8] Rzvan Cristescu, Baltasar Beferull-lozano, Martin Vetterli, and Roger
Wattenhofer. On network correlated data gathering. In Proceedings of
IEEE Infocom, pages 2571–2582, 2004.

[9] John Heidemann Fred Stann. Rmst: Reliable data transport in sensor
networks. In Proc. of 1st IEEE International Workshop on Sensor Net
Protocols and Applications (SNPA), pages 1–9, 2003.

[10] Deepak Ganesan, Ramesh Govindan, Scott Shenker, and Deborah Estrin.
Highly-resilient, energy-efficient multipath routing in wireless sensor
networks. SIGMOBILE Mob. Comput. Commun. Rev., 5(4):11–25,
October 2001.

[11] Abhishek Ghose, Jens Grossklags, and John Chuang. Resilient data-
centric storage in wireless ad-hoc sensor networks. In Proceedings the
4th International Conference on Mobile Data Management (MDM03,
pages 45–62, 2003.

[12] G. Gutin and A. Punnen, editors. The Traveling Salesman Problem and
its Variation. Kluwer Academic Publishers, 2002.

[13] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient
communication protocol for wireless microsensor networks. In Proc. of
HICSS 2000.

[14] Xiang Hou, Zane Sumpter, Lucas Burson, Xinyu Xue, and Bin Tang.
Maximizing data preservation in intermittently connected sensor net-
works. In Proc. of IEEE MASS 2012, pages 448–452.

[15] S. Jain, R. Shah, W. Brunette, G. Borriello, and S. Roy. Exploiting
mobility for energy efficient data collection in wireless sensor networks.
MONET, 11(3):327–339, 2006.

[16] Jaein Jeong, Xiaofan Jiang, and D. Culler. Design and analysis of micro-
solar power systems for wireless sensor networks. In Proceedings of 5th
International Conference on Networked Sensing Systems (INSS 2008),
pages 181 – 188, 2008.

[17] Milica Stojanovic John Heidemann and Michele Zorzi. Underwater
sensor networks: applications, advances and challenges. Phil. Trans.
R. Soc. A, 370:158 – 175, 2012.

[18] Abhinav Kamra, Jon Feldman, Vishal Misra, and Dan Rubenstein.
Growth codes: Maximizing sensor network data persistence. In Pro-
ceedings of ACM Sigcomm, 2006.

[19] Tung-Wei Kuo and Ming-Jer Tsai. On the construction of data aggre-
gation tree with minimum energy cost in wireless sensor networks: Np-
completeness and approximation algorithms. In Proceedings of IEEE
INFOCOM, pages 2591 – 2595, 2012.

[20] Fumei Lam and Alantha Newman. Traveling salesman path problems.
Mathematical Programming, 113:39 – 59, 2008.

[21] E. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D. SHmoys (Eds.).
The Traveling Salesman Problem: A Guided Tour of Combinational
Optimization. John Wiley and Sons, 1985.

[22] Jian Li, Amol Deshpande, and Samir Khuller. On computing compres-
sion trees for data collection in wireless sensor networks. In Proceedings
of INFOCOM, pages 2115–2123, 2010.

[23] Ke Li, Chien-Chung Shen, and Guaning Chen. Energy-constrained bi-
objective data muling in underwater wireless sensor networks. In Proc.
of the 7th IEEE International Conference on Mobile Ad-hoc and Sensor
Systems (MASS 2010), pages 332–341, 2010.

[24] Yunfeng Lin, Ben Liang, and Baochun Li. Data persistence in large-
scale sensor networks with decentralized fountain codes. In Proc. of
INFOCOM, 2007.

[25] D. Luo, X. Zhu, X. Wu, and G. Chen. Maximizing lifetime for
the shortest path aggregation tree in wireless sensor networks. In
Proceedings of IEEE INFOCOM, pages 1566 – 1574, 2011.

[26] L. Luo, Q. Cao, C. Huang, L. Wang, T. Abdelzaher, and J. Stankovic.
Design, implementation, and evaluation of enviromic: A storage-centric
audio sensor network. ACM Transactions on Sensor Networks, 5(3):1–
35, 2009.

[27] L. Luo, C. Huang, T. Abdelzaher, and J. Stankovic. Envirostore:
A cooperative storage system for disconnected operation in sensor
networks. In Proc. of INFOCOM 2007.

[28] Ming Ma and Yuanyuan Yang. Data gathering in wireless sensor
networks with mobile collectors. In Proc. of the IEEE International
Symposium on Parallel and Distributed Processing (IPDPS 2008), pages
1–9, 2008.

[29] K. Martinez, R. Ong, and J.K. Hart. Glacsweb: a sensor network for
hostile environments. In Proc. of SECON 2004.

[30] Ioannis Mathioudakis, Neil M. White, and Nick R. Harris. Wireless
sensor networks: Applications utilizing satellite links. In Proc. of the
IEEE 18th International Symposium on Personal, Indoor and Mobile
Radio Communications (PIMRC 2007), pages 1–5, 2007.

[31] Univ. of Pittsburgh Pittsburgh PA USA ; Gadola G. Mosse, D. ; Comput.
Sci. Dept. Controlling wind harvesting with wireless sensor networks.
In Proceedings of International Green Computing Conference (IGCC),
pages 1 – 6, 2012.

[32] Luca Mottola. Programming storage-centric sensor networks with
squirrel. In Proceedings of the ACM/IEEE IPSN, pages 1–12, 2010.

[33] Sundeep Pattem, Bhaskar Krishnamachari, and Ramesh Govindan. The
impact of spatial correlation on routing with compression in wireless
sensor networks. ACM Trans. Sen. Netw., 4(4):1–33, September 2008.

[34] Yi Shi and Y.T. Hou. Theoretical results on base station movement
problem for sensor network. In Proceedings of IEEE INFOCOM, 2008.

[35] Bin Tang, Neeraj Jaggi, Haijie Wu, and Rohini Kurkal. Energy efficient
data redistribution in sensor networks. ACM Transactions on Sensor
Networks, 9(2), May 2013.

[36] S. Tang, J. Yuan, X. Li, Y. Liu, G. Chen, M. Gu, J. Zhao, and G. Dai.
Dawn: Energy efficient data aggregation in wsn with mobile sinks.
In Proceedings of 18th International Workshop on Quality of Service
(IWQoS), 2010.

[37] Paolo Toth and Daniele Vigo, editors. The Vehicle Routing Problem.
Society for Industrial and Applied Mathematics, 2001.

[38] Lili Wang, Yong Yang, Dong Kun Noh, Hieu Le, Tarek Abdelzaher,
Michael Ward, and Jie Liu. Adaptsens: An adaptive data collection and
storage service for solar-powered sensor networks. In Proc. of the 30th
IEEE Real-Time Systems Symposium (RTSS 2009).

[39] B. Weiss, , H.L. Truong, W. Schott, A. Munari, C. Lombriser, U. Hun-
keler, and P. Chevillat. A power-efficient wireless sensor network for
continuously monitoring seismic vibrations. In Proceedings of IEEE
SECON, pages 37 – 45, 2011.

[40] Geoff Werner-Allen, Konrad Lorincz, Jeff Johnson, Jonathan Lees, and
Matt Welsh. Fidelity and yield in a volcano monitoring sensor network.
In Proc. of OSDI 2006.

[41] Y. Wu, S. Fahmy, and N. B. Shroff. On the construction of a maximum-
lifetime data gathering tree in sensor networks: Np-completeness and
approximation algorithms. In Proceedings of IEEE INFOCOM, pages
1566 – 1574, 2008.

[42] X. Xu, M. Li, X. Mao, S. Tang, and S. Wang. A delay-efficient
algorithm for data aggregation in multihop wireless sensor networks.
IEEE Transactions on Parallel and Distributed Systems, 22:163 – 175,
2011.

[43] Xinyu Xue, Xiang Hou, Bin Tang, and Rajiv Bagai. Data preservation in
intermittently connected sensor networks with data priorities. In Proc.
of IEEE SECON 2013, pages 65–73.

[44] Yong Yang, Lili Wang, Dong Kun Noh, Hieu Khac Le, and Tarek F.
Abdelzaher. Solarstore: enhancing data reliability in solar-powered
storage-centric sensor networks. In Proceedings of the 7th international
conference on Mobile systems, applications, and services (MobiSys),
year = 2009,.

[45] M. Z. Zamalloa and B. Krishnamachari. An analysis of unreliability and
asymmetry in low-power wireless links. ACM Transactions on Sensor
Networks, 3(2):1277–1280, 2007.

