
LB-MAP: Load-Balanced Middlebox Assignment in
Policy-Driven Data Centers

Manar Alqarni, Alexander Ing, and Bin Tang
Department of Computer Science

California State University Dominguez Hills, Carson, CA 90747, USA
Email: {malqarni1,aing1}@toromail.csudh.edu, btang@csudh.edu

Abstract—Middleboxes (MBs), such as firewalls and load
balancers, are playing an increasingly important role in cloud
data centers for security or performance purposes. The recent
introduction of Software Defined Network (SDN) and Network
Function Virtualization (NFV) in cloud data centers has greatly
facilitated the efficient management of software-based middble-
boxes in data center networks. In policy-driven cloud data
centers, it requires that virtual machine (VM) traffic traverses
a sequence of specified middleboxes in order to achieve security
and performance guarantee. Much research has been done to
study how to place middleboxes inside data centers for cost-
efficient VM traffic traversal. However, not much research has
focused on load balance of middleboxes. In this paper we study
the Load-Balanced Middlebox Assignment Problem (LB-MAP),
which minimizes the communication energy cost of VM pairs
while satisfying their policy requirement as well as the capacity
constraint of the switches that the middleboxes are placed upon.
We show that LB-MAP is equivalent to the classic minimum
cost flow problem (MCF), which can be solved optimally and
efficiently. We also design a suite of efficient heuristic algorithms
based on different criteria viz. VM-Based, MB-Based, and
VM+MB-Based. Via extensive simulations, we show that all the
heuristic algorithms perform close to the optimal minimum cost
flow algorithm, while VM+MB-Based performs best among all
the heuristic algorithms. To the best of our knowledge, this is
the first work that addresses the energy cost minimization for
VM communications as well as load-balancing for middleboxes
in policy-driven data centers.

Keywords – Virtual Machine Communication, Middle Box
Management, Load-Balancing, Policy-Driven Data Centers

I. Introduction

Middleboxes, also known as “network appliances” or “net-
work functions (NFs)”, are intermediary computer networking
devices that transform, inspect, filter, or otherwise manipulate
network traffic for purposes other than packet forwarding.
Middleboxes are widely deployed in enterprise networks such
as data centers and play an increasingly important role in
improving the networks’ security (e.g., firewalls and intrusion
detection systems (IDSs)), performance (e.g., load balancers),
as well as reducing the bandwidth cost (e.g., WAN optimizers).

A recent study [32] shows that the number of middle-
boxes is on par with the number of routers in enterprise
networks. Traditional middleboxes are diverse, stateful sys-
tems supporting narrow specialized network functions. As
such, they are mainly proprietary and purpose-built hardware,
which is typically closed and expensive. Their deployment and
operation represent a significant part of the network capital

and operational expenditure as well as costing large amount
of space and power consumption. This greatly impedes the
equipment upgrade and service addition in any networks,
inducing the so-called network ossification problem [22].

Network Function Virtualization (NFV) has been recently
proposed to alleviate this problem [11], [26]. NFV is a
network virtualization technology that virtualizes middleboxes
(or network functions) into building blocks that create com-
munication services. It allows network operators and service
providers to implement middleboxes in software instead of
purpose-built hardware. This dramatically improves the man-
agement efficiency of middleboxes as they can be moved
to or instantiate in various locations in the network without
new equipment installation and network operator involvement.
Software Defined Networking (SDN) [13], [2], being a com-
plementary technology to NFV, further alleviates the network
ossification problem by moving management functions out of
the hardware and placing them in a centralized controller. Such
centralized management, coupled with standardized protocol
(e.g. OpenFlow [24]) between the controller and network
functions, enables dynamic and flexible configuration and
placement of middleboxes inside networks.

The major enabler and beneficiary of NFV and SDN are
cloud data centers, for two reasons. First, virtualization has
become the core building block of modern data centers.
The hardware resources such as CPU cycles, memory, and
bandwidth are divided into smaller isolated computing units,
known as virtual machines (VMs), which can be rented to
tenants in a pay-as-you-go manner. Thus data centers provide
an ideal enabling platform to implement and experiment the
concepts of NFV and SDN. Second, cloud data centers deploy
a variety of middleboxes to protect, manage and improve the
performance of the applications and services [19]. As a result,
the introduction of NFV and SDN has greatly improved the
middlebox management in cloud data centers [32], [30], [15].

In order to provide security and performance guarantee in
data centers, network policies are established to demand net-
work traffic to traverse a sequence of specified middleboxes.
For example, each VM communicating pair in data center
could go through an IDS and a load balancer in that order so
that malicious traffic can be filtered then trusted traffic be di-
verted to avoid network congestion. In fact, due to the diverse
user applications demands, network policies have become an
inseparable part of the Service Level Agreement (SLA) of data

centers, which sets the expectations and commitments between
the cloud users and cloud service providers. Satisfying those
policies or not become an important measurement of the
efficiency and efficacy of any data centers; we refer to such
data centers as policy-driven data centers.

However, there exists a dilemma in the middlebox man-
agement of policy-driven data centers. On one side, the
middleboxes have limited packet hardware resources such as
CPU, memory, or accelerators. The SDN switches upon which
middleboxes are installed use Ternary Content-Addressable
Memory (TCAM), which is expensive in both cost as well as
power consumption, making the amount of forwarding rules
available at each switch very limited. On the other side, mid-
dleboxes involve complex and extensive processing to capture
application-semantics by using deep packet inspection. As
such, overload is one of the dominant reasons for middlebox
failures [32], causing packet loss, traffic delay as well as wast-
ing energy consumption. How to well-balance the workload of
middleboxes while minimize the VM communication energy
cost is an important problem in policy-driven data centers.

Fortunately, due to the software implementation of middle-
boxes brought by NFV and SDN, it is possible to replicate
and place multiple copies of the same middlebox inside the
policy-driven data centers for the purpose of load-balancing
and fault tolerance [12]. Each copy is referred to as an instance
of the middlebox. In this paper we consider that there are
multiple instances of one type of middlebox in the policy-
driven data center. To satisfy the policy requirement of security
or performance, each VM communication pair must traverse
one of the middlebox instances while different VM pairs can
traverse different instances.

In particular, in this paper, we study that given a set of
VM pairs and a set of middlebox software instances in the
data center, how to assign a middlebox instance for each VM
pair to traverse, in order to minimize the total energy cost of
the VM pairs while satisfying the resource constraint of each
middlebox instance. We refer to the problem as load-balanced
middlebox assignment problem (LB-MAP). We formulate LB-
MAP formally and prove that it is equivalent to the well-
known minimum cost flow problem (MCF) in a transformed
flow network. MCF can be solved optimally and efficiently
[1]. Therefore the LB-MAP can also be solved optimally
and efficiently. We also design a suite of efficient heuristic
algorithms viz. VM-Based, MB-Based, and VM+MB-Based.
Via extensive simulations, we show that all the heuristic
algorithms perform close to the optimal minimum cost flow
algorithm, while VM+MB-Based performs best among all the
heuristic algorithms. To the best of our knowledge, our work
is the first that collectively addresses the energy cost mini-
mization for VM communications as well as load-balancing
for middleboxes in policy-driven data centers.

II. Related Work
Joseph et al. [19] was one of the first architectural work dis-

cussing middlebox management in data centers. It particular, it
proposed and designed a policy-aware new layer-2 switching

layer in data centers that explicitly forwards different types
of traffic through different sequences of middleboxes. They
showed that their approach traverses middleboxes correctly
as well as efficiently. Qazi et al. [30] further addressed key
system design and algorithmic challenges for aforesaid policy
enforcement layer using SDN. They proposed efficient data
plane support for policy composition, unified switch and
middlebox resource management, and automatically dealing
with dynamic packet modifications. Sekar et al. [31] took a
different perspective and presented a new architecture for mid-
dlebox deployments. They proposed to consolidate individual
middleboxes as well as their management to multiplex hard-
ware resources and reuse processing modules across different
applications.

On the system side, Sherry et al. [32] showed that outsourc-
ing middlebox processing to the cloud relieves enterprises
of major problems caused by today’s enterprise middlebox
infrastructure. Recently Gember et al. [15] realized a software-
defined middlebox networking framework by representing,
manipulating, and knowledgeably controlling middlebox state.
Zhang et al. [35] presented a framework for SDN-enabled
services that dynamically route traffic through any sequence
of middleboxes. They also proposed an algorithm to select the
best locations for placing to optimize the performance.

Middlebox management has strong theoretic roots as well.
Liu et al. [23] studied middlebox placement problem, in
which given network information and policy specifications,
it attempts to determine the optimal locations to place the
middleboxes so that either end-to-end delay or the bandwidth
consumption is optimized. They showed this problem is NP-
hard and proposed two heuristic algorithms. Li et al. [21]
studied the policy-aware cloud application embedding problem
and designed online primal-dual algorithms. Cui et al. [6], [8],
[7], [9] proposed an suite of synergistic schemes to jointly con-
solidate network policies and virtual machines. They studied
dynamic virtual machine consolidation and dynamic network
policy (re)allocation to meet both efficient data center resource
management and middleboxes traversal requirements.

Among above research, Qazi et al. [30] was the only work
that specifically addressed load-balancing issue of middle-
boxes in data centers. It formulated an online integer linear
program (ILP) to minimize the maximum middlebox load
across the network. However, as stated in the paper, the load
balancing ILP might take a long time for a large network. In
contrast, our LB-MAP has different goals and use different
solution techniques. We aim to minimize the total energy
cost of all the VM pairs in data centers while satisfying the
capacities of middleboxes. We propose a time-efficient mini-
mum cost flow optimal solution and a suite of time-efficient
heuristic algorithms. Recently, Tu et al. [34] introduced a
programmable middlebox that distributes data center traffic
more evenly in order to enhance bandwidth utilization and
reduce traffic delay. The SDN middlebox controller collects
traffic distribution and server loads information and performs
load balancing accordingly. However, it did not consider the
capacity constraint of each middlebox and did not aim to

minimize the VM communication energy, therefore is different
from LB-MAP.

Data Center Topology [3]. We focus on fat-tree networks
[3] as they are widely adopted in data centers to intercon-
nect commodity Ethernet switches. Fat tree is a variation of
three-stage Clos networks [5], which is rearrangeably non-
blocking with 1:1 oversubscription ratio [3]. Rearrangeably
non-blocking means all the bandwidth available to the end
hosts can always be saturated for any communication patterns.
Over-subscription is the ratio of the worst-case achievable
aggregate bandwidth among the end hosts to the total bisec-
tion bandwidth of a particular communication topology. An
oversubscription of 1:1 indicates that all hosts may potentially
communicate with arbitrary other hosts at the full bandwidth
of their network interface.

A k-ary fat-tree is shown in Fig. 1 with k = 4, where k
is the number of ports of each switch. There are three layers
of switches: edge switch, aggregation switch and core switch
from bottom to top. Core switches handle huge amount of
traffic across the entire data center, therefore consuming lots
of energy power. In contrast, aggregate switches and edge
switches transmit less amount of traffic therefore consuming
less power. The lower two layers are separated into k pods.
Pods are modular units of compute, storage, and networking
resources that are designed together as a unit in data cen-
ter, each containing k/2 aggregation switches and k/2 edge
switches, while forming a complete bipartite graph in between.
In particular, each edge switch is directly connected to k/2
physical machines (PMs); and each of its remaining k/2 ports
is connected to each of the k/2 aggregation switches from the
same pod. There are k2

4 k-port core switches, each of which
is connected to each of the k pods. In general, a fat-tree built
with k-port switches supports k3

4 PMs. Fig. 1 shows a data
center of 16 PMs.

III. Load Balanced Middlebox Assignment Problem
(LB-MAP)

A. Problem Formulation.

Network Model. We model a data center as an undirected
general graph G(V,E). V = Vp ∪ Vs includes the set of
physical machines (PMs) Vp and the set of (edge, aggregate,
and core) switches Vs. E is the set of edges, each connecting
either one switch to another switch or a switch to a PM,
as shown in Fig. 1. In the data center network, there are l
communicating VM pairs P = {(v1, v

′

1), (v2, v
′

2), ..., (vl, v
′

l)}.
vi and v

′

i (1 ≤ i ≤ l) are referred to as the source VM and the
destination VM, respectively. Each VM v is located in one of
the PMs, denoted as S(v). In particular, the PMs S(vi) and
S(v

′

i) are referred to as the source PM and destination PM
of (vi, v

′

i), respectively. A PM can store multiple VMs, and
can be source and destination PM simultaneously. In Fig. 1,
there are two communicating VM pairs: (v1, v

′

1) and (v2, v
′

2).
Table I shows all the notations used in this paper.

Middlebox Model. According to Gill et al. [16], among all the
network devices in data center, load balancers have the highest

Core	Switches	

Aggrega0on	
Switches

Edge	Switches

1 2 5 3 4 7 8 9 10 11 12 6 15 16 13 14

V2
’	V2

	V1
‘	 V1

	

MB1	 MB2	

:	PM

:	VM	
:	MB	

Fig. 1. A k-ary fat tree with k = 4 and 16 PMs. There are two
communicating VM pairs: (v1, v

′
1) and (v2, v

′
2), and two middlebox instances

MB1 and MB2. The capacity of each MB κ = 2. The minimum VM
communication takes place as follows: (v1, v

′
1) traverses MB1 (colored blue,

with cost of 3) while (v2, v
′
2) traverses MB1 too (colored red, with cost of

5), resulting in minimum total cost of 8 under uniform energy model.

failure probability. This is due to high number of software
faults (such as software bugs and configuration errors) and
hardware faults related to application-specific integrated circuit
(ASIC) and memory. We assume that there is one type of
middlebox in the data center network such as load balancers.
However, there are multiple copies of the same middlebox type
inside the cloud data centers [12]. We will discuss the more
general case wherein there are multiple middlebox types and
each has multiple instances such that each VM pair needs to
traverse a sequence of middlebox instances in Future Work
Section.

In particular, we assume there are m software instances of
of this middlebox M = {mb1,mb2, ...,mbm}, which have
already been placed inside the data center network. Each
instance is placed in one of the switches. Let’s assume that
mbj (1 ≤ j ≤ m) is located at switch sw(j) ∈ Vs. The policy
specifies that each communicating VM pair (vi, v

′

i) must
traverse one of the instances. However, due to the capacity
limit of the middlebox, at most κ VM pairs can be served by
any middlebox instance. In Fig. 1, there are two load balancer
instances: MB1 and MB2, the capacity of each MB is κ = 2.

TABLE I
NOTATION SUMMARY

Notation Explanation
Vp The set of physical machines (PMs) in the data center
Vs The set of switches in the data center
P The set of l VM communication pairs, (vi, v

′
i), 1 ≤ i ≤ l

M The set of m middlebox instances, mbj , 1 ≤ j ≤ m
S(v) The PM where VM v is stored
sw(j) The switch where mbj is located
κ The capacity of each middlebox instance
re, ra, rc The energy consumption on edge, access, and core switch
c(i, j) The energy cost between PM (or switch) i and j
ci,j The energy cost when VM pair (vi, v

′
i) traverses mbj

Cp The total energy cost for an MB assignment function p

Bump-Off-The-Wire Design. Traditional middlebox appli-
ances are deployed into the data center network using an inline
“bump-in-the-wire” design. In this configuration, dedicated
middlebox hardware is plugged in the physical network data
path, processing all the traffic passing through it. There are

two drawbacks of this design. First, such on-path deployment
of middleboxes forces all traffic on a network path to traverse
the same sequence of middleboxes. This is unnecessary since
different applications may have different requirements, differ-
ent application traffic may therefore need to traverse different
middleboxes. Second, when there are multiple instances of
the same type of middlebox, it is a waste of processing time
and hardware resources when the traffic must pass through
more than one of them. Instead, we adopt the “bump-off-the-
wire” design proposed by Joseph et al. [19], which is further
improved by Zhang et al. [35]. In their designs, middleboxes
are taken off the physical network paths and implemented as
software modules or VMs that are installed on a PM plugged
into each switch. Therefore, network traffic is explicitly for-
warded to the middleboxes. Due to its low latency links and
minimal performance overhead, the data center network is very
suitable for such explicit traffic redirection.

Energy Model. We measure the power consumption of any
VM pair communication by focusing on the switches it goes
through. In particular, we use re, ra, and rc to denote the
power consumption on an edge, aggregate, and core switch
respectively, when it transmits one VM communication. We
consider two energy consumption models that are currently
adopted in cloud data center research.

Uniform Energy Model. In this model, the energy consump-
tion of a VM communication is measured as the minimum
number of switches it traverses [25]. That is, it costs the same
amount of energy by going through either a core, aggregation,
or edge switch: re = ra = rc. For example, in Fig. 1, if
re = ra = rc = 1, the power consumption between v1 and v

′

1

and between v2 and v
′

2 are 3 and 5, respectively.

Skewed Energy Model. This model is based on the fact that the
core switches handle more traffic therefore usually consume
more energy power than aggregate switches, which consume
more energy power than edge switches [4]. Accordingly, we
set re < ra < rc. For example, in Fig. 1, if re = 1, ra = 5,
and rc = 10, the power consumption between v1 and v

′

1 and
between v2 and v

′

2 are 7 and 22, respectively.
EXAMPLE 1: In Fig. 1, the capacity of each MB κ = 2.

Each VM pair needs to traverse one of the instances. To
minimize the communication cost, (v1, v

′

1) traverses MB1

(colored blue, with cost of 3) while (v2, v
′

2) traverses MB1

too (colored red, with cost of 5), resulting in minimum total
communication cost of 8 under uniform energy model. �

Problem Formulation of LB-MAP. Let c(i, j) denote the
minimum energy consumption between PM (or switch) i and
j. Let ci,j be the minimum power consumption for VM pair
(vi, v

′

i) when it is assigned to middlebox instance mbj . Then,

ci,j = c
(
S(vi), sw(j)

)
+ c
(
sw(j), S(v

′

i)
)
. (1)

Now we define the load balanced middlebox assignment
function as p : P → M , signifying that VM pair (vi, v

′

i) ∈
P is assigned to middlebox instance p(i) ∈ M . Given any

Core	Switches	

Aggrega0on	
Switches

Edge	Switches

1 2 5 3 4 7 8 9 10 11 12 6 15 16 13 14

V2
’	V2

	V1
‘	 V1

	

MB1	 MB2	

:	PM

:	VM	
:	MB	

Fig. 2. Load-Balanced VM communication with κ = 1. The minimum
energy communication is then: (v1, v

′
1) traverses MB1 (shown in blue color,

with cost of 3) while (v2, v
′
2) traversing MB2 (shown in red color, with cost

of 9), resulting in total communication cost of 12 under uniform energy model.

middlebox assignment function p, the power consumption for
VM pair (vi, v

′

i) is then

ci,p(i) = c
(
S(vi), sw(p(i))

)
+ c
(
sw(p(i)), S(v

′

i)
)
. (2)

Denote the total energy consumption of all the l VM pairs
with middlebox assignment p as Cp. Then

Cp =

l∑
i=1

ci,p(i)

=

l∑
i=1

(
c
(
S(vi), sw(p(i))

)
+ c
(
sw(p(i)), S(v

′

i)
))
.

(3)

Let pmin be an assignment that yields the minimum total
energy consumption among all the middlebox assignments P ,
i.e., Cpmin ≤ Cp, ∀p ∈ P . The objective of LB-MAP is to
find such a pmin under the constraint that at most κ VM pairs
can be served by any middlebox instance:

|{1 ≤ i ≤ l|p(i) = j}| ≤ κ,∀j, 1 ≤ j ≤ m.

EXAMPLE 2: In Fig. 1, if the capacity of each MB κ = 1,
the two VM pairs can not traverse MB1 simultaneously. Fig. 2
shows a load-balanced VM pair communication for κ = 1.
(v1, v

′

1) traverses MB1 (shown in blue color, with cost of
3) while (v2, v

′

2) traversing MB2 (shown in red color, with
cost of 9), resulting in total communication cost of 12 under
uniform energy model. �

B. Minimum Cost Flow (MCF) Optimal Algorithm.

In this subsection, we show that the LB-MAP is equivalent
to minimum cost flow problem, which can be solved efficiently
and optimally [1]. We first present the minimum cost flow
problem with its well-known algorithms, and then transform
the data center network to a flow network to show the
equivalency.

Minimum Cost Flow Problem (MCF). MCF [1] is a classic
optimization problem that finds the cheapest possible way of

sending a certain amount of flow through a flow network, con-
sidering that each edge in the flow network has an associated
capacity and cost. It is formally defined as below.

Let G = (V,E) be a directed graph. The capacity of
edge (u, v) ∈ E, denoted by c(u, v), represents the maximum
amount of flow that can pass through this edge. The cost of
edge (u, v) ∈ E, denoted by d(u, v), represents the cost when
one amount of flow that can pass through an edge. Besides,
there is a source node s ∈ V with b amount of supply, and a
sink node t ∈ V with b amount of demand. A flow on an edge
(u, v) ∈ E, denoted by f(u, v), is a mapping f : E → R+,
subject to the following two constraints:
1). Capacity constraint: f(u, v) ≤ c(u, v),∀(u, v) ∈ E. That
is, the flow of an edge cannot exceed its capacity.

2). Flow conservation constraint:
∑

u∈V f(u, v) =∑
u∈V f(v, u), for each v ∈ V \ {s, t}. That is, the

sum of the flows entering a node must equal the sum
of the flows exiting a node, except for the source and
the sink nodes. The net flow out of source node s is∑

u∈V (f(s, u)− f(u, s)) = b; the net flow into sink node t
is
∑

u∈V (f(t, u)− f(u, t)) = b.
The goal of MCF is to find a flow function f such that the

total cost of the flow in the network is minimized. That is,

min Σ(u,v)∈E
(
d(u, v) · f(u, v)

)
. (4)

MCF Algorithms. MCF can be solved efficiently by many
combinatorial algorithms [1]. There are pseudo-polynomial
algorithms including cycle-canceling [27], successive shortest
path [10], and out-of-kilter algorithm [14], polynomial algo-
rithms including cost- and capacity scaling [10], [28], [18],
and network simplex algorithm [29]. In this paper, we adopt
the scaling push-relabel algorithm proposed by Goldberg [17],
which works well over a wide range of problem classes. For
any flow network, the algorithm has the time complexity of
O(a2 · b · log(a · c)), where a, b, and c are the number of
nodes, number of edges, and maximum edge capacity in the
flow network, respectively.

Transforming a Data Center Network to a Flow Network.
Next, we transform the data center network G(V,E) (Fig. 1)
into a new flow network G′(V ′, E′) (Fig. 3). We show that
LB-MAP in G(V,E) is equivalent to MCF in G′(V ′, E′). The
transformation consists of the following five steps:
Step 1. V ′ = {s0}∪{t0}∪P ∪M , where s0 is the new source
node and t0 is the new sink node in the flow network.

Step 2. E′ = {(s0, (vi, v
′

i)) : (vi, v
′

i) ∈ P}∪{((vi, v
′

i),mbj) :
(vi, v

′

i) ∈ P,mbj ∈M}∪{(mbj , t0) : mbj ∈M}. Note that
it is a complete bipartite graph between P and M .

Step 3. For each edge (s0, (vi, v
′

i)), set its capacity as 1 and
its cost 0. For each edge (mbj , t0), set its capacity as κ and
its cost 0.

Step 4. For each edge ((vi, v
′

i),mbj), (vi, v
′

i) ∈ P,mbj ∈M ,
set its capacity as 1 and its cost as ci,j , the minimum energy
cost of VM pair (vi, v

′

i) when it is assigned to middlebox
instance mbj .

VM Pairs P

s0 t0

(v1,v1
’)

mb1

MB Instances M

Sink

(1, 0)

(1, 0)

(1, 0)

(κ, 0)

(κ, 0)

(κ, 0)

(1, c1,1)

(1, cl,m)

(1, c1,2)

Source

(v2,v2
’)

(vl, vl
’)

(1, cl,1)

(κ, 0)

(1, cl,m-1)
22	

mb2

mbm-1

mbm

Fig. 3. LB-MAP is equivalent to minimum cost flow problem. In each
parenthesis on the edge, the first value is the capacity of the edge and the
second the cost of the edge.

Step 5. Set the supply at s0 and the demand at t0 as l.
The technique used above is similar to those in [33], [20].

Next, the generated flow network (Fig. 3) is passed to the
MCF algorithm discussed above, which outputs the load-
balanced middlebox assignment that gives the minimum power
consumption for the l VM pairs. That is, for each VM pair,
the MCF outputs its assigned middlebox instance without
violating the capacity constraint of each middlebox.
Time Complexity of LB-MAP Algorithm. The algorithm con-
sists of two parts: the graph transformation and the MCF
algorithm. For the transformation, calculating c(i, j) and ci,j
each takes O(|V |3). Constructing G′(V ′, E′) takes |V |3 +
l + l · m + m, which is O(l · m + |V |3). Therefore it takes
O(l · m + |V |3) for transformation. For the minimum cost
flow, the scaling push-relabel algorithm [17] we adopt has the
time complexity of O(a2 · b · log(a · c)), where a, b, and c
are the number of nodes, number of edges, and maximum
edge capacity in the flow network. From the transformation,
|V ′| = l + m + 2 and |E′| = l + m + l · m. Therefore the
time complexity of the minimum cost flow is O

(
(l+m)2 · l ·

m · log((l + m) · κ)
)
. The time complexity of the LB-MAP

algorithm is thus O
(
|V |3 + (l+m)2 · l ·m · log((l+m) · κ)

)
.

Theorem 1: LB-MAP is equivalent to minimum cost flow
problem.
Proof: We show that by applying minimum cost flow algo-
rithm upon the above flow network, it achieves that a) each
of the l VM communication pairs is assigned to exactly one
middlebox instance while b) satisfying the capacity constraints
of middleboxes, and c) achieving the minimum energy con-
sumption for all the l VM pairs.

First, we show that with above transformation, sending l
amount of flow from s0 to t0 ensures that each of the l VM
pairs be assigned to one middlebox instance. In particular,
since the amount of supply at s0 is l (Step 5), and the capacity
of each edge (s0, (vi, v

′

i)) (1 ≤ i ≤ l) is one (Step 3), a

valid flow of l amount from s0 to t0 must consist of one
amount on edge (s0, (v1, v

′

1)), one amount on (s0, (v2, v
′

2)),
..., and one amount on (s0, (vl, v

′

l)). Now, since the capacity
on each edge ((vi, v

′

i),mbj) is one (Step 4), according to flow
conservation, then one amount of flow must come out of any
edge (vi, v

′

i) and go into exactly one of the middlebox instance
mbj . This results in that each VM pair is assigned to exactly
one middlebox instance. Note that the capacity of each edge
((vi, v

′

i),mbj) could be set as any positive integers as it does
not change above analysis.

Next, we show the VM pair assignment does not violate the
capacity constraint of middleboxes. Since the edge capacity
of edge (mbj , t0) is κ (Step 3), it ensures that no more
than κ amount of flow coming out of each node mbj ∈ M .
This guarantees that each middlebox instance mbj will not
accommodate more than κ VM pairs, satisfying the capacity
constraint of middleboxes.

Finally, as for the cost, note that the edge cost of
((vi, v

′

i),mbj) is ci,j , the minimum energy consumption of
VM pair (vi, v

′

i) when it is assigned to middlebox mbj , while
all other edges in the flow network have cost zero. This
indicates that only the VM communication cost is considered
in minimum cost flow. Minimum cost flow algorithm gives
the minimum cost of sending l amount of flow from s0 to
t0, showing that the corresponding VM communication cost
obtained is indeed minimum.

C. Three Heuristic Algorithms.

We also propose three polynomial-time greedy algorithms
for comparison purpose. Each greedy algorithm takes place
in rounds, and is based on a different criterion to choose
middlebox for each VM pair.

VM-Based Algorithm. The VM-Based algorithm works as
follows. For each VM pair, it is assigned to an MB instance
such that it gives the minimum energy consumption for this
VM pair among all the MB instances, while satisfying this
MB instance’s capacity. Finding all the minimum energy
consumption paths between all pair of PMs takes O(|V |3).
Assigning each VM pair to an MB instance takes O(l · m).
Therefore the time complexity of VM-Based Algorithm is
O(|V |3 + l ·m).

Algorithm 1: VM-Based Algorithm.
Input: A data center G(V,E) with l VM pairs and m MBs
Output: Total energy cost C for all the l VM pairs.
Notations:

i: the index for VM pairs
j: the index for middlebox instances
load(j) = 0: the current load of mbj
cimin: the minimum energy cost for VM pair (vi, v

′

i)

j∗: middlebox mbj∗ is assigned to (vi, v
′

i)
1. C = 0;
2. for (i = 1 to l)
3. cimin = infinite;
4. for (j = 1 to m)
5. if (c(i, j) ≤ cimin and load(j) < κ)

6. cimin = c(i, j);
7. j∗ = j;
8. end if;
9. end for;
10. load(j∗)++;
11. C = C + cimin;
12. end for;
13. RETURN C.

MB-Based Algorithm. In this algorithm, for each MB in-
stance, it is assigned κ VM pairs among all the VM pairs that
give the minimum energy consumption when going through
that MB instance. The running time of this algorithm is
|V |3 +m · (l + l · lgl + κ), which is O(|V |3 +m · l · lgl).

Algorithm 2: MB-Based Algorithm.
Input: A data center G(V,E) with l VM pairs and m MBs
Output: Total energy cost C for all the l VM pairs.
Notations:

i: the index for VM pairs
j: the index for middlebox instances
Xj : the set of VM pairs assigned to mbj
assigned[i]: true if (vi, v

′

i) is assigned, false if not
1. C = 0;
2. for (i = 1 to l)
3. assigned[i] = false;
4. end for;
5. for (j = 1 to m)
6. Xj = φ;
7. for (i = 1 to l)
8. if (assigned[i] == false)
9. Xj = {

(
i, c(i, j)

)
} ∪Xj ;

10. end if;
11. end for;
12. Sort Xj in the non-descending order of c(i, j);
13. Xj = {

(
x1, c(x1, j)

)
,
(
x2, c(x2, j)

)
,
(
x3, c(x3, j)

)
, ...},

14. where c(x1, j) ≤ c(x2, j) ≤ c(x3, j)...;
15. for (k = 1 to κ)
16. C = C + c(xk, j);
17. end for;
18. end for;
19. RETURN C.

VM-MB-Based Algorithm. In each round, it checks which
VM pair is assigned to which MB instance, such that when
that VM pair traverses that MB instance, it yields the minimum
energy consumption among all the unassigned VM pairs and
all the MB instances in that round. The time complexity of
this algorithm is O(|V |3 +m · l).

Algorithm 3: VM-MB-Based Algorithm.
Input: A data center G(V,E) with l VM pairs and m MBs
Output: Total energy cost C for all the l VM pairs.
Notations:

i: the index for VM pairs
j: the index for middlebox instances
load(j) = 0: the current load of mbj

j∗: middlebox mbj∗ is assigned in each round,
cmin: the minimum energy obtained in each round

1. C = 0;
2. for (i = 1 to l)
3. assigned[i] = false;
4. end for;
5. while

(
there are still unassigned VM pairs)

6. cmin = infinite;
7. for (i = 1 to l)
8. if (assigned[i] == false)
9. for (j = 1 to m)
10. if (load(j) < κ and c(i, j) ≤ cmin)
11. cmin = c(i, j);
12. j∗ = j;
13. end if;
14. end for;
15. end if;
16. end for;
17. load(j∗)++;
18. C = C + cmin;
19. end while;
20. RETURN C.

IV. Performance Evaluation

Simulation Setting. In this section, we compare the per-
formances of the four LB-MAP algorithms: Minimum Cost
Flow Algorithm (referred to as MCF), VM-Based Algorithm
(referred to as VM), MB-Based (referred to as MB), and
VM+MB-Based Algorithm (referred to as VM+MB). We
create data centers of two different sizes: k = 8, a small
data center with 128 PMs and k = 16, a relatively large-
size data center with 1024 PMs. The source and destination
VMs of each VM pair are randomly placed on the PMs and
the MB instances are randomly placed on the switches. In
all the simulation plots, each data point is an average of 10
runs, and the error bars indicate 95% of confidence interval.
For fair comparison, for each simulation run, we run the four
algorithms on the same network set up with the same initial
placement of VM communication pairs and MB instances.

In all the simulations, unless otherwise mentioned, we vary
the number of VM pairs in the data center l from 100, 200,
..., to 500, and number of MB instances m from 1 to 2 to 3.
In each case, the middlebox capacity κ = d l

me. Throughout
the simulation, we set re = ra = rc = 1 for the uniform
energy model and re = 1, ra = 5, and rc = 10 for the
skewed energy model. Recall that re, ra, and rc denote the
power consumption on the edge, aggregate, and core switches
respectively.

Effect of Number of VM Pairs l. We first investigate the
effect of the number of VM pairs on the total energy cost,
shown in Fig. 4. We set the number of MB instances in the
data center as 3 and vary the number of VM pairs from 100,
200, ..., to 500. We have several observations. First, for each
algorithm, with the increase of number of VM pairs, the total

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

100 200 300 400 500

T
o
ta

l
E

n
e
rg

y
 C

o
s
t

Number of VM Pairs

VM
MB

VM+MB
MCF

Fig. 4. Varying number of VM pairs under uniform energy model. Here,
number of MBs m = 3, number of PMs in data center is 128.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1 3 5

T
o
ta

l
E

n
e
rg

y
 C

o
s
t

Number of MBs

VM
MB

VM+MB
MCF

Fig. 5. Varying number of MB instances under uniform energy model. Here,
number of VM pairs l = 300, number of PMs in data center is 128.

energy cost increases as well. This is obvious since more VM
pairs in general incurs more energy consumption since all
the VM pairs are randomly placed. Second, the performance
order of the four algorithms are (from worst to best) is VM-
Based, MB-Based, VM+MB-Based, and MCF. This indirectly
supports our theoretical proof that the minimum cost flow
algorithm is optimal, performing better that the other three
heuristic algorithms. With the increase of number of VM pairs,
the performance difference between MCF and the other three
seems to be more evident.

Effect of Number of MB Instances m. We then investigate
the effect of the number of MB instances on the total energy
cost, shown in Fig. 5. We set the number of VM pairs in the
data center as 300 and vary the number of MB instances as 1,
2, 3. We have several observations. First, for each algorithm,
with the increase of number of MB instances, the total energy
cost decreases. This is because more MB instances give each
VM pairs more options to choose an energy-efficient path
between source and destination VMs, incurring less energy
consumption. Second, when there is only one middlebox, it is
observed that all the four algorithms perform the same. In this
case, all the VM pairs must go through the same middlebox for
policy requirement independent of the algorithms, therefore
costing the same amount of energy for all four algorithms.
Finally, we still observe that MCF performs the best, yielding
the minimum amount of energy consumption. Among the three
heuristic algorithms, VM+MB-based performs better than MB-
based, which performs better than VM-based.

Comparison in Large Data Centers. Fig. 6 and Fig. 7 show

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

100 200 300 400 500

T
o
ta

l
E

n
e
rg

y
 C

o
s
t

Number of VM Pairs

VM
MB

VM+MB
MCF

Fig. 6. Varying number of VM pairs under uniform energy model. Here,
number of MBs m = 3, number of PMs in data center is 1024.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 3 5

T
o
ta

l
E

n
e
rg

y
 C

o
s
t

Number of MBs

VM
MB

VM+MB
MCF

Fig. 7. Varying number of MB instances under uniform energy model. Here,
number of VM pairs l = 300, number of PMs in data center is 1024.

the performance comparison in a large data center of 1024
PMs, by varying number of VM pairs and number of middle-
boxes, respectively. We have the same general observations as
in a smaller data enter shown in Fig. 4 and Fig. 5, however,
with one notable difference. Fig. 7 shows that for all the three
heuristic algorithms, when number of MB instances increases
from one to three, their energy costs actually increase. This
is counter-intuitive at first, since more middleboxes help with
reducing the energy cost. However, this increase is due to the
random initial placement of the VM pairs and middleboxes,
under which it is possible that a placement with two MBs does
not help as much as a placement of one MB for different set
of randomly placed VM pairs.

Comparison Under Skewed Energy Model. Finally we
investigate how the skewed energy model affects the energy
costs of the four algorithms. Fig. 8 and Fig. 9 show the
performance comparison in a small data center of 128 PMs,
while Fig. 10 and Fig. 11 show the performance comparison
in a large data center of 1024 PMs. We observe again that
MCF performs best, yielding the minimum amount of energy
in all three algorithms. VM+MB-Based performs better than
the other two heuristic algorithms. This is mainly because
in each round, it selects an assigned VM pair and an MB
so that when this pair is assigned to this MB, it yields the
smallest energy cost among all the unassigned VM pairs and
MB combination. Whereas for the other two algorithms (VM-
Based and MB-Based), it only focuses on one of them without
checking thoroughly all the possibilities.

 0

 5000

 10000

 15000

 20000

 25000

100 200 300 400 500

T
o
ta

l
E

n
e
rg

y
 C

o
s
t

Number of VM Pairs

VM
MB

VM+MB
MCF

Fig. 8. Varying number of VM pairs under skewed energy model. Here,
number of MBs m = 3, number of PMs in data center is 128.

 0

 5000

 10000

 15000

 20000

1 3 5

T
o
ta

l
E

n
e
rg

y
 C

o
s
t

Number of MBs

VM
MB

VM+MB
MCF

Fig. 9. Varying number of MB instances under skewed energy model. Here,
number of VM pairs l = 300, number of PMs in data center is 128.

 0

 5000

 10000

 15000

 20000

 25000

100 200 300 400 500

T
o
ta

l
E

n
e
rg

y
 C

o
s
t

Number of VM Pairs

VM
MB

VM+MB
MCF

Fig. 10. Varying number of VM pairs under skewed energy model. Here,
number of MBs m = 3, number of PMs in data center is 1024.

 0

 5000

 10000

 15000

 20000

1 3 5

T
o
ta

l
E

n
e
rg

y
 C

o
s
t

Number of MBs

VM
MB

VM+MB
MCF

Fig. 11. Varying number of MB instances under skewed energy model. Here,
number of VM pairs l = 300, number of PMs in data center is 1024.

V. Conclusion and Future Work

We studied LB-MAP: Load-Balanced Middlebox Assign-
ment Problem in policy-driven data centers. The goal of LB-
MAP is to minimize the energy cost of all the communicating
virtual machine pairs who must traverse a middlebox for
policy requirement, while taking into account of the limited
capacity of the middlebox. Much research has been done to
study how to place middleboxes inside data centers for cost-
efficient VM communication. However, not much research
has focused on load balance of middleboxes. We formulated
LB-MAP formally and proved that LB-MAP is equivalent to
the well-known minimum cost flow problem (MCF), which
can be solved optimally and efficiently. We also designed a
suite of efficient heuristic algorithms based on different criteria
viz. VM-Based, MB-Based, and VM+MB-Based. Via exten-
sive simulations, we showed that all the heuristic algorithms
perform close to the optimal minimum cost flow algorithm,
while VM+MB-Based performs best among all the heuristic
algorithms. To the best of our knowledge, this is the first
work that addresses the energy cost minimization for VM
communications as well as load-balancing for middleboxes in
policy-driven data centers.

In our current setup, we assume that there is only one
middlebox type such as load balancers. In the future, we will
consider a more general problem wherein multiple types of
middleboxes (e.x., load balancers, firewalls, and IDSs) exist,
each having multiple instances. To satisfy policy requirement,
each VM pair needs to traverse a sequence of middlebox
instances of different types in a particular order. In this
so called service chain scenario, tackling middlebox load-
balancing as well as minimizing VM pair communication cost
become more challenging problems.

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice-Hall, Inc., 1993.

[2] Ian F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou. A roadmap
for traffic engineering in sdn-openflow networks. Computer Networks
(Elsevier), 71:1–30, 2014.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity
data center network architecture. SIGCOMM Comput. Commun. Rev.,
38(4):63–74, August 2008.

[4] D. Boru, D. Kliazovich, F. Granelli, P. Bouvry, and A. Y. Zomaya.
Energy-efficient data replication in cloud computing datacenters. Cluster
Computing, 18(1):385–402, 2015.

[5] C. Clos. A study of non-blocking switching networks. Bell System
Technical Journal, 32(2), 1953.

[6] L. Cui, R. Cziva, F. P. Tso, and D. P. Pezaros. Synergistic policy and
virtual machine consolidation in cloud data centers. In Proc. of IEEE
INFOCOM, 2016.

[7] L. Cui and F. P. Tso. Joint virtual machine and network policy
consolidation in cloud data centers. In Proc. of IEEE CloudNet, 2015.

[8] L. Cui, F. P. Tso, D. P. Pezaros, and W. Jia. Plan: A policy-aware
vm management scheme for cloud data centres. In Proc. of IEEE/ACM
UCC, 2015.

[9] L. Cui, F. P. Tso, D. P. Pezaros, W. Jia, and W. Zhao. Policy-aware
virtual machine management in data center networks. In Proc. of IEEE
ICDCS, 2015.

[10] J. Edmonds and R.M. Karp. Theoretical improvements in algorithmic
efficiency for network flow problems. Journal of ACM, 19:248–264,
1972.

[11] R. Guerzoni et al. Network functions virtualisation: an introduction,
benefits, enablers, challenges and call for action, introductory white
paper. In SDN and OpenFlow World Congress, 2012.

[12] A. Jukan F. Carpio, S. Dhahri. Vnf placement with replication for load
balancing in nfv networks. In IEEE ICC, 2017.

[13] N. Feamster, J. Rexford, and E. Zegura. The road to sdn. Queue,
11(12):20–40, 2013.

[14] D.R. Fukerson. An out-of-kilter method for minimal-cost flow problems.
Journal of the Society for Industrial and Applied Mathematics, 9(1):18–
27, 1961.

[15] A. Gember, P. Prabhu, Z. Ghadiyali, and A. Akella. Toward software-
defined middlebox networking. In Proc. of HotNets-XI, 2012.

[16] P. Gill, N. Jain, and N. Nagappan. Understanding network failures in data
centers: Measurement, analysis, and implications. SIGCOMM Comput.
Commun. Rev., 41(4):350–361, 2011.

[17] A. V. Goldberg. An efficient implementation of a scaling minimum-cost
flow algorithm. J. Algorithms, 22:1–29, 1997.

[18] A. V. Goldberg and R. E. Tarjan. Finding minimum-cost circulations
by successive approximation. Math. Oper. Res., 15(3):430–466, 1990.

[19] D. A. Joseph, A. Tavakoli, and I. Stoica. A policy-aware switching layer
for data centers. In Proc. of the ACM SIGCOMM, 2008.

[20] P. Khani, B. Tang, J. Han, and M. Beheshti. Dao-r: Integrating data
aggregation and offloading in sensor networks via data replication. In
Proceedings of IEEE GLOBECOM 2015.

[21] L. E. Li, V. Liaghat, H. Zhao, M. Hajiaghayi, D. Li, G. Wilfong, Y. R.
Yang, and C. Guo. Pace: Policy-aware application cloud embedding. In
Proc. of IEEE INFOCOM, 2013.

[22] Y. Li and M. Chen. Software-defined network function virtualization:
A survey. IEEE Access, 3, 2015.

[23] J. Liu, Y. Li, Y. Zhang, L. Su, and D. Jin. Improve service chaining
performance with optimized middlebox placement. IEEE Transactions
on Services Computing, 2015.

[24] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. Openflow: Enabling innovation
in campus networks. SIGCOMM Comput. Commun. Rev., 38(2):69–74,
2008.

[25] X. Meng, V. Pappas, and L. Zhang. Improving the scalability of data
center networks with traffic-aware virtual machine placement. In Proc.
of IEEE INFOCOM, 2010.

[26] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. D. Turck, and
R. Boutaba. Network function virtualization: State-of-the-art and re-
search challenges. IEEE Communications Surveys and Tutorials, 18(1),
2015.

[27] K. Morton. A primal method for minimal cost flows with applications
to the assignment and transportation problems. Management Science,
14:205–220, 1967.

[28] J. B. Orlin. A faster strongly polynominal minimum cost flow algorithm.
In In Proc. of the 20th ACM Symposium on the Theory of Computing,
pages 377–387, 1988.

[29] J. B. Orlin. A polynomial time primal network simplex algorithm for
minimum cost flows. Mathematical Programming, 79:109–129, 1997.

[30] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu.
Simplefying middlebox policy enforcement using sdn. In Proc. of the
ACM SIGCOMM, 2013.

[31] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi. Design and
implementation of a consolidated middlebox architecture. In Proc. of
NSDI, 2012.

[32] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar. Making middleboxes someone else’s problem: Network
processing as a cloud service. In Proc.eedings of the ACM SIGCOMM,
2012.

[33] B. Tang, N. Jaggi, and M. Takahashi. Achieving data k-availability
in intermittently connected sensor networks. In Proceedings of the
International Conference on Computer Communications and Networks
(ICCCN’14).

[34] R. Tu, X. Wang, J. Zhao, Y. Yang, L. Shi, and T. Wolf. Design of a load-
balancing middlebox based on sdn for data centers. In IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS), 2015.

[35] Y. Zhang, N. Beheshti, L. Beliveau, G. Lefebvre, R. Manghirmalani,
R. Mishra, R. Patney, M. Shirazipour, R. Subrahmaniam, C. Truchan,
and M. Tatipamula. Steering: A software-defined networking for inline
service chaining. In Proc. of the IEEE ICNP, 2013.

