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Abstract—Many cloud applications are data intensive requiring
the processing of large data sets and the MapReduce/Hadoop
architecture has become the de facto processing framework for
these applications. Large data sets are stored in data nodes
in the cloud which are typically SAN or NAS devices. Cloud
applications process these data sets using a large number of
application virtual machines (VMs), with the total completion
time being an important performance metric. There are many
factors that affect the total completion time of the processing task
such as the load on the individual servers, the task scheduling
mechanism, communication and data access bottlenecks, etc. One
dominating factor that affects completion times for data intensive
applications is the access latencies from processing nodes to
data nodes. Ideally, one would like to keep all data access local
to minimize access latency but this is often not possible due
to the size of the data sets, capacity constraints in processing
nodes which constrain VMs from being placed in their ideal
location and so on. When it is not possible to keep all data
access local, one would like to optimize the placement of VMs so
that the impact of data access latencies on completion times is
minimized. We address this problem of optimized VM placement
– given the location of the data sets, we need to determine the
locations for placing the VMs so as to minimize data access
latencies while satisfying system constraints. We present optimal
algorithms for determining the VM locations satisfying various
constraints and with objectives that capture natural tradeoffs
between minimizing latencies and incurring bandwidth costs.
We also consider the problem of incorporating inter-VM latency
constraints. In this case, the associated location problem is NP-
hard with no effective approximation within a factor of 2 − ε

for any ε > 0. We discuss an effective heuristic for this case and
evaluate by simulation the impact of the various tradeoffs in the
optimization objectives.

I. INTRODUCTION

With the immense proliferation of cloud-hosted applica-
tions, there has been corresponding interest in optimizing
cloud systems to meet the performance and cost objectives
of various classes of applications. Many popular cloud appli-
cations are data intensive with applications ranging from those
which use the MapReduce framework for processing several
petabytes a day [6] to web and video applications that tradeoff
computing and storage [8]. For many of these data-intensive
applications, the Map-Reduce/Hadoop processing paradigm
has become the method of choice for executing these applica-
tions. The Hadoop[1] system can partition computations and
data over thousands of servers and storage nodes in a cloud
system, thereby immensely speeding up completion times for

the application.
When computation and data are spread over a large number

of nodes, with completion time being an important metric for
the application, then an important problem is the effective
placement of computation and data to achieve fast completion
times. A poor placement may lead to large data access laten-
cies that result in increased completion times. For instance,
if the computation VMs and corresponding data nodes are
placed on different racks then the typical oversubsciption of
aggregation layer links in a data center leads to potential
network bottlenecks that can cause data access latencies.
Ideally, it would be preferable to keep all data access local and
systems such as Hadoop try to accomplish this by reducing
the amount of remote data access. The Hadoop task scheduler,
for instance, attempts to match a task with a processing node
that has data locally. When such a match is not feasible, the
system tries to find nodes with data in the same rack. If this
too fails, only then are off-rack nodes chosen.
In general, it will not be possible to keep most data accesses

local. To keep data accesses local one must place VMs locally
to where the data is stored or move the data to where VMs
can be placed. Neither option is always feasible. It may not
be possible to place VMs locally to nodes that store data.
Large data sets for a particular application may be stored in
NAS or SAN devices that may be located in a only a subset
of the nodes in a cloud system. Moving the VMs to these
data nodes or moving the data to computation nodes may be
infeasible due to capacity constraints. In these cases, irrespec-
tive of whether the data-intensive applications use the Map-
Reduce/Hadoop framework or not, it is important to carefully
place computation (VM) nodes so that data access latencies are
minimized. This optimized placement is particularly important
in geographically distributed clouds consisting of a large
number of relatively small computation and storage nodes.
For such systems, the large differences in access latencies for
different data nodes can lead to large increases in completion
times if VMs are not optimally placed.
The focus of this paper is on the optimized placement of

virtual machines to minimize data access latencies. We discuss
the problem in detail in the next section and describe the differ-
ent possible optimization objectives that tradeoff performance
for bandwidth costs. The main contribution of the paper is
the algorithms that we present in Section III for the optimal
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placement of virtual machines. Section IV shows that adding
inter-VM distance constraints makes the problem NP-hard and
difficult to approximate as well. Effective heuristics for this
case are presented. We also study by extensive simulations,
in Section V the various tradeoffs discussed in Section II.
Section VI discusses related work and concluding remarks are
in Section VII.

II. PROBLEM DESCRIPTION

We assume a distributed cloud environment [10] where there
are a large number of small datacenters dispersed in an area.
However, the solutions in the paper are applicable to large cen-
tralized cloud settings as well. There are two types of resources
inside the datacenter: compute nodes and storage nodes. A
user’s data is stored in a subset of the storage nodes. The user
wants to perform certain computation on their data. The user
wants to allocate certain number of compute resources (VMs)
for this computation. We assume one VM accesses data from
one storage node and vice versa. For example, in Amazon
EC2 environment the compute node mounts the data node as
a volume and access the volume. It is not possible to mount
the same volume in multiple VMs simultaneously. However,
our algorithms can also handle multiple VMs accessing the
same data node or single VM accessing multiple data nodes
by creating multiple instances of data nodes or consolidating
the data node instances respectively.
In our problem setting, location of the data nodes

are fixed, and allocated apriori. Different compute nodes
(Racks/blades/CPUs) have certain number of VMs available.
For each compute node, we know the access latency or
bandwidth to the data nodes. Our goal is to select the VMs that
minimize the latency of access to the data, or minimize the
total bandwidth consumed for the data transfer or maximize
the available bandwidth to the data. Each of the selected VMs
is assigned to the data node which contains the data that will
be processed by the VM.
In the rest of the paper, we will describe the algorithms in

terms of minimizing the latency. We assume that the datacenter
has predictable latency between the nodes, and the latency and
bandwidth usage are proportional. For the problems, where
we want to minimize the bandwidth usage, we can directly
use the bandwidth usage numbers in the algorithms without
any modification. If the metric we want to use is maximizing
available bandwidth, we can create a minimization problem
by replacing the link available bandwidth with difference
of maximum available bandwidth over all the links and the
available bandwidth of that link.
There are several possible optimization objectives which

reflect the latency and bandwidth cost tradeoffs. Depending
on the application, we can use any of the following objectives
while choosing the VMs for the data nodes:

1) Minimize total (or average) access time/bandwidth:
Here we minimize the sum of the access latencies
between the data node and the corresponding VMs.
Minimizing this metric will reduce the overall bandwidth

cost of running the job. If the latencies of accessing
the VMs are skewed, the solution may involve few
assignments that have large latencies compared to rest
of the assignments. In those cases the performance of
the job may be adversely affected by these high latency
assignments.

2) Minimize maximum access time: Here we minimize
the maximum latency between any data node and the
corresponding VM. This objective is used for jobs
where the performance of the application is of at most
importance. The solution may lead to very high total
access time/bandwidth.

3) Minimize the total access time/bandwidth within an
access time threshold: Here the goal is to minimize
the sum of latencies (or bandwidth) with the constraint
that all the latencies between a data node and the
corresponding VM has to be less than a threshold.
This is a compromise between the first two objectives;
here we find a solution that has minimum cost while
guaranteeing some performance.

4) Minimize maximum access time within a total access
time/bandwidth threshold: This is the complement
of the above problem. We are given a total access
time threshold, and wants to minimize the maximum
access time of any data node to its corresponding VM,
subject to that total access time threshold. This is also
a compromise between the first two objectives; here we
find the solution that has maximum performance with a
cost budget.

A. Inter VM constraints

In cloud applications like map-reduce, it is not sufficient that
the VMs running the jobs are close to the data. There might
be communication between these VMs itself. Hence, for better
performance, the chosen VMs have to be close to each other.
The user may specify that the VMs that are selected have to
be within a fixed distance of each other.
The objectives mentioned previously does not take the inter-

VM distance into consideration. This may lead to solution
that assigns VMs, which are farther apart in the datacenter
or distributed cloud, to the data nodes. The performance of
the application may be adversely affected when these VMs
have to exchange data, due to high latency or low bandwidth
available between the VMs.
In this paper, we also consider the problem of assigning

VMs to the data nodes that takes into account of inter-VM
communication of the application. We represent the additional
constraints in the form of inter-VM distance or latency. We
provide algorithms for each of the above optimization ob-
jectives with additional constraint on the maximum (thresh-
old) inter-VM communication distance/latency for the VMs
assigned to the data nodes.

III. ALGORITHMS WITH NO INTER-VM CONSTRAINTS

In this section, we provide algorithms for the data-aware
VM placement problem. Our solutions are based on algorithms
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for assignment problems. The problems involving inter-VM
constraints are NP-hard and we provide heuristic solutions of
those problems in the next section.
Let D1, D2, . . . , Dk be the data nodes that require VMs

for processing the data. Let V1, V2, . . . , Vm be the available
virtual machines that can be assigned for processing these data.
Let dij , i ∈ {1, . . . k}, j ∈ {1, . . .m} represent the distance,
latency or the bandwidth cost between the data Di and VM
Vj . If a VM cannot be assigned to a data node, then we set
the corresponding dij to ∞.
Our goal is to find an assignment of data nodes to VMs

such that no two data nodes are assigned to the same VM and
vice versa, and all the data nodes are assigned to VMs. Let
xij be the binary variable, set to 1 if and only if data node
Di is assigned to VM Vj .
We can treat the VM placement problem as a classic linear

sum assignment problem [5]. To transform the VM placement
problem into a classic assignment problem, we first make the
cardinality of data nodes and VMs the same. If the number
of VMs is less than the number of data nodes, then there is
no solution to the VM assignment problem, since every data
node requires a VM to process the data. If the number of
VMs is more than the number of data nodes, we add dummy
data nodes to make their cardinalities the same. We set the
cost of assigning VMs to the dummy data nodes as 0. In the
transformed problem, let n be the number of data nodes and
VMs.
The assignment problem is to minimize the cost of the

assignment subject to the constraint that each object on either
side of the assignment appears exactly once. The assignment
problem can be represented as the following 0-1 linear
program:

Minimize
∑n

i=1

∑n

j=1
dijxij

Subject to
∑n

i=1
xi,j = 1 for all j = 1 . . . n

∑n

j=1
xi,j = 1 for all i = 1 . . . n

xij ∈ {0, 1} for all i = 1 . . . n and j = 1 . . . n

The constraint matrix is totally unimodular. We can relax the
conditions xij ∈ {0, 1} to xij ≥ 0 and solve the corresponding
linear program.
The dual of the above program is as follows. There are

dual variables associated with each data nodes and VMs.
Let’s call them ui and vj respectively. The dual program is:

Maximize
∑n

i=1
ui +

∑n

j=1
vj

Subject to
ui + vj ≤ dij for all i = . . . n and j = 1 . . . n

Hence the problem becomes that of assigning weights to
data nodes and virtual machines, such that their sum is
maximized subject to the cost constraint.
There are a large number of algorithms to solve the linear

assignment problem. For this paper, we use the classic Hun-
garian algorithm [5] to solve this problem. This is a primal-
dual algorithm.

Edge weight transformation

In the description of the problems and solution so far, we
assume that each VMs access the same amount of data from
the data nodes. Hence we measure the cost of the solution in
terms of latency of the VMs to the data nodes. In practice, the
amount of data that will be accessed by the VMs from the data
nodes will be different from each data nodes. We can account
for the non-uniform data access by the VMs by modifying the
cost of the links between the data nodes and the VMs.
Let p1, p2, . . . , pk be the amount of data that need to be

processed from the data nodes D1, D2, . . . , Dk respectively.
The total bandwidth required for accessing data from a data
node by the VM assigned to the data node is proportional to
the amount of data that will be accessed as well as the distance
(or latency) of the data node from the VM. Hence, the cost of
accessing the data from node Di by VM Vj is dijpi. Given
an assignment xij between the data nodes and the VMs, the
total cost of access is:∑n

i=1

∑n

j=1
dijxijpi

All the other constraints of the original program remain
unchanged. Hence, for optimizing for the uneven access of
data, we use the same solution as the uniform weight, but
with modified edge costs of dijpi
Example: Figure 1(a) shows an example of a VM assign-

ment problem, where there are 3 data nodes of size 20 GB, 10
GB and 8 GB. There are 4 VMs to choose from. The labels on
the links show the latency or bandwidth costs. If the assigned
VMs access all the data that is present in the corresponding
data node, then we can modify the problem to the one in
Figure 1(b) to accurately reflect the costs of data access. Here
each link cost of the original problem is multiplied with the
data size of the incident data node.

Multiple VMs accessing the data

In some application scenarios, a data node may need to be
processed by multiple virtual machines. For example, if the
amount of data at a node is significantly larger than other
data nodes, then the user may request that the larger data be
processed by multiple virtual machines. We transform such a
problem into our model of one VM per data node by creating
multiple instance of the data node. Note that creating multiple
instances is done only as an input to the algorithm; but it is
not done to the actual data present in the original data node.
Multiple VMs output by the algorithm is then assigned to
the same data node. We can also use the edge transformation
described previously to assign different proportions of the data
from the data node to different VMs.
Similarly, a VM may be required to access data from

multiple data nodes. For example, in a map-reduce job, data
for a reduce node may come from multiple map tasks that may
store the data in different data nodes. This may also be done
to reduce the total number of VMs to run a job as the dollar
cost of accessing the cloud is proportional to number of VMs.
In those cases, we combine the data nodes into one logical
data node while giving them as input to the algorithm. The
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Fig. 1. Example edge weight transformation

cost of the links from this logical data node to a VM is taken
as the average of the cost between the VM and the individual
data nodes. Here again, we can use the weighted average for
the link costs if the amount of data access by VMs is different
from each of the data nodes.
Example: Figure 1(c) shows the case where two VMs are

needed to process the data from data node D1. Here we create
two instances of D1 named D′

1
and D1”. Links from the

original data node to the VMs are replicated in both of these
instances.

A. Algorithms

In this section we describe algorithms for each of the
problems described in Section II.
1) Minimize total (or average) access time/bandwidth: In

this case we want to minimize the total access time. The
objective of the problem is to minimize

∑n

i=1

∑n

j=1
dijxij .

We use the standard assignment algorithm discussed at the
beginning of the section to solve this problem.
2) Minimize maximum access time: In this case, our goal

is to minimize the maximum latency required by any VM to
access the corresponding data node. This can be formulated
as the following program:

Minimize maxij dijxij

Subject to∑
i xi,j = 1 for all j = 1 . . . n∑
j xi,j = 1 for all i = 1 . . . n

xij ∈ {0, 1} for all i = 1 . . . n and j = 1 . . . n
This problem is an instance of linear bottleneck assignment

problem (LBAP) [5]. LBAP is a linear assignment problem
whose objective is to minimize the maximum cost among the
individual assignment. One of the solution techniques to solve
LBAP is to use a threshold algorithm. The algorithm fixes a
threshold for the solution. It constructs a bipartite graph whose
edges are the edges from the original graph whose lengths are
below the threshold. Any matching on this graph is the solution
to the original with the objective value of the threshold.
Optimal value of the threshold can be found by doing a binary
search on the threshold that has complete matching. There are
also other algorithms based on augmenting paths [5].

3) Minimize the total access time/bandwidth within an
access time threshold: In this problem, we want to minimize
the total cost of the assignment, subject to the constraint that
none of the edge weights in the assignment can be more than a
given threshold. This problem can be transformed into the total
access time minimization problem (problem 1), by removing
all the edges that are above the threshold, or by giving the
edges that are above the threshold the cost of infinity (if the
algorithm requires complete bipartite graph). In fact, it is also
possible for the user to give individual thresholds to each of
the data node. For example, if the data in some data nodes are
important or takes more time to process, those data nodes may
be assigned a lower threshold. In those cases, we will remove
the edges incident on the data nodes which are more than the
corresponding thresholds from the bipartite graph. Then we
run the cost minimization algorithm on the modified graph.

4) Minimize the maximum access time within a total access
time/bandwidth threshold: In this problem, like the second
problem, we want to minimize the maximum of all the access
times. But, we do not want the total access time to go above
a threshold (budget) value.

Let’s consider the reverse problem of minimizing the total
access time subject to a threshold on maximum access time
on any link. As stated above, we can solve this problem by
pruning the links that does not satisfy the link threshold con-
straint. As the threshold increases, only new links gets added
to the graph, and the existing links are not removed. Hence,
the total access time decreases as the threshold increases. To
solve the problem of minimizing the maximum access time
within the total access time threshold, we do the following.
Like the threshold algorithm, perform a binary search on the
access time of the links. In each search step, the value of the
solution is the minimum total access latency for an instance
where all the links with latency above the given access time
are pruned. We take the solution that has the lowest maximum
link access time, whose total access time is below the given
budget.
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Fig. 2. NP-hardness reduction from 3-SAT

IV. ALGORITHMS FOR INTER-VM CONSTRAINT

In this section, we consider the allocation of VMs to data
nodes, where user gives additional constraints of distance be-
tween the VMs assigned to the data nodes. First, we prove that
the problem is NP-hard, with no possible approximation for
arbitrary inter VM distance. If the inter-VM distance satisfies
triangle inequality, then the problem cannot be approximated
within a factor of 2 − ε for any ε > 0. Then we give
heuristic algorithms for the problem, which provides a generic
framework for using all the algorithms mentioned in previous
section.

A. NP-hardness

We prove the NP-hardness by reduction from 3-satisfiability
(3-SAT) problem. Given a 3 SAT instance with n variables
and m clauses, create the VM assignment instance as follows.
There are m data nodes, each corresponding to a clause. There
are 3m VMs corresponding to the literals of the clauses. A
data node corresponding to a clause can be assigned to any
of VMs corresponding to its literals and the latency between
this data node and the VMs are 1. Latency between a data
node corresponding to a clause and the VMs corresponding
to another clause is r > 1. The distance between VMs

corresponding to any literal and its negation is s > 1. The
distance between any other VMs is 1.
We prove that an assignment of the VMs to the data nodes

whose inter-VM distance is 1 and total latency m corresponds
to a valid 3 SAT assignment and vice versa.
If there is a solution to the 3 SAT instance, we can find

a solution for the VM placement as follows. For each of the
data nodes corresponding to a clause, assign a VM from its
corresponding literal that has the satisfying assignment. The
latency of this assignment will be 1 for each of the data
nodes. Furthermore, the distance between any two VMs that
are assigned to the data nodes is 1. This is because, all the VMs
that are assigned to the data nodes corresponds to literals in
a satisfying assignment. Only VMs corresponding to a literal
and its complements has inter-VM distance more than 1, and
any satisfying assignment cannot have both a variable and its
compliment set to one. The latency of this assignment is 1 for
each data node, giving the total latency ofm, and the inter-VM
distance in the assignment is 1.
Similarly, if there is a solution for the VM placement, whose

total latency is m and inter-VM is 1, then the corresponding
3 SAT instance is satisfiable. Given such a solution to the
VM placement, we can create the solution for 3 SAT instance
as follows. Since the latency of any data node to any VM
is at least one and there are m data nodes, the latency to
each of the assigned VM from the corresponding data node
has to be exactly 1. Hence, each of the assignment of the
data node to VM in the solution corresponds to assignment
of the corresponding clause to one of its literals. Furthermore,
since the distance between any two VMs that are assigned
to the data nodes is 1, none of those VMs corresponds to a
literal and its compliment. Otherwise, the distance between
those VMs would have been s > 1. Hence, to create a
satisfying assignment, assign true to all the literals that has
a corresponding VM assigned to a data node. If no VMs
corresponding to a variable or its complement are assigned
to a data node, then the variable can take either true or false
without affecting the satisfiability of the clauses.
Any solution that corresponds to a non-satisfying assign-

ment of the 3-SAT will have: either an assignment of a data
node to a VM whose latency is r which corresponds to an
unsatisfiable clause; or two VMs in the assignment whose
inter-VM distance is s, which corresponds to both a variable
and its compliment assigned the value of true; or both.
Note that we did not make any assumption on the value of r

and s other than they being greater than 1. Setting these values
to a large quantity shows the inapproximability of the VM
assignment problem with inter-VM constraints; the problem
cannot be approximated with in any factor.
In many cases, the distance between the VMs follows trian-

gle inequalities. In our reduction, to satisfy triangle inequality,
the value of s has to be at most 2. In that case the inter-VM
distance between an optimal and non-optimal solution will be
1 and 2, giving an optimality gap of 2. Hence, the problem
is 2− ε inapproximable when the inter-VM distances follows
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triangle inequality.
Example: Figure 2 shows an example of a 3-SAT instance

with 3 clauses and 4 variables, and corresponding VM assign-
ment problem. Here the value of both r and s are set to ∞.

B. Algorithm for Inter-VM constraint

In this section, we provide algorithms for solving all the four
problems mentioned in section II with additional constraints
on the inter-VM distance. We assume that distance between
the VMs follows triangle inequality.
Our algorithm is based on the following observation. Let

t be the inter-VM distance threshold. Consider a graph Gv

whose set of nodes corresponds to VMs and there is an edge
between the nodes if the distance between the corresponding
VMs is less than t. The nodes in Gv , which corresponds to
VMs in an assignment that satisfies the inter-VM distance
constraint, forms a clique. The basic idea of our algorithm
is the following: Given a partial assignment of data nodes
to VMs (i.e. only some of the data nodes are assigned VMs),
then for incrementally assigning more VMs to unassigned data
nodes, we can consider only the VMs that forms a clique with
the currently assigned VMs.

Algorithm 1 Assignment-with-inter-VM(G, t,P ,AP)
1: Input: G = (D,V ): bipartite graph with data nodes and

VMs
t: Threshold for inter VM distance
P : Assignment problem without the inter-VM constraint
AP : Algorithm for P

2: Output: Solution for problem P with additional inter-VM
distance constraint on Graph G

3: C ← Set of candidate cliques of VMs in G with threshold
t

4: bestSolution ← φ
5: for all C ∈ C do
6: Create problem instance G′ = (D,C) for problem P

that contains all the data nodes and only VMs in C
7: currentSolution← result of running AP for problem

P with input G′

8: if currentSolution better than bestSolution then
9: bestSolution ← currentSolution
10: end if
11: end for
12: return bestSolution

The general framework of the algorithm for problem P
with additional inter-VM distance constraint is given in Al-
gorithm 1. Let AP be the algorithm for the problem P
without the inter-VM distance constraints, similar to the one
described in Section III. We select a set of VMs V that form
a clique based on the inter-VM distance threshold t. Note that
the clique V is not the maximum clique, as we cannot find
maximum clique in polynomial time. We invoke the algorithm
AP on the input consisting of all the data nodes and set
of VMs V that form a clique. This process is repeated for
different set of cliques, and we select the best result.

When the inter-VM distances follows the triangle inequality,
we can select the clique with threshold at most t as follows.
We start with VM v, and add it to the clique. Now add all the
VMs that are at a distance at most t/2 from v to the clique.
The set formed is a clique with threshold distance t since
the distance between any two VMs in the set is less than the
sum of the distance between those VMs and v, due to triangle
inequality. We can also add additional VM to the clique as
follows: consider one VM at a time that is not part of the
clique. If the distance to that VM from all the VMs that are
already present in the clique is less than the threshold, then
we add that VM to the clique. The algorithm is presented in
Algorithm 2.
We create cliques with each of the VM as the starting

VM, and run the algorithm 1 with those cliques. We take the
solution with the minimum cost.

Algorithm 2 VM-clique(G, v, t)
1: Input: G = (D,V ): bipartite graph with data nodes and

VMs
v: Initial VM added to the clique
t: Threshold for inter-VM distance

2: Output: A maximal clique centered at node v
3: C ← {v}
4: for all u ∈ V do
5: if dist(u, v) ≤ t/2 then
6: C ← C ∪ {u}
7: end if
8: end for
9: for all u ∈ V − C do
10: flag ← true
11: for all w ∈ C do
12: if dist(u,w) > t then
13: flag ← false
14: break
15: end if
16: end for
17: if flag = true then
18: C ← C ∪ {u}
19: end if
20: end for
21: return C

V. SIMULATION RESULTS

In this section we evaluate the performance of virtual
machine placement for low latency data access under different
constraints. First we study the performance without inter-VM
distance constraint and then study by adding that constraint.
For our simulations, we create demand graphs as follows.

We assume a datacenter setup with 1024 racks, which is
organized in a hierarchical manner. Nodes that belong to racks
that are in blocks of 16 (i.e. 0-15, 15-31 etc) can communicate
with each other using a single switch. Nodes that belong to
the racks that are in the same blocks of 64, but not in the
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assignment that minimizes the total access time

same blocks of 16 can communicate with each other using
3 switches. Similarly nodes that belong to racks that are
in blocks of 256 can communicate with each other using 5
switches. If the node belongs to racks that are not in blocks
of 256, then they communicate using 7 switches. To create the
demand matrix, we first create required number of data nodes
and VMs and randomly assign them to one of the racks. While
selecting the racks for the data nodes and VMs, we may also
restrict it to a subset of racks (e.g. one of the first 256 racks).
The latency between a data node and a VM is taken as random
between 0.75− 1.25× the number of switches between them.

We conducted various experiments where the number of
data nodes varied from 10 nodes to 80 nodes in multiples of
10. The number of VMs available also varied from 10 to 120
VMs in multiples of 5. Both data nodes and VMs were placed
at random in first k racks for k = 16, 64, 256 and 1024. In
this paper, we present the results only for 40 data nodes. The
results were similar for other number of data nodes. Each run
of the experiment was done for 20 times with different random
seeds for the latency between the data nodes and the VMs, and
we report the average of these experiments.

A. Minimizing total access time

First we conduct experiments to study the effect of number
of available VMs on the total access time. Here we varied
the number of available VMs from 40 to 120 and ran the
algorithm that minimizes the total access time. Figure 3 reports
the results for different number of rack sizes. The labels on
the graph show the number of data nodes and the number of
racks. As it can be seen, the total access time of the assignment
decrease as number of VMs increases. This is because the as
the number of available VMs increases, there will be more
VMs closer to the data nodes. The data nodes will also be
able to choose from more VMs. Figure also shows that as we
restrict the data nodes and VMs to smaller number of racks,
the total access time decreases. This is because smaller number
of racks leads to the data node and VMs to be present close
to each other, leading to smaller latencies between them.
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Fig. 5. Total access time vs access time threshold for a 40 data node allocation
that minimizes total the total access time

B. Minimizing maximum access time

In this experiment, we use the same setup as the previous
experiment, but want to minimize the maximum access time
among all the assignments. Figure 4 shows the maximum data
node-VM access time for different number of available VMs
for an assignment consists of 40 data nodes. The maximum
access time decreases as the number of VMs increases. This
is again due to more choices available for data nodes, and
more VMs gets closer the data nodes as the number of VMs
increases. The maximum access time also decreases as we
reduce the number of racks. The reason for it is same as the
one mentioned in the previous experiment.

C. Minimizing total access time within an access time thresh-
old

Now we study the effect of placing a threshold on maximum
access time for the data access by VMs on the total access
time. In this experiment, there were 40 data nodes and 40
VMs. We prune the edges in the data node-VM bipartite
graph that exceeds the threshold, and run the total access
time minimization algorithm. Figure 5 shows the total access
time for different access time thresholds. As the access time
threshold increases the total access time decreases. This is
because, as we increase the access time threshold, we add more
links to the bipartite graph. Hence, there are more choices for
the assignment, which could lead to smaller total access time.
We also note that after a while, as the threshold increases, the
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allocation that minimizes the total access time
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total cost remains the same. This is because those newly added
links have higher cost and do not participate in the assignment.
Figure 6 shows the maximum access time in the assignment
for different access threshold for the same experiment. The
maximum latency increases as the threshold increases. Hence,
the assignment is using some larger latency links, which can
free up some of the VMs. These VMs can be assigned to
closer data nodes, decreasing the overall (total) access time.
Like the previous experiments, the total and maximum access
time decreases as the number of racks used for the VMs and
the data nodes decreases.

D. Minimizing maximum access time within a total access
time threshold

Now we study the effect of limiting the total access time
on the maximum access time. Figure 7 shows the maximum
access time as a function of total access time, that minimizes
the maximum access time subject to that total access time
threshold. We can see that the maximum access time de-
creases, as we are willing to pay with more total access time.
This is because with higher total access time, the assignment is
able to make more choices that decrease the maximum access
time. Maximum access time cannot be reduced indefinitely by
increasing the total access time. After a point, we reach the
optimum access time and further increase in the total access
time budget cannot reduce the maximum access time. The
graph also shows the results of restricting the number of racks,
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and they are similar to previous results.

E. Inter-VM latency/distance constraints

Now we study the effect of inter-VM latency threshold on
the total access times of the assignment. Figure 8 shows the
total access time for different inter-VM latency constraints for
an allocation that minimizes the total access time. The number
of available VMs was 100 and 120. These are marked with
100V and 120V respectively in the graph. Figure 9 shows the
maximum access time for the same experiment. As the inter-
VM latency increases, the total access time decreases. This is
because there are more VMs available for assignment when
the inter-VM latency increases. For the same reason, the total
access time also decreases as the number of available VMs
increases or number of racks decreases. It is also interesting
to see that for 120 VMs (on 1024 racks), the solution was
available (even though of higher cost) for a threshold, for
which there was no solution with 100 VMs. This is also again
due to more VMs available for assignment within the threshold
inter-VM latency for 120 VM case.

VI. RELATED WORK

The need to schedule computations close to where the data
is located is well recognized. Schedulers which combine data
locality with classical scheduling considerations like fairness
have been proposed. In Quincy[7] it is noted that fairness and
locality requirements often impose conflicting constraints. To
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enhance the chances of local access, it may be best to delay
a job’s executions until its ideal resources become available.
However, this delay may violate fairness needs which require
the system to execute the job sooner. The Quincy scheduler
uses a graph model with edge weights that reflect both fairness
and locality needs. The scheduling problem is then mapped
to a min-cost flow problem on this graph and an algorithm
developed. This scheduler is envisaged to run on fine-grained
time scales. The problem that we consider is an optimal
assignment of VMs to locations without any of the other
scheduler constraints and operating at larger timescales. In
[11], a scheduling scheme called delay scheduling is proposed
to balance data locality and fairness needs. By delaying
execution of certain tasks with non-local data that would be
eligible for execution for fairness reasons, it is shown that
throughputs can be increased by a factor of 2. This again shows
that data access performance is crucial to overall performance.
The impact of skewed popularity of data items is studied in

[2] where it is observed that machines and racks that host pop-
ular data items become bottlenecks. This results in increased
completion times. To alleviate this a scheme for judicious
replication of popular data items which are frequently accessed
is proposed.
Since MapReduce/Hadoop executes many tasks in parallel,

the job completion time is delayed by stragglers or late
finishing tasks. In a heterogeneous environment, late finishing
tasks may be due to tasks running on a slower processor
or more loaded processor, mismatched configuration, etc.
Another reason, more pertinent to the problem considered in
this paper, is poor VM placement that may lead to higher data
access latencies and hence slower completion time for that
task. To mitigate the effect of lagging tasks, MapReduce can
run a speculative copy or backup task for a task that is making
slow progress[6]. In Hadoop, speculative tasks are started by
comparing each task’s progress to the overall average progress.
In [12], a much improved speculative task execution scheme
for speeding up application completion times is presented –
the main idea is to pick tasks for speculative execution that
will finish farthest into the future. With the optimal assignment
of VMs that we consider, the contribution of data latencies to
the straggler problem is mitigated.
Another proposal to control the impact of stragglers on

completion time is in [4]. Here, a judicious placement of
tasks that takes into account network bottlenecks and other
optimizations is used in addition to re-start of slow progressing
tasks. A greedy algorithm is used for network-award task
placement with the objective of minimizing the maximum data
transfer time for MapReduce jobs.
In [9], it is noted that the MapReduce/Hadoop framework is

tailored for tasks involving a large number of sequential read
and writes. However, many applications also need auxiliary
data that needs to be randomly accessed and bottlenecks in
access to this data will lead to slow completion time. To
mitigate this a memcached based in-memory object cache is
adapted for use in conjunction with Hadoop.

Finally, in [3] it is argued that disk locality may not be
relevant anymore because with 10G and 100G adapters access
data access over a network is not necessarily slower than
disk I/O. However, it is still to be noted that unless over
subscription of links is avoided, network bottlenecks can cause
high latencies for remote data access. This needs intelligent
VM placement as we consider.

VII. CONCLUSIONS

Data access latencies can be a big contributor to the total
completion times for data intensive cloud applications. Since
making all data access local is often infeasible when working
with large data sets, it is important to place computation
nodes as close to the needed data as is possible within system
and application constraints. Optimal placement is not only
important for better performance but also for lower bandwidth
usage costs for cloud applications. In this paper, we considered
this problem of optimal placement of computational nodes and
presented algorithms for assigning virtual machines to data
nodes that minimize various latency metrics under different
constraints. We considered minimizing total access time, max-
imum access time and a combination of both. We provided
algorithms for problems with and without constraints. Our
algorithms were based on classic linear assignment algorithms.
We conducted extensive simulations to study the trade-off
between various latency matrices and constraints.
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