
EnaCloud: An Energy-saving Application Live Placement Approach
 for Cloud Computing Environments

Bo Li, Jianxin Li, Jinpeng Huai, Tianyu Wo, Qin Li, Liang Zhong
School of Computer Science and Engineering

Beihang University
 Beijing, China

{libo, lijx, woty, liqin, zhongl}@act.buaa.edu.cn, huaijp@buaa.edu.cn

Abstract—With the increasing prevalence of large scale
cloud computing environments, how to place requested
applications into available computing servers regarding to
energy consumption has become an essential research
problem, but existing application placement approaches
are still not effective for live applications with dynamic
characters. In this paper, we proposed a novel approach
named EnaCloud, which enables application live
placement dynamically with consideration of energy
efficiency in a cloud platform. In EnaCloud, we use a
Virtual Machine to encapsulate the application, which
supports applications scheduling and live migration to
minimize the number of running machines, so as to save
energy. Specially, the application placement is abstracted
as a bin packing problem, and an energy-aware heuristic
algorithm is proposed to get an appropriate solution. In
addition, an over-provision approach is presented to deal
with the varying resource demands of applications. Our
approach has been successfully implemented as useful
components and fundamental services in the iVIC
platform. Finally, we evaluate our approach by
comprehensive experiments based on virtual machine
monitor Xen and the results show that it is feasible.

Keywords: Cloud Computing, Virtual Machine, Energy
Saving, Application Placement, Live Migration

I. INTRODUCTION
Recently, cloud computing has become a popular

computing paradigm in which virtualized and scalable
resources are provided as services over the Internet. Various
cloud computing products and projects have been
tremendously beneficial to network applications, such as
Amazon EC2 [1], IBM Blue Cloud [2] etc. However, the
keep running of the large scale of computing and data centers
generally requires a large amount of energy, and energy
consumption is a critical issue for IT organizations. For
example, in 2006, data centers consumed about 4.5 billion
kWh, equaling roughly 1.5% of the total U.S. electricity
consumption, and trends show that power consumption
keeps growing at 18% annually [22].

In fact, enormous energy has been wasted due to idle
resources. A report [7] from NRDC pointed that servers
sitting idle still use 69-97% of total energy even if power
management function is enabled. In our evaluating
experiments on a Dell PC with Core2 CPU, it consumes
about 85W when sitting idle, almost half of the energy when
sitting full-loaded. However, in a parallel and distributing
computing environment, most of job scheduling research
approaches [21] focus much on how to schedule
independent or loosely-coupled tasks in a shared system.
The objective is to balance the workload among servers, so
as to maximize system throughput. But these studies have a
lack of energy-saving considerations, and for the cloud
computing environment with thousands of machines may
cause huge energy waste.

Therefore, how to place the applications in a cloud
platform to reduce energy consumption becomes an urgent
problem. Many research works have proposed energy-
saving computing methods, but there are some issues should
be addressed for a cloud platform.

First, some studies [6][14][15] present some techniques
such as voltage settings, processor speed adjustment and
features such as turning off display, sleep mode etc. And
they are only useful for PC or single computer. In particular,
they cannot achieve the maximum energy optimization,
since the energy saved by these techniques such as scaling
down the CPU voltage is far less than powering off a
computer. An energy-saving approach for the whole cloud
platform is needed.

Second, a way named “workloads concentration” is used
in large scale data centers to vacate some server nodes, and
then power off them to save energy. But this approach
depends on static configuration and setting previously. In an
open cloud, applications (i.e. workloads) generally arrive
and depart dynamically, and will break the “workloads
concentration” state. For example, when an application
finishes its job and departs, it will release the occupied
resource; thereby the state of “workloads concentration”
will be violated due to the idleness of resources.

2009 IEEE International Conference on Cloud Computing

978-0-7695-3840-2/09 $25.00 © 2009 IEEE
DOI 10.1109/CLOUD.2009.72

9

2009 IEEE International Conference on Cloud Computing

978-0-7695-3840-2/09 $26.00 © 2009 IEEE
DOI 10.1109/CLOUD.2009.72

9

2009 IEEE International Conference on Cloud Computing

978-0-7695-3840-2/09 $26.00 © 2009 IEEE
DOI 10.1109/CLOUD.2009.72

17

2009 IEEE International Conference on Cloud Computing

978-0-7695-3840-2/09 $26.00 © 2009 IEEE
DOI 10.1109/CLOUD.2009.72

17

Third, many applications have varying resource demands,
e.g., an application may request more resources during its
running, or else the service quality of the applications will
be decreased dramatically. But existing approaches need to
shut down the applications and copy them to an idle server,
it cannot support live application migration. Besides, the
application may also release some resources, and then the
server will be underutilized. Thus, it requires an approach
supporting dynamic resource allocation and application live
migration.

To address the above issues, we proposed a novel
approach called EnaCloud, which can enable application
live placement in consideration of energy efficiency and
application dynamic characteristic in large scale of cloud
computing environments.

The major contributions are summarized as follows:
� We use VM (Virtual Machine) to encapsulate the

application and the VM live migration [8] techniques
are utilized to support application live placement,
thus the application can move to another physical
server without interrupting the service.

� An energy-aware heuristic algorithm is proposed to
get the application placement schemes regarding to
the arrival, departure or resizing events of
applications. Moreover, we introduce a resource
provision method to optimize our approach to avoid
the over frequent application migration due to
resource resizing.

� An architecture of EnaCloud system is designed and
implemented in the iVIC platform, which is a virtual
computing environment developed for HaaS
(Hardware as a Service) and SaaS (Software as a
Service) applications. Some experimental studies
show that the energy consumption can be effectively
reduced through our approach.

The remainder of this paper is organized as follows.
Section II introduces some concepts and problems statement,
and Section III presents the energy-aware heuristic
algorithm for application placement. We introduce
implementation experience of EnaCloud in Section IV. The
performance evaluation is given and analysed in Section V.
We discuss related work about energy-saving in the area of
computing system and virtual machine in Section VI.
Finally, we conclude the paper in Section VII.

II. PROBLEM STATEMENT AND SYSTEM MODEL

A. Terminology and Assumption
The infrastructure of cloud computing environment [1][2]

is usually composed of hundreds or even thousands of
server nodes. The nodes can be categorized into two types –
computing nodes and storage nodes. We assume that all the
data and files are stored in storage nodes, which are running
network file system. Each computing node consists of
processor, memory, as well as network interfaces. For
simplicity, we assume all the computing nodes are

homogenous and the resource capacity of every server is 1
unit. The nodes are interconnected by high-speed LAN such
as Infiniband. Each computing node runs a virtual machine
monitor (VMM) and hosts one or more VMs. Each VM
encapsulates an application or a component of the
application. The application and the underlying operating
system, which are encapsulated by a VM, are referred to as
workload. We assume each workload has a predefined
resource requirement when being submitted to our system.
We use the term open box for a server node that is running
VMs. The idle server node without running VMs is referred
to as close box.

B. Problem Statement
In EnaCloud, the workloads are aggregated tightly so as

to ensure the number of open boxes is minimal. In a cloud
platform, the workloads always arrive or depart dynamically.
An Example. When a new workload arrives, it should be
assigned to an open box as far as possible, without opening
a close box. As shown in Fig. 1(a), a new box should be
opened, according to traditional application placement
method, when a workload (0.5) arrives. But as shown in Fig.
1(b), if we firstly migrate the workload (0.3) from the first
node to the second node, then the newcomer (0.5) can be
inserted to the first node without opening a close box.

0.5 0.3

0.5

0.6 0.5 0.3 0.6 0.5

arriving workload

node 1 node 2 node 3node 1 node 2

0.5 0.3

0.5

0.6 0.5 0.3 0.6 0.5

arriving workload

0.5 0.3

0.5

0.6 0.5 0.3 0.6 0.5

arriving workload

node 1 node 2 node 3node 1 node 2

(a)

0.5 0.30.60.50.5 0.3 0.6

0.5arriving workload

node 1 node 2 node 1 node 2

0.5 0.30.60.50.5 0.3 0.6

0.5arriving workload

0.5 0.30.60.50.5 0.3 0.6

0.5arriving workload

node 1 node 2 node 1 node 2
(b)

Figure 1. (a) Without migration, it requires three open boxes when
inserting a new workload. (b) With migration, it remains two open boxes
when inserting a new workload.

When one workload finishes its job, some of the other
workloads should be remapped, so as to vacate an open box
and hibernate it. The process should also be automated
through live migration. In particular, many applications
have varying resource demands, so we call this event as
workload resizing. Workload resizing includes workload
inflation and workload deflation. Workload inflation can
affect the performance of the other workloads hosted on the
same node. Workload deflation will release some resources
and lead to resource idleness and energy waste. Therefore,
the problem is how to remap workloads to the resource
nodes through migration when a workload arrives, departs
or resizes. The migration has two goals: (1) minimize the
number of the open boxes; (2) minimize the times of
migration.

10101818

C. System Model
Based on the above concepts and analysis, the system

can be modeled as follows:
Given a resource pool (node1, node2, …, noden) and a

sequence of workloads (workload1, workload2, …,
workloadm), there are three types of events which will
trigger application migration: workload arrival, workload
departure and workload resizing. So the input of system is a
sequence of workload events: (…, workloadi

A, …,
workloadj

D, …, workloadk
R, …). When an event occurs, an

energy-aware heuristic algorithm will generate an
application placement scheme (this scheme includes a series
of the workloads insert and migration operations) to
minimize the energy consumption. Then workloads are
remapped to the resource nodes based on the scheme. The
whole model is illustrated in Fig. 2.

node … node

Energy-aware Heuristic Algorithm

Event1 Event2 Eventn…

Application
Placement
Schemas

Schema1 Schema2 Scheman…

Workload
Event

Sequence

Cloud platform
node … node

Energy-aware Heuristic Algorithm

Event1 Event2 Eventn…

Application
Placement
Schemas

Schema1 Schema2 Scheman…

Workload
Event

Sequence

Cloud platform

Figure 2. System Model

III. ENERGY-AWARE HEURISTIC ALGORITHM
In this Section, we present the design of our energy-

aware heuristic algorithm. It is the “brain” of EnaCloud,
aiming to guide the application placement including
application migration to the most power efficient nodes,
thus minimizing the total energy consumption of the cloud
server pool.

As we all know that a resource node will achieve the
most energy efficiency when it is full-loaded. So our energy-
aware algorithm tries to concentrate workloads to the
minimal set of resource nodes. We abstract it as a classical
bin packing problem. But the difference is that in our
problem workload may arrive, depart or resize at any time.
These three events will happen randomly, and the current
one doesn’t know who the successor is. Taking workload
arrival event as an example, the new workload should be
immediately assigned to a resource node, without the
knowledge of subsequent workloads. So our algorithm will
work in an event-driven manner and compute an application
placement scheme each time when an event happens.

A. Basic Idea
The classical bin packing was one of the original NP-

complete problems [9]. Similarly, our problem is equivalent
to the classical bin packing, and we resort to a heuristic
algorithm to produce an acceptable solution. Note that the

classical bin packing algorithms like First-Fit-Decreasing
(FFD) [10], Best-Fit and Worst-Fit may also be applicable
here with some modifications. However, these algorithms
will bring lots of resource gaps (For example, a node with
two workloads [0.3, 0.4], and its gap is 1-0.3-0.4=0.3). Just
as Fig. 1(a) shows, the new workload (0.5) had to be placed
into a new bin without migration, while node1 has a gap (0.2)
and node2 has a gap (0.4). This is because in these
algorithms, a workload can only be placed once. In other
words, if a workload has been put into a bin, it has no
chance to be moved to another. Our basic idea is to narrow
these resource gaps through migration, and get an
approximate optimal solution - the minimal node usage.
Next, we discuss our idea with three events.

Workload Arrival Event. When a workload arrives, the
principle is inserting it into open boxes without opening a
close box. The algorithm is based on a simple heuristic rule
that the small workloads are more likely to be inserted into
the gaps. So differing from FFD, each time a new workload
arrives, the heuristic does not simply put the newcomer into
the first node that can accommodate it, but tries to displace
packed workloads smaller than the newcomer with the
newcomer. The smaller workloads extruded from the node
are then reinserted into the resource pool in the same
manner. Take Fig. 1(b) as an example, when a new
workload (0.5) arrives, the algorithm displace the smaller
workload (0.3) in node1 with the newcomer (0.5), and then
insert workload (0.3) into node2, thus avoiding opening a
new node. For the whole system, workload (0.3) migrates
from node1 to node2, and a new workload (0.5) is placed to
node1.Workload Departure Event can be dealt with in a
similar way. When a workload departs from one node, the
other workloads on that node are popped and reinserted into
the pool. If these workloads can be inserted to other open
boxes, then the current node is closed. Workload Resizing
Event is equivalent to a workload departure event plus a
workload arrival event.

B. Algorithm Details
Our idea is based on the fact that smaller workloads are

easier to be inserted into the gaps. The whole process
involves replacing smaller workloads with bigger one and
reinserts the smaller ones, thus leads to a lot of reinsertion
operations. To reduce the number of reinsertions and lower
the complexity of the algorithm, we divide the region of the
workload size (0, 1] into 2M-2 subintervals according to a
partition method from [11], and each subinterval represents
a level.

L0= ((M-1)/M, 1]
L1= ((M-2)/(M-1), (M-1)/M]
…
LM-1= (1/3, 1/2]
…
L2M-4= (1/M, 1/(M-1)]
L2M-3= (0, 1/M]

11111919

We define Lk is higher than Lk+1. A workload can only be
replaced by the workload belonging to a higher level.

Workload Arrival. Based on the idea described in
Section III(a), we propose a recursive algorithm (shown in
Table I) to insert the new arrival workload into the nodes
pool.

TABLE I. INSERT PROCEDURE

Procedure: Insert
Input: x, size of the arrival workload
Output: a placement scheme
1. if level(x)=2M-3 or level(x)=0
2. insert x using First-Fit
3. return the destination node of x
4. foreach node v in pool
5. foreach workload w in node v
6. filter out w where level(w)<level(x)
7. place x to v* using Best-Fit
8. sort each workload w* in v* where level(w*)<level(x)

to { w1*, … , wn* } in ascending order
9. for i = 1 to n
10. if v* can accommodate x
11. break
12. pop wi* from v* and Insert (wi*)

The input of the Insert procedure is the size of the new
arrival workload. The output is a workload placement
scheme such as:
[1 1 2(,)workload node node ,

3 2 5(,)workload node node ,

8 1(,)workload null node]
Here, 1 1 2(,)workload node node denotes migrating

workload1 from node1 to node2. Next, we’ll give a brief
description of the Insert procedure. If x�L2M-3 or x�L0, it
will be directly inserted into the pool based on the First-Fit
algorithm, when a new workload x arrives. If x belongs to
the other levels, the algorithm temporarily filters out
workloads whose levels are lower than Lx. In other words,
workloads whose level is equal or greater than x will be
temporarily ignored. Then the algorithm inserts x based on
Best-Fit, the result is that x is placed into node v*. At the
same time, some workloads on v*, whose levels are lower
than Lx, are extruded in ascending order. It means that the
lower-level workloads are popped earlier than higher-level
workloads. The extrusion process continues until the node
can accommodate x. The popped workloads are reinserted
according to the Insert procedure. In the whole procedure,
the new workload is inserted appropriately and some old
workloads are relocated, and a placement scheme is
generated.

Workload Departure. When a workload finishes its
work and departs from node x, the algorithm reinserts the
other workloads on x. Each reinsertion may produce a
placement scheme. The Pop procedure returns the Union of
the placement schemes. The process of Pop is shown in
Table II.

TABLE II. POP PROCEDURE

Procedure: Pop
Input: the node x that the workload departs from
Output: migration scheme
1. foreach workload w in node v
2. pop w and invoke Y=Insert(w)
3. Return iY�

Workload Resizing. The procedure of Resize is rather
straightforward. It can be transformed to a Pop and an Insert
Procedure. The detail of Resize procedure is shown in Table
III.

TABLE III. RESIZE PROCEDURE

Procedure: Resize
Input: old size x of workload, new size y of workload
Output: migration scheme
1. X=Pop(x)
2. Y=Insert(y)
3. Return YX �

C. Over-provision
In our basic algorithm, the Resize procedure which

involves one Pop and one Insert Procedure may incur more
migration overhead. Especially for real-world applications,
the resource demands of applications may change frequently,
which will result in lots of resizing events.

To reduce the resizing overhead, we introduce an over-
provision method as an enhancement to our algorithm. The
over-provision method means allocating more resources to
the workloads than they actually needed according to some
expected events.

We define an over-provision ratio � (0<=a<=1) for the
percentage of extra resources needed to be allocated for a
workload. When a new workload x arrives, our system first
allocates size’(x)= (1) ()size x�� � resources for it. The
size(x) is a predefined resource demand of x. Our algorithm
insert x according to (1) ()size x�� � . Since the Resource
Provision Manager dynamically adjusts the resource
allocation, when x resizes from size(x) to size’(x), the
algorithm first check to see if size’(x) is between
(1) ()size x�� � and (1) ()size x�� � . If yes, the resizing
event will be ignored; if not, the size of x is updated to
size’(x), and the allocation to x is adjusted to

)(')1(xsizea �� . For example, the over-provision ratio is set
to 0.2. When a new workload (0.5) arrives, it firstly
allocates (0.6). The algorithm inserts (0.6) into the pool. If
the actual size of the workload changes to 0.55, since 0.55 is
between 0.5 and 0.6, the resizing event will be ignored by
the algorithm. But if the actual size of the workload changes
to 0.65, since 0.65 is not between 0.5 and 0.6, the resizing
event will be handled by the algorithm.

12122020

From the above analysis, we can see, though over-
provision may cause some resource wastes, it can reduce the
number of resizing operation. The over-provision ratio is an
adjustable value. Through adjusting the over-provision ratio,
the algorithm can balance the relations between energy
efficiency and migration overhead. To further reduce the
number of resizing operations and ensure that a small burst
does not trigger needless migration, a resizing event is
invoked only if thresholds are exceeded for a sustained time.

IV. SYSTEM IMPLEMENTATION

A. System Architecture
In this section, we propose the EnaCloud framework for

automating the workload concentration process in cloud
computing environments. The system architecture is
illustrated in Fig. 3.

Figure 3. EnaCloud Architecture

In EnaCloud, there is one globally central node, which
runs the Concentration Manager and Job Scheduler. The
Job Scheduler receives the workload arrival (e.g. a user
submit an application to run), departure and resizing events
(e.g. allocating more resource for the workload), and deliver
them to the Concentration Manager. The Concentration
Manager will generate an application placement scheme
composed of a series of insertion and migration operations
based on these events, and then send this scheme back to
Job Scheduler. The Job Scheduler decomposes the
placement scheme to a set of insertion and migration
commands, and then dispatches them to the Virtual Machine
Controller.
The Virtual Machine Controller, Performance Monitor and
Resource Provision Manager are deployed in each resource
node. The Virtual Machine Controller receives commands
from Job Scheduler, and invoke the VM management
interface of the hypervisor to execute the commands
delivered from Job Scheduler such as VM start, stop or
migrate. The Resource Provision Manager dynamically
adjusts resource allocation (VM Resizing) to the workload
VM based on the performance statistics periodically
collected by the Performance Monitor. Each adjustment
generates a resizing event, and it will be submitted to the Job
Scheduler.

B. Implementation Experience
iVIC1 is a virtual computing environment developed for

HaaS and SaaS applications. iVIC enables users to
dynamically create and manage various kinds of virtual
resources such as Virtual Machines, Virtual Clusters and
Virtual Networks. It also can deliver on-demand streaming
applications to a client in a real-time manner without on-
premise installation.

The EnaCloud framework has been implemented in iVIC
system with Python. The energy-aware heuristic algorithm
is implemented in the Concentration Manager. The
communication between the global node and resource nodes
is via SOAP message. We choose Xen as the hypervisor,
and implement Resource Provision Manager based on the
Xen credit scheduler in non-working conserving
mode, which provides strong performance isolation among
VMs. And the Resource Provision Manager uses Xen
interfaces to dynamically adjust cap parameters of the
scheduler to change the resource allocation of VM during
runtime, based on an adaptive provision method mentioned
in [13]. The exact command is: xm sched-credit –d
domain –w Weight –c Cap.

We implement the Virtual Machine Controller using
Xen’s Python management API to start, stop and migrate the
VM. By querying xentop, the Performance Monitor can
obtain real-time performance statistics of each workload VM,
which includes CPU and Memory usage.

V. EXPERIMENTAL STUDY

A. Experiment Setup
To evaluate the effectiveness of our approach in a real

cloud setting, we conducted a series of experiments in our
iVIC environment. Our experiment environment is based on
an iVIC cloud pool consisting of sixty servers with Intel
Core2 Duo 3.0 GHz, 4G RAM, Linux 2.6.18 operation
system, Xen 3.0.3 virtual machine monitor, and gigabit
Ethernet connection. We use a Pentium-D PC to run the
Concentration Manager and Job Scheduler. Some other
desktop machines are used as clients to send requests to
server application. A Voltech PM3000 ACE power analyzer
is used to measure the transient power and total energy
consumption of the server pool.

Workloads Generation: We use three types of
workloads to simulate the diversity of applications in a
cloud.

� Web Server and Database Server: We choose
Apache Web server and MySQL server to simulate
applications continuously running for a long time,
and SPECWeb 20052 tool is used to performance
evaluation.

� Compute-intensive Applications: We choose three
Bioinformatics applications: Blast (Sequence
Alignment Parallel Tool), Siclone (Gene Finding

1 http://www.ivic.org.cn
2 http://www.spec/org/web2005/

13132121

Tool), and CAP3 (Gene Sequence Assembly Tool)
to simulate applications which consume a lot of CPU
cycles. We also use Spec CPU 2006 [12] to generate
different levels of CPU and Memory loads.

� Common Applications: We choose some popular
software including C compiler to simulate
applications which require less computing power.

In EnaCloud, each application is encapsulated into a VM,
and it will start automatically together with the VM. At the
same time, the execution time of these applications is
different, and we just choose them to simulate various
workload lifetime. For example, application of Web server
and Database Server are long-stay workloads, and Common
Applications e.g., kernel compilation are comparatively
short-time workloads.

During the experiments, we randomly create a workloads
set with above applications, and submit them to the cloud
pool with a given rate. When the workload VM runs out of
its time, it will be stopped immediately by Virtual Machine
Controller.

To better simulate the behaviors of a cloud computing
environment, we launch the workloads according to a
Poisson distribution with 1/ intervalT	
 where in terva lT
denotes the average interval between the arrival of any two
workloads. Through adjusting the value of in terva lT , the
overall system load can be controlled.
For our algorithm, we set M=4, so (0,1] is divided into 6
subintervals: L0= (3/4, 1], L1= (2/3, 3/4], L2= (1/2, 2/3], L3=
(1/3, 1/2], L4= (1/4, 1/3], L5= (0, 1/4].

B. Experiment Results
Experiment Group 1: The purpose of this experiment is

to evaluate the effectiveness of our energy-saving approach.
We submit 1,000 workloads with 1/ 300	
 (in terva lT =
5min), which means workload is submitted every five
minutes on average. To evaluate the performance of our
algorithm, we compared it with First Fit and Best Fit in
terms of the number of active server nodes, energy
consumption, and pool utilization.

The results are shown as Fig. 4. Fig. 4(a) shows our
algorithm uses less active nodes to run the workloads than

First Fit and Best Fit algorithm. At the 84th minute, our
algorithm only uses 34 active nodes, saving 10 and 6 nodes
compared with First Fit and Best Fit respectively. The
reason is our algorithm exploits live migration to further
concentration workloads, so it can ensure a tightly
concentrated state at any time.

Fig. 4(b) shows the total energy consumption for the
three algorithms. Compared to First Fit and Best Fit
algorithm, our algorithm exhibits much more energy saving
and saves about 10% and 13% energy respectively. This
result shows that our algorithm successfully saves energy
through reducing the active nodes used by the workloads.

Fig. 4(c) shows that our algorithm can maintains the pool
utilization at 90% on average, which is close to the full
capacity of nodes. As higher utilization indicates low
resource wasting, it shows the energy efficiency of our
algorithm from another aspect. We can also see that Best Fit
is better than First Fit to a limited extent. We have tried to
optimize the current algorithm, but the improvement is very
limited, since our algorithm has already achieved a high
utilization, there is not much space to further concentrate.
 Experiment Group 2: The purpose of this experiment is
to study the energy cost of application live migration. The
results in Table IV show that the energy consumption of
application migration almost increases linearly with the
increasing number of memory usage of the workloads. For
instance, when migrating a workload with 512MB memory,
it is 1Kwh (3600000 Joule) energy consumption for almost
4597 times workload migration. This result shows that a
small additional energy cost for a limited number of
migration to optimize the whole system.

TABLE IV. ENERGY FOR APPLICATION MIGRATION

Memory (MB) 128 256 512 1024
Energy (Joule) 202 399 783 1524

Experiment Group 3: The purpose of this experiment is

to investigate the impact on over-provision ratio for the
energy saving and migration times. Over-provision ratio � is
a metric to measure how much our algorithm can tolerate
the varying of workload resource demand.

(a) Number of Active Nodes (b) Energy Consumption (c) Pool Utilization

Figure 4. Energy efficiency of First Fit, Best Fit and Our algorithm

14142222

As shown in Fig. 5 (we select a time period of 100
minutes from the total 24 hours), it saves about 250W
power when �=0.1, and about 350W power over �=0.25 and
�=0.3 on average. But for �=0.1, it exhibits more jitters than
the others. This is because in low over-provision ratio, our
algorithm will need many times of migrations due to
frequently resizing, and we also observe a significant
increase in frequency of nodes power-on and power-off. For
�=0.25 and �=0.3, the two result curves appear to almost
overlap.

Figure 5. Power consumption for different �

Moreover, we study the impact on migration times for
different over-provision ratio. From Table V, we can see
that for �=0.1, it will bring about 1.7 times of migration per
event and 5.8 times of migration per minute. As for our
system, these two values are acceptable. As for �=0.2, 0.25,
0.3, each brings small migration overhead.

We also inspect other over-provision ratios. When �=0.4,
the pool utilization drops below 70%, and leads to a lot of
resource waste. For �=0.05, it leads to excessive number of
migrations and greatly affects the application’s performance.
So generally the reasonable range of � is [0.1, 0.3]. And this
is an important direction for configure our system in a real
cloud platform.

TABLE V. MIGRATION TIMES FOR DIFFERENT OVER-PROVISION RATIO

Last, we study the effect of workload submission rate.

Experiment results show that if ervalT int is too low (for
example, less than 30 seconds), our algorithm will incur lots
of migration. In this situation, our algorithm will degrade to
Best Fit to avoid excessive migration.

VI. RELATED WORK
Energy efficiency has become one of the most active

topics in large scale of data center or cluster computing
environment today. As evidence, consider that processor
and chipset vendors are marketing products on
“performance per watt”, instead of just processor clock

frequency and benchmark performance. Early studies
[6][14][15] mainly focus on energy consumption reducing
for PC or single server node. Operating systems, such as
Windows, already provide a rich set of energy saving
features including the ability to turn off the display and
automatically put the system to sleep when the user is not
interacting with the computer. Moreover, some techniques
can dynamically vary the voltage settings and rotational
speeds of processors and disks based on the processor and
I/O demands for computers. However, they cannot achieve
the maximum optimization, since the energy saved by these
techniques such as scaling down the CPU voltage is far less
than powering off a computer.

Some research work [3][4][5][16][17] implement energy-
efficiency policy in a front-end load balancer to distribute
the requests to backend servers, so as to minimize the
energy consumption without violating application's QoS
requirements. And these approaches are only useful to
server hosting environments, in which physical servers are
shared among competing server applications like Web
server. But in cloud computing environments, a wide range
of applications will be hosted. Our approach uses VM to
encapsulate applications, and leverages live migration
feature to achieve the energy efficiency placement, thus it is
more appropriate to a cloud platform with various
applications.

Manget [20] presents a multilayer ring-based overlay
architecture and also uses VM live migration to transfer load
among the server nodes. But the main difference between
Manget and our work is that Manget adopts a periodically
reconfiguration method, the interval of reconfiguration can
greatly affect the performance. If the interval is too short, it
will incur a lot of migrations; if the interval is too long, it
will result in energy waste. Our approach employs an event-
driven way to dynamically adapt to the workloads changing
events, so can avoid such problem.

In addition, some energy models have been proposed and
are used to guide the application placement. For example,
mantis [18] presents a linear power model for full-system
power analysis and modeling. PMapper [19] proposes a
power-aware placement algorithm based a power model and
a migration cost model. While these models generally based
on some assumptions, and are not applicable to a real
computing environment. Our approach does not explicitly
depend on a power model, but provides an approach during
the phase of application placement to minimize the number
of the running nodes, so can be integrated into many
computing environments.

VII. CONCLUSION
Cloud computing refers to the trend that computing

power is becoming a utility, generated remotely and
delivered as a service over the Internet. How to provide an
energy-efficiency application placement schema for a cloud
platform has become a critical problem. Our work is an
essential supporting for such applications to get economical

Over-provision
ratio

Migration times
�=0.1 �=0.2 �=0.25 �=0.3

Per event 1.7 1.0 0.6 0.5
Per minute 5.8 3.3 1.9 1.7

15152323

running. In our study, we proposed EnaCloud which is an
energy-saving application live placement approach for large
scale of cloud platform. An energy-aware heuristic
algorithm is proposed to choose an appropriate schema for
dynamic application placement. Moreover, an over-
provision approach is presented to deal with frequent
resource resizing issue. We have implemented our approach
based on Xen VMM and our experience shows initial
evidence that it is a viable solution to save the energy for a
cloud platform.
Our ongoing work is to develop an improved algorithm with
consideration of multi-factor (including CPU, Memory etc.),
and also give more practical evaluations for real applications
in our iVIC platform.

ACKNOWLEDGMENT
This work is partially supported by grants from China 863
High-tech Program (Project No. 2007AA01Z120,
2009AA01Z419), and National Natural Science Funds for
China (Project No. 60525209, 60731160632). We would
also like to thank members in Network Computing Research
team in Institute of Advanced Computing Technology of
Beihang University for their helpful suggestions.

REFERENCES
[1] The Amazon Elastic Compute Cloud (Amazon EC2),

http://aws.amazon.com/ec2/
[2] IBM Blue Cloud. http://www.ibm.com/ibm/cloud/
[3] R. Doyle, “Energy Management for Server Clusters”, Proceedings of

the Eighth Workshop on Hot Topics in Operating Systems, p.165,
May 20-22, 2001.

[4] Jeffrey S. Chase, Darrell C. Anderson, Prachi N. Thakar, Amin M.
Vahdat, Ronald P. Doyle, “Managing energy and server resources in
hosting centers”, Proceedings of the eighteenth ACM SOSP, October
21-24, 2001, Canada.

[5] Taliver Heath, Bruno Diniz, Enrique V. Carrera, Wagner Meira Jr.,
and Ricardo Bianchini. “Energy conservation in heterogeneous server
clusters”. Proceeding of ACM PPoPP, 2005.

[6] Tibor Horvath , Tarek Abdelzaher , Kevin Skadron , Xue Liu,
“Dynamic Voltage Scaling in Multitier Web Servers with End-to-End
Delay Control”, IEEE Transactions on Computers, v.56, p.444-458,
2007.

[7] Natural Resources Defense Council “Recommendations for Tier I
ENERGY STAR Computer Specification”,.
http://www.energystar.gov/ia/partners/prod_development/revisions/d
ownloads/computer/RecommendationsTierICompSpecs.pdf

[8] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I.
Pratt, and A.Warfield, “Live Migration of Virtual Machines”,

Proceedings of 2nd Symposium on Networked Systems Design and
Implementation, USENIX, 2005.

[9] Miller, R. E., Thatcher, J. W. , “Reducibility Among Combinatorial
Problems”, In Complexity of Computer Computations, pp. 85-103,
New York, 1972.

[10] Yue, M., “A simple proof of the inequality FFD(L) � (11/9)opt(l)+1,
for all L, for the FFD bin-packing algorithm”, Acta Mathematicae
Applicatae Sinica , pp. 321–331, 1991.

[11] C. C. Lee and D. T. Lee. A simple on-line bin-packing algorithm.
Journal of the ACM, 32(3):562-572, July 1985.

[12] SPEC CPU2006, next-generation, industry-standardized, CPU-
intensive benchmark suite. http://www.spec.org/cpu2006/

[13] Wang, Z., Zhu, X., Singhal, S., “Utilization and SLO-based control
for dynamic sizing of resource partitions”, In Proceeding of 16th
IFIP/IEEE Distributed Systems: Operations and Management
(DSOM), October 2005.

[14] Xiaotao Liu , Prashant Shenoy , Weibo Gong, “A time series-based
approach for power management in mobile processors and disks”,
Proceedings of the 14th international workshop on Network and
operating systems support for digital audio and video, June 16-18,
2004.

[15] David C. Steere, Ashvin Goel, Joshua Gruenberg, Dylan McNamee,
Calton Pu, and Jonathan Walpole, “A Feedback-driven Proportion
Allocator for Real-Rate Scheduling”, In Proceedings of the Third
Symposium on Operating Systems Design and Implementation
(OSDI), pages 145–158, February 1999.

[16] Rajamani, K., Lefurgy, C., “On evaluating request-distribution
schemes for saving energy in server clusters.”, In Proceedings of the
2003 IEEE International Symposium on Performance Analysis of
Systems and Software, 2003.

[17] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath. "Load
Balancing and Unbalancing for Power and Performance in Cluster-
Based Systems". Proceedings of the Workshop on Compilers and
Operating Systems for Low Power (COLP), September 2001.

[18] Dimitris Economou, Suzanne Rivoire, Christos Kozyrakis, and Partha
Ranganathan, “Full-system power analysis and modeling for server
environments”, In 2nd WS Modeling, Benchmarking & Simul., pages
158--168, Boston, MA, June 2006.

[19] Akshat Verma, Puneet Ahuja, Anindya Neogi, “pMapper: Power and
Migration Cost Aware Application Placement in Virtualized
Systems”, Middleware 2008: 243-264.

[20] Liting Hu, Hai Jin, Xiaofei Liao, Xianjie Xiong, Haikun Liu.
“Magnet: A novel scheduling policy for power reduction in cluster
with virtual machines”, In Proceedings of the 2008 IEEE
International Conference on Cluster Computing, September, 2008,
Tsukuba, Japan.

[21] Fu, S. and Xu, C. 2004. Migration Decision for Hybrid Mobility in
Reconfigurable Distributed Virtual Machines. In Proceedings of the
2004 international Conference on Parallel Processing (August 15 - 18,
2004). ICPP. IEEE Computer Society, Washington, DC, 335-342.

[22] Report to Congress on Server and Data Center Energy Efficiency,U.S.
Environmental Protection Agency ENERGY STAR Program,
http://www.energystar.gov/ia/partners/Prod_development/downloads
August 2, 2007.

16162424

