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Abstract—With the increasing prevalence of large scale 
cloud computing environments, how to place requested 
applications into available computing servers regarding to 
energy consumption has become an essential research 
problem, but existing application placement approaches 
are still not effective for live applications with dynamic 
characters. In this paper, we proposed a novel approach 
named EnaCloud, which enables application live 
placement dynamically with consideration of energy 
efficiency in a cloud platform. In EnaCloud, we use a 
Virtual Machine to encapsulate the application, which 
supports applications scheduling and live migration to 
minimize the number of running machines, so as to save 
energy. Specially, the application placement is abstracted 
as a bin packing problem, and an energy-aware heuristic 
algorithm is proposed to get an appropriate solution. In 
addition, an over-provision approach is presented to deal 
with the varying resource demands of applications. Our 
approach has been successfully implemented as useful 
components and fundamental services in the iVIC 
platform. Finally, we evaluate our approach by 
comprehensive experiments based on virtual machine 
monitor Xen and the results show that it is feasible. 

Keywords: Cloud Computing, Virtual Machine, Energy 
Saving, Application Placement, Live Migration 

I.  INTRODUCTION 
Recently, cloud computing has become a popular 

computing paradigm in which virtualized and scalable 
resources are provided as services over the Internet. Various 
cloud computing products and projects have been 
tremendously beneficial to network applications, such as 
Amazon EC2 [1], IBM Blue Cloud [2] etc. However, the 
keep running of the large scale of computing and data centers 
generally requires a large amount of energy, and energy 
consumption is a critical issue for IT organizations. For 
example, in 2006, data centers consumed about 4.5 billion 
kWh, equaling roughly 1.5% of the total U.S. electricity 
consumption, and trends show that power consumption 
keeps growing at 18% annually [22]. 

In fact, enormous energy has been wasted due to idle 
resources. A report [7] from NRDC pointed that servers 
sitting idle still use 69-97% of total energy even if power 
management function is enabled. In our evaluating 
experiments on a Dell PC with Core2 CPU, it consumes 
about 85W when sitting idle, almost half of the energy when 
sitting full-loaded. However, in a parallel and distributing 
computing environment, most of job scheduling research 
approaches [21] focus much on how to schedule 
independent or loosely-coupled tasks in a shared system. 
The objective is to balance the workload among servers, so 
as to maximize system throughput. But these studies have a 
lack of energy-saving considerations, and for the cloud 
computing environment with thousands of machines may 
cause huge energy waste.  

Therefore, how to place the applications in a cloud 
platform to reduce energy consumption becomes an urgent 
problem. Many research works have proposed energy-
saving computing methods, but there are some issues should 
be addressed for a cloud platform. 

First, some studies [6][14][15] present some techniques 
such as voltage settings, processor speed adjustment and 
features such as turning off display, sleep mode etc. And 
they are only useful for PC or single computer. In particular, 
they cannot achieve the maximum energy optimization, 
since the energy saved by these techniques such as scaling 
down the CPU voltage is far less than powering off a 
computer. An energy-saving approach for the whole cloud 
platform is needed. 

Second, a way named “workloads concentration” is used 
in large scale data centers to vacate some server nodes, and 
then power off them to save energy. But this approach 
depends on static configuration and setting previously. In an 
open cloud, applications (i.e. workloads) generally arrive 
and depart dynamically, and will break the “workloads 
concentration” state. For example, when an application 
finishes its job and departs, it will release the occupied 
resource; thereby the state of “workloads concentration” 
will be violated due to the idleness of resources.  
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Third, many applications have varying resource demands, 
e.g., an application may request more resources during its 
running, or else the service quality of the applications will 
be decreased dramatically. But existing approaches need to 
shut down the applications and copy them to an idle server, 
it cannot support live application migration. Besides, the 
application may also release some resources, and then the 
server will be underutilized. Thus, it requires an approach 
supporting dynamic resource allocation and application live 
migration. 

To address the above issues, we proposed a novel 
approach called EnaCloud, which can enable application 
live placement in consideration of energy efficiency and 
application dynamic characteristic in large scale of cloud 
computing environments. 

The major contributions are summarized as follows: 
� We use VM (Virtual Machine) to encapsulate the 

application and the VM live migration [8] techniques 
are utilized to support application live placement, 
thus the application can move to another physical 
server without interrupting the service. 

� An energy-aware heuristic algorithm is proposed to 
get the application placement schemes regarding to 
the arrival, departure or resizing events of 
applications. Moreover, we introduce a resource 
provision method to optimize our approach to avoid 
the over frequent application migration due to 
resource resizing. 

� An architecture of EnaCloud system is designed and 
implemented in the iVIC platform, which is a virtual 
computing environment developed for HaaS 
(Hardware as a Service) and SaaS (Software as a 
Service) applications. Some experimental studies 
show that the energy consumption can be effectively 
reduced through our approach. 

The remainder of this paper is organized as follows. 
Section II introduces some concepts and problems statement, 
and Section III presents the energy-aware heuristic 
algorithm for application placement. We introduce 
implementation experience of EnaCloud in Section IV. The 
performance evaluation is given and analysed in Section V. 
We discuss related work about energy-saving in the area of 
computing system and virtual machine in Section VI. 
Finally, we conclude the paper in Section VII. 

II. PROBLEM STATEMENT AND SYSTEM MODEL 

A. Terminology and Assumption 
The infrastructure of cloud computing environment [1][2] 

is usually composed of hundreds or even thousands of 
server nodes. The nodes can be categorized into two types – 
computing nodes and storage nodes. We assume that all the 
data and files are stored in storage nodes, which are running 
network file system. Each computing node consists of 
processor, memory, as well as network interfaces. For 
simplicity, we assume all the computing nodes are 

homogenous and the resource capacity of every server is 1 
unit. The nodes are interconnected by high-speed LAN such 
as Infiniband. Each computing node runs a virtual machine 
monitor (VMM) and hosts one or more VMs. Each VM 
encapsulates an application or a component of the 
application. The application and the underlying operating 
system, which are encapsulated by a VM, are referred to as 
workload. We assume each workload has a predefined 
resource requirement when being submitted to our system. 
We use the term open box for a server node that is running 
VMs. The idle server node without running VMs is referred 
to as close box. 

B. Problem Statement 
In EnaCloud, the workloads are aggregated tightly so as 

to ensure the number of open boxes is minimal. In a cloud 
platform, the workloads always arrive or depart dynamically. 
An Example. When a new workload arrives, it should be 
assigned to an open box as far as possible, without opening 
a close box. As shown in Fig. 1(a), a new box should be 
opened, according to traditional application placement 
method, when a workload (0.5) arrives. But as shown in Fig. 
1(b), if we firstly migrate the workload (0.3) from the first 
node to the second node, then the newcomer (0.5) can be 
inserted to the first node without opening a close box.  
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Figure 1.   (a) Without migration, it requires three open boxes when 
inserting a new workload.  (b) With migration, it remains two open boxes 
when inserting a new workload. 

When one workload finishes its job, some of the other 
workloads should be remapped, so as to vacate an open box 
and hibernate it. The process should also be automated 
through live migration. In particular, many applications 
have varying resource demands, so we call this event as 
workload resizing. Workload resizing includes workload 
inflation and workload deflation. Workload inflation can 
affect the performance of the other workloads hosted on the 
same node. Workload deflation will release some resources 
and lead to resource idleness and energy waste. Therefore, 
the problem is how to remap workloads to the resource 
nodes through migration when a workload arrives, departs 
or resizes. The migration has two goals: (1) minimize the 
number of the open boxes; (2) minimize the times of 
migration. 
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C. System Model 
Based on the above concepts and analysis, the system 

can be modeled as follows: 
Given a resource pool (node1, node2, …, noden) and a 

sequence of workloads (workload1, workload2, …, 
workloadm), there are three types of events which will 
trigger application migration: workload arrival, workload 
departure and workload resizing. So the input of system is a 
sequence of workload events: (…, workloadi

A, …, 
workloadj

D, …, workloadk
R, … ). When an event occurs, an 

energy-aware heuristic algorithm will generate an 
application placement scheme (this scheme includes a series 
of the workloads insert and migration operations) to 
minimize the energy consumption. Then workloads are 
remapped to the resource nodes based on the scheme. The 
whole model is illustrated in Fig. 2. 
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Figure 2.  System Model 

III. ENERGY-AWARE HEURISTIC ALGORITHM 
In this Section, we present the design of our energy-

aware heuristic algorithm. It is the “brain” of EnaCloud,   
aiming to guide the application placement including 
application migration to the most power efficient nodes, 
thus minimizing the total energy consumption of the cloud 
server pool.  

As we all know that a resource node will achieve the 
most energy efficiency when it is full-loaded. So our energy-
aware algorithm tries to concentrate workloads to the 
minimal set of resource nodes. We abstract it as a classical 
bin packing problem. But the difference is that in our 
problem workload may arrive, depart or resize at any time. 
These three events will happen randomly, and the current 
one doesn’t know who the successor is. Taking workload 
arrival event as an example, the new workload should be 
immediately assigned to a resource node, without the 
knowledge of subsequent workloads. So our algorithm will 
work in an event-driven manner and compute an application 
placement scheme each time when an event happens. 

A. Basic Idea 
The classical bin packing was one of the original NP-

complete problems [9]. Similarly, our problem is equivalent 
to the classical bin packing, and we resort to a heuristic 
algorithm to produce an acceptable solution. Note that the 

classical bin packing algorithms like First-Fit-Decreasing 
(FFD) [10], Best-Fit and Worst-Fit may also be applicable 
here with some modifications. However, these algorithms 
will bring lots of resource gaps (For example, a node with 
two workloads [0.3, 0.4], and its gap is 1-0.3-0.4=0.3). Just 
as Fig. 1(a) shows, the new workload (0.5) had to be placed 
into a new bin without migration, while node1 has a gap (0.2) 
and node2 has a gap (0.4). This is because in these 
algorithms, a workload can only be placed once. In other 
words, if a workload has been put into a bin, it has no 
chance to be moved to another. Our basic idea is to narrow 
these resource gaps through migration, and get an 
approximate optimal solution - the minimal node usage. 
Next, we discuss our idea with three events. 

Workload Arrival Event. When a workload arrives, the 
principle is inserting it into open boxes without opening a 
close box. The algorithm is based on a simple heuristic rule 
that the small workloads are more likely to be inserted into 
the gaps. So differing from FFD, each time a new workload 
arrives, the heuristic does not simply put the newcomer into 
the first node that can accommodate it, but tries to displace 
packed workloads smaller than the newcomer with the 
newcomer. The smaller workloads extruded from the node 
are then reinserted into the resource pool in the same 
manner. Take Fig. 1(b) as an example, when a new 
workload (0.5) arrives, the algorithm displace the smaller 
workload (0.3) in node1 with the newcomer (0.5), and then 
insert workload (0.3) into node2, thus avoiding opening a 
new node. For the whole system, workload (0.3) migrates 
from node1 to node2, and a new workload (0.5) is placed to 
node1.Workload Departure Event can be dealt with in a 
similar way. When a workload departs from one node, the 
other workloads on that node are popped and reinserted into 
the pool. If these workloads can be inserted to other open 
boxes, then the current node is closed. Workload Resizing 
Event is equivalent to a workload departure event plus a 
workload arrival event.  

B. Algorithm Details 
Our idea is based on the fact that smaller workloads are 

easier to be inserted into the gaps. The whole process 
involves replacing smaller workloads with bigger one and 
reinserts the smaller ones, thus leads to a lot of reinsertion 
operations. To reduce the number of reinsertions and lower 
the complexity of the algorithm, we divide the region of the 
workload size (0, 1] into 2M-2 subintervals according to a 
partition method from [11], and each subinterval represents 
a level. 

L0= ((M-1)/M, 1] 
L1= ((M-2)/(M-1), (M-1)/M] 
… 
LM-1= (1/3, 1/2] 
… 
L2M-4= (1/M, 1/(M-1)] 
L2M-3= (0, 1/M] 
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We define Lk is higher than Lk+1. A workload can only be 
replaced by the workload belonging to a higher level.  

Workload Arrival. Based on the idea described in 
Section III(a), we propose a recursive algorithm (shown in 
Table I) to insert the new arrival workload into the nodes 
pool.  

TABLE I.  INSERT  PROCEDURE 

Procedure:  Insert 
Input: x, size of the arrival workload  
Output:  a placement scheme 
1. if level(x)=2M-3 or level(x)=0 
2.      insert x using First-Fit 
3.      return the destination node of x 
4. foreach node v in pool 
5.      foreach workload w in node v 
6.          filter out w where level(w)<level(x) 
7. place x to v* using Best-Fit 
8. sort each workload w* in v* where level(w*)<level(x) 

to { w1*, … , wn* } in ascending order 
9. for  i = 1 to n 
10.      if v* can accommodate x 
11.          break 
12.       pop wi* from v* and Insert (wi*) 
 

The input of the Insert procedure is the size of the new 
arrival workload. The output is a workload placement 
scheme such as: 
[ 1 1 2( , )workload node node ,

3 2 5( , )workload node node ,       

8 1( , )workload null node ]  
Here, 1 1 2( , )workload node node  denotes migrating 

workload1 from node1 to node2. Next, we’ll give a brief 
description of the Insert procedure. If x�L2M-3 or x�L0, it 
will be directly inserted into the pool based on the First-Fit 
algorithm, when a new workload x arrives. If x belongs to 
the other levels, the algorithm temporarily filters out 
workloads whose levels are lower than Lx. In other words,   
workloads whose level is equal or greater than x will be 
temporarily ignored. Then the algorithm inserts x based on 
Best-Fit, the result is that x is placed into node v*. At the 
same time, some workloads on v*, whose levels are lower 
than Lx, are extruded in ascending order. It means that the 
lower-level workloads are popped earlier than higher-level 
workloads. The extrusion process continues until the node 
can accommodate x. The popped workloads are reinserted 
according to the Insert procedure. In the whole procedure, 
the new workload is inserted appropriately and some old 
workloads are relocated, and a placement scheme is 
generated. 

Workload Departure. When a workload finishes its 
work and departs from node x, the algorithm reinserts the 
other workloads on x. Each reinsertion may produce a 
placement scheme. The Pop procedure returns the Union of 
the placement schemes. The process of Pop is shown in 
Table II. 

TABLE II.  POP PROCEDURE 

Procedure:  Pop 
Input: the node x that the workload departs from 
Output: migration scheme 
1. foreach workload w in node v 
2.     pop w and invoke Y=Insert(w) 
3. Return iY�  
 
Workload Resizing. The procedure of Resize is rather 
straightforward. It can be transformed to a Pop and an Insert 
Procedure. The detail of Resize procedure is shown in Table 
III. 

TABLE III.  RESIZE PROCEDURE 

Procedure:  Resize 
Input: old size x of workload, new size y of workload 
Output: migration scheme 
1. X=Pop(x) 
2. Y=Insert(y) 
3. Return YX �  
 

C. Over-provision 
In our basic algorithm, the Resize procedure which 

involves one Pop and one Insert Procedure may incur more 
migration overhead. Especially for real-world applications, 
the resource demands of applications may change frequently, 
which will result in lots of resizing events. 

To reduce the resizing overhead, we introduce an over-
provision method as an enhancement to our algorithm. The 
over-provision method means allocating more resources to 
the workloads than they actually needed according to some 
expected events.  

We define an over-provision ratio � (0<=a<=1) for the 
percentage of extra resources needed to be allocated for a 
workload. When a new workload x arrives, our system first 
allocates size’(x)= (1 ) ( )size x�� �  resources for it. The 
size(x) is a predefined resource demand of x. Our algorithm 
insert x according to (1 ) ( )size x�� � . Since the Resource 
Provision Manager dynamically adjusts the resource 
allocation, when x resizes from size(x) to size’(x), the 
algorithm first check to see if size’(x) is between 
(1 ) ( )size x�� �  and (1 ) ( )size x�� � . If yes, the resizing 
event will be ignored; if not, the size of x is updated to 
size’(x), and the allocation to x is adjusted to 

)(')1( xsizea �� . For example, the over-provision ratio is set 
to 0.2. When a new workload (0.5) arrives, it firstly 
allocates (0.6). The algorithm inserts (0.6) into the pool. If 
the actual size of the workload changes to 0.55, since 0.55 is 
between 0.5 and 0.6, the resizing event will be ignored by 
the algorithm. But if the actual size of the workload changes 
to 0.65, since 0.65 is not between 0.5 and 0.6, the resizing 
event will be handled by the algorithm. 
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From the above analysis, we can see, though over-
provision may cause some resource wastes, it can reduce the 
number of resizing operation. The over-provision ratio is an 
adjustable value. Through adjusting the over-provision ratio, 
the algorithm can balance the relations between energy 
efficiency and migration overhead. To further reduce the 
number of resizing operations and ensure that a small burst 
does not trigger needless migration, a resizing event is 
invoked only if thresholds are exceeded for a sustained time. 

IV. SYSTEM IMPLEMENTATION 

A. System Architecture 
In this section, we propose the EnaCloud framework for 

automating the workload concentration process in cloud 
computing environments. The system architecture is 
illustrated in Fig. 3. 

 
Figure 3.  EnaCloud Architecture 

In EnaCloud, there is one globally central node, which 
runs the Concentration Manager and Job Scheduler. The 
Job Scheduler receives the workload arrival (e.g. a user 
submit an application to run), departure and resizing events 
(e.g. allocating more resource for the workload), and deliver 
them to the Concentration Manager. The Concentration 
Manager will generate an application placement scheme 
composed of a series of insertion and migration operations 
based on these events, and then send this scheme back to 
Job Scheduler. The Job Scheduler decomposes the 
placement scheme to a set of insertion and migration 
commands, and then dispatches them to the Virtual Machine 
Controller.  
The Virtual Machine Controller, Performance Monitor and 
Resource Provision Manager are deployed in each resource 
node. The Virtual Machine Controller receives commands 
from Job Scheduler, and invoke the VM management 
interface of the hypervisor to execute the commands 
delivered from Job Scheduler such as VM start, stop or 
migrate. The Resource Provision Manager dynamically 
adjusts resource allocation (VM Resizing) to the workload 
VM based on the performance statistics periodically 
collected by the Performance Monitor. Each adjustment 
generates a resizing event, and it will be submitted to the Job 
Scheduler. 

B. Implementation Experience 
iVIC1 is a virtual computing environment developed for 

HaaS and SaaS applications. iVIC enables users to 
dynamically create and manage various kinds of virtual 
resources such as Virtual Machines, Virtual Clusters and 
Virtual Networks. It also can deliver on-demand streaming 
applications to a client in a real-time manner without on-
premise installation. 

The EnaCloud framework has been implemented in iVIC 
system with Python. The energy-aware heuristic algorithm 
is implemented in the Concentration Manager. The 
communication between the global node and resource nodes 
is via SOAP message. We choose Xen as the hypervisor, 
and implement Resource Provision Manager based on the 
Xen credit scheduler in non-working conserving 
mode, which provides strong performance isolation among 
VMs. And the Resource Provision Manager uses Xen 
interfaces to dynamically adjust cap parameters of the 
scheduler to change the resource allocation of VM during 
runtime, based on an adaptive provision method mentioned 
in [13]. The exact command is: xm sched-credit –d 
domain –w Weight –c Cap. 

We implement the Virtual Machine Controller using 
Xen’s Python management API to start, stop and migrate the 
VM. By querying xentop, the Performance Monitor can 
obtain real-time performance statistics of each workload VM, 
which includes CPU and Memory usage. 

V. EXPERIMENTAL STUDY 

A. Experiment Setup 
To evaluate the effectiveness of our approach in a real 

cloud setting, we conducted a series of experiments in our 
iVIC environment. Our experiment environment is based on 
an iVIC cloud pool consisting of sixty servers with Intel 
Core2 Duo 3.0 GHz, 4G RAM, Linux 2.6.18 operation 
system, Xen 3.0.3 virtual machine monitor, and gigabit 
Ethernet connection. We use a Pentium-D PC to run the 
Concentration Manager and Job Scheduler. Some other 
desktop machines are used as clients to send requests to 
server application. A Voltech PM3000 ACE power analyzer 
is used to measure the transient power and total energy 
consumption of the server pool. 

Workloads Generation: We use three types of 
workloads to simulate the diversity of applications in a 
cloud. 

� Web Server and Database Server: We choose 
Apache Web server and MySQL server to simulate 
applications continuously running for a long time, 
and SPECWeb 20052 tool is used to performance 
evaluation. 

� Compute-intensive Applications: We choose three 
Bioinformatics applications: Blast (Sequence 
Alignment Parallel Tool), Siclone (Gene Finding  

                                                           
1 http://www.ivic.org.cn 
2 http://www.spec/org/web2005/ 
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Tool), and CAP3 (Gene Sequence Assembly Tool) 
to simulate applications which consume a lot of CPU 
cycles. We also use Spec CPU 2006 [12] to generate 
different levels of CPU and Memory loads. 

� Common Applications: We choose some popular 
software including C compiler to simulate 
applications which require less computing power. 

In EnaCloud, each application is encapsulated into a VM, 
and it will start automatically together with the VM. At the 
same time, the execution time of these applications is 
different, and we just choose them to simulate various 
workload lifetime. For example, application of Web server 
and Database Server are long-stay workloads, and Common 
Applications e.g., kernel compilation are comparatively 
short-time workloads.  

During the experiments, we randomly create a workloads 
set with above applications, and submit them to the cloud 
pool with a given rate. When the workload VM runs out of 
its time, it will be stopped immediately by Virtual Machine 
Controller. 

To better simulate the behaviors of a cloud computing 
environment, we launch the workloads according to a 
Poisson distribution with 1/ intervalT	 
 where in terva lT  
denotes the average interval between the arrival of any two 
workloads. Through adjusting the value of in terva lT , the 
overall system load can be controlled.  
For our algorithm, we set M=4, so (0,1] is divided into 6 
subintervals: L0= (3/4, 1], L1= (2/3, 3/4], L2= (1/2, 2/3], L3= 
(1/3, 1/2], L4= (1/4, 1/3], L5= (0, 1/4]. 

B. Experiment Results 
Experiment Group 1: The purpose of this experiment is 

to evaluate the effectiveness of our energy-saving approach. 
We submit 1,000 workloads with 1/ 300	 
  ( in terva lT = 
5min), which means workload is submitted every five 
minutes on average. To evaluate the performance of our 
algorithm, we compared it with First Fit and Best Fit in 
terms of the number of active server nodes, energy 
consumption, and pool utilization.  

The results are shown as Fig. 4. Fig. 4(a) shows our 
algorithm uses less active nodes to run the workloads than 

First Fit and Best Fit algorithm. At the 84th minute, our 
algorithm only uses 34 active nodes, saving 10 and 6 nodes 
compared with First Fit and Best Fit respectively. The 
reason is our algorithm exploits live migration to further 
concentration workloads, so it can ensure a tightly 
concentrated state at any time.  

Fig. 4(b) shows the total energy consumption for the 
three algorithms. Compared to First Fit and Best Fit 
algorithm, our algorithm exhibits much more energy saving 
and saves about 10% and 13% energy respectively. This 
result shows that our algorithm successfully saves energy 
through reducing the active nodes used by the workloads.  

Fig. 4(c) shows that our algorithm can maintains the pool 
utilization at 90% on average, which is close to the full 
capacity of nodes. As higher utilization indicates low 
resource wasting, it shows the energy efficiency of our 
algorithm from another aspect. We can also see that Best Fit 
is better than First Fit to a limited extent. We have tried to 
optimize the current algorithm, but the improvement is very 
limited, since our algorithm has already achieved a high 
utilization, there is not much space to further concentrate. 
  Experiment Group 2: The purpose of this experiment is 
to study the energy cost of application live migration. The 
results in Table IV show that the energy consumption of 
application migration almost increases linearly with the 
increasing number of memory usage of the workloads. For 
instance, when migrating a workload with 512MB memory, 
it is 1Kwh (3600000 Joule) energy consumption for almost 
4597 times workload migration. This result shows that a 
small additional energy cost for a limited number of 
migration to optimize the whole system. 

TABLE IV.  ENERGY FOR APPLICATION MIGRATION 

Memory (MB) 128 256 512 1024
Energy ( Joule) 202 399 783 1524

 
Experiment Group 3: The purpose of this experiment is 

to investigate the impact on over-provision ratio for the 
energy saving and migration times. Over-provision ratio � is 
a metric to measure how much our algorithm can tolerate 
the varying of workload resource demand.  

 
(a) Number of Active Nodes (b) Energy Consumption  (c) Pool Utilization 

Figure 4.  Energy efficiency of First Fit, Best Fit and Our algorithm 
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As shown in Fig. 5 (we select a time period of 100 
minutes from the total 24 hours), it saves about 250W 
power when �=0.1, and about 350W power over �=0.25 and 
�=0.3 on average. But for �=0.1, it exhibits more jitters than 
the others. This is because in low over-provision ratio, our 
algorithm will need many times of migrations due to 
frequently resizing, and we also observe a significant 
increase in frequency of nodes power-on and power-off. For 
�=0.25 and �=0.3, the two result curves appear to almost 
overlap. 

 
Figure 5.  Power consumption for different � 

Moreover, we study the impact on migration times for 
different over-provision ratio. From Table V, we can see 
that for �=0.1, it will bring about 1.7 times of migration per 
event and 5.8 times of migration per minute. As for our 
system, these two values are acceptable. As for �=0.2, 0.25, 
0.3, each brings small migration overhead. 

We also inspect other over-provision ratios. When �=0.4, 
the pool utilization drops below 70%, and leads to a lot of 
resource waste. For �=0.05, it leads to excessive number of 
migrations and greatly affects the application’s performance. 
So generally the reasonable range of � is [0.1, 0.3]. And this 
is an important direction for configure our system in a real 
cloud platform. 

TABLE V.  MIGRATION TIMES FOR DIFFERENT OVER-PROVISION RATIO 

 
Last, we study the effect of workload submission rate. 

Experiment results show that if ervalT int is too low (for 
example, less than 30 seconds), our algorithm will incur lots 
of migration. In this situation, our algorithm will degrade to 
Best Fit to avoid excessive migration. 

VI. RELATED WORK 
Energy efficiency has become one of the most active 

topics in large scale of data center or cluster computing 
environment today. As evidence, consider that processor 
and chipset vendors are marketing products on 
“performance per watt”, instead of just processor clock 

frequency and benchmark performance. Early studies 
[6][14][15] mainly focus on energy consumption reducing 
for PC or single server node. Operating systems, such as 
Windows, already provide a rich set of energy saving 
features including the ability to turn off the display and 
automatically put the system to sleep when the user is not 
interacting with the computer. Moreover, some techniques 
can dynamically vary the voltage settings and rotational 
speeds of processors and disks based on the processor and 
I/O demands for computers. However, they cannot achieve 
the maximum optimization, since the energy saved by these 
techniques such as scaling down the CPU voltage is far less 
than powering off a computer.   

Some research work [3][4][5][16][17] implement energy-
efficiency policy in a front-end load balancer to distribute 
the requests to backend servers, so as to minimize the 
energy consumption without violating application's QoS 
requirements. And these approaches are only useful to 
server hosting environments, in which physical servers are 
shared among competing server applications like Web 
server. But in cloud computing environments, a wide range 
of applications will be hosted. Our approach uses VM to 
encapsulate applications, and leverages live migration 
feature to achieve the energy efficiency placement, thus it is 
more appropriate to a cloud platform with various 
applications. 

Manget [20] presents a multilayer ring-based overlay 
architecture and also uses VM live migration to transfer load 
among the server nodes. But the main difference between 
Manget and our work is that Manget adopts a periodically 
reconfiguration method, the interval of reconfiguration can 
greatly affect the performance. If the interval is too short, it 
will incur a lot of migrations; if the interval is too long, it 
will result in energy waste. Our approach employs an event-
driven way to dynamically adapt to the workloads changing 
events, so can avoid such problem. 

In addition, some energy models have been proposed and 
are used to guide the application placement. For example, 
mantis [18] presents a linear power model for full-system 
power analysis and modeling. PMapper [19] proposes a 
power-aware placement algorithm based a power model and 
a migration cost model. While these models generally based 
on some assumptions, and are not applicable to a real 
computing environment. Our approach does not explicitly 
depend on a power model, but provides an approach during 
the phase of application placement to minimize the number 
of the running nodes, so can be integrated into many 
computing environments. 

VII. CONCLUSION 
Cloud computing refers to the trend that computing 

power is becoming a utility, generated remotely and 
delivered as a service over the Internet. How to provide an 
energy-efficiency application placement schema for a cloud 
platform has become a critical problem. Our work is an 
essential supporting for such applications to get economical 

Over-provision 
ratio 

Migration times 
�=0.1 �=0.2 �=0.25 �=0.3 

Per event 1.7 1.0 0.6 0.5 
Per minute 5.8 3.3 1.9 1.7 
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running. In our study, we proposed EnaCloud which is an 
energy-saving application live placement approach for large 
scale of cloud platform. An energy-aware heuristic 
algorithm is proposed to choose an appropriate schema for 
dynamic application placement. Moreover, an over-
provision approach is presented to deal with frequent 
resource resizing issue. We have implemented our approach 
based on Xen VMM and our experience shows initial 
evidence that it is a viable solution to save the energy for a 
cloud platform. 
Our ongoing work is to develop an improved algorithm with 
consideration of multi-factor (including CPU, Memory etc.), 
and also give more practical evaluations for real applications 
in our iVIC platform. 
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