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Abstract—Software-Defined Networking not only addresses
the shortcoming of traditional network technologies in deal-
ing with frequent and immediate changes in cloud data cen-
ters but also made network resource management open and
innovation-friendly. To further accelerate the innovation pace,
accessible and easy-to-learn testbeds are required which estimate
and measure the performance of network and host capacity
provisioning approaches simultaneously within a data center.
This is a challenging task and is often costly if accomplished
in a physical environment. Thus, a lightweight and scalable
simulation environment is necessary to evaluate the network
allocation capacity policies while avoiding such a complicated
and expensive facility. This paper introduces CloudSimSDN,
a simulation framework for SDN-enabled cloud environments
based on CloudSim. This paper develops and presents the overall
architecture and features of the framework and provides several
use cases. Moreover, we empirically validate the accuracy and
effectiveness of CloudSimSDN through a number of simulations
of a cloud-based three-tier web application.

I. INTRODUCTION

Cloud computing [1] has provided economies of scale

through cost-effective and elastic IT service paradigm. Service

providers harness its benefits such as pay-as-you-use pricing

model, elasticity and scalability to improve their quality of

service and to reduce their cost. In cloud environments, elastic-

ity and scalability can be achieved by dynamically increasing

or decreasing virtualized infrastructure resources, e.g. virtual

machines (VMs). In fact, virtualization has increased the

capacity and efficiency of cloud data centers to an extent with

which traditional network paradigms cannot provide.
The demand for scalable and cost-efficient computer net-

works with the support for multi-tenancy has led to the rise

of Software-Defined Networking (SDN). SDN is a new way

of centrally managing network switches with ability of fine-

grained traffic management. SDN enables network elements

to be dynamically programmable and controllable through a

central controller. This is made possible in SDN by moving

the data forwarding plane away from the data control plane.

Controllers in SDN can oversee the entire network and thus

efficiently perform dynamic bandwidth allocation per flow,

faster recovery, and traffic consolidation, all of which can be

exploited to improve QoS and energy efficiency [2][3].

In addition, the major promise of SDN is to accelerate the

innovation pace in networking protocols, traffic management,

virtualization, and software by opening up networking research

to universities and research centers. The move started by the

introduction of OpenFlow [4], a de facto standard interface

for SDN controllers which is a result of the collaboration

between a number of universities. OpenFlow describes an

open interaction protocol in SDN that allows the controller

to communicate with the forwarding plane and make dynamic

changes to the network. This real-time responsiveness to traffic

demands is an effective feature to deal with the dynamic nature

of cloud data centers.

To further foster innovation and development, we require

tools and toolkits that provide a testbed for experimenting with

OpenFlow and Software-Defined Networking systems within

a cloud data center. To this end, Mininet [5] is developed to

emulate the network topology of OpenFlow switches. Thus, it

enables testing different SDN-based traffic management poli-

cies in controller. Nevertheless, Mininet concentrates solely

on network resources and does not provide any environment

to test other cloud resource management techniques such as

VM placement along with network resources consolidation. To
address this shortcoming, we introduce CloudSimSDN that
enables the simulation of policies for the joint allocation
of compute and network resources.
CloudSimSDN is a new simulation tool built on top of

CloudSim [6] that has been briefly discussed in the context of

Software-Defined Clouds [7] where resources are dynamically

managed and configured in a data center via a centralized con-

troller. In this paper, we discuss the essence of CloudSimSDN

and present a detailed description of its design and implemen-

tation. The framework is designed and built in such a way

that is capable of evaluating resource management policies

applicable to SDN-enabled cloud data centers. It simulates

cloud data center, physical machines, switches, network links,

and virtual topologies to measure both performance metrics to

guarantee QoS and energy consumption to assure environment

conservation and cost-reduction. In addition to those features,

CloudSimSDN provides a Graphical User Interface (GUI)

that simplifies the simulation configuration and reduces the
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learning curve.

The CloudSimSDN accuracy is validated and its effec-

tiveness is tested through a number of experiments. The

experiments do not intend to provide a novel algorithm for

traffic prioritization or host-network resource management but

to prove the effectiveness of the simulator in a number of use

case scenarios.

The remainder of the paper is organized as follows. In

Section II, we describe the related works and highlight the

uniqueness of our simulator. In Section III, we emphasize the

requirements of the simulation, then Section IV provides the

description of overall framework design and its components in

detail. The validation process of the simulator is explained in

Section V, followed by an evaluation with use case scenarios

for three-tier applications in Section VI. Finally, the paper is

concluded with a list of future directions.

II. RELATED WORK

Recently, many cloud environment simulation tools were

proposed to enable reproducible and controlled evaluation

of new algorithms for management of cloud resources and

applications. CloudSim [6] is a discrete event-based cloud

simulator implemented in Java, enabling the simulation of data

centers with a number of hosts. VMs can be placed in a host

in accordance to VM placement policy. After creating VMs,

workloads can be submitted and executed in VMs. Additional

elements can be implemented and added to the simulator to

operate with other entities by receiving and sending events.

CloudSim does not support network evaluation in details.

NetworkCloudSim [8] simulates applications with commu-

nication tasks in CloudSim. In this work, network elements

such as switches and links are implemented and added in

CloudSim and used to estimate network transmission time.

However, they focused on modeling and simulating message-

passing applications in a data center that does not include SDN

and its dynamically configurable features. We emphasize sup-

port of SDN features such as dynamic network configuration

and adjustable bandwidth allocation.

The iCanCloud simulator [9] is a solution aiming at the

simulation of large scale cloud experiments. It focuses on

enabling a cost-performance analysis of applications executing

on the cloud. Network simulation is enabled by the INET

framework, which enables the simulation of network infras-

tructures including devices (such as routes and switches) and

protocols (such as TCP and UDP) [9]. It does not support

the modeling and simulation of SDN controllers and related

features.

GreenCloud [10] is a cloud simulator focusing on energy-

efficiency research. It extends the NS2 simulator [11], and is

able also estimate not only power consumption of computing

resources but also from network resources. As for the previous

cases, it cannot model and simulate features of SDN.

SPECI [12] is a simulator that focuses on modeling and

simulating the data center middleware and failures in the

underlying infrastructure. It focuses on analyzing the perfor-

mance of the middleware under different network conditions.

It does not support modeling of cloud applications or SDN

features.

RC2Sim [13] is a tool for experimentation and functionality

tests of cloud management software via simulation and emu-

lation in a single host. Network is simulated via a module

that calculates expected data transfer times given a user-

supplied cloud network topology. Unlike the previous sim-

ulators, RC2Sim targets analysis of control commands to the

cloud infrastructure (such as request for VM creation) rather

than analysis of the performance of cloud applications using

different policies and cloud environments.

Mininet [5] is a widely used SDN emulation tool to test

SDN controllers. It emulates hundreds of nodes with different

network topologies in a Linux machine using virtualization

techniques provided by the Linux operating system, which

presents more accurate results reflecting delays and congestion

at the OS level. An external OpenFlow controller can be

attached and tested in Mininet. Similarly, Linux programs can

be executed in a virtual node. However, Mininet, similar to

NS-3[14], is not capable of testing cloud-specific features such

as VM placement policies, workload schedulers, etc.

Teixeira et al. [15] introduced a framework to test SDN

cloud-data center controllers using Mininet and POX, a Python

controller for OpenFlow SDN standard [16]. They used

Mininet to manage network topologies and data traffics and

POX to implement the controller of the framework. Thus,

it can provide practical results and provide software that is

ready-to-use in a real SDN environment. However, it does not

allow simulation of cloud-specific features such as different

configuration of VM types and application execution.

III. SOFTWARE-DEFINED CLOUD DATA CENTER

SIMULATION: GOALS AND REQUIREMENTS

Simulation is a valuable tool for initial research of new

policies and techniques in distributed systems, as it enables re-

producible experimentation in a controlled environment, which

is hard to achieve in real cloud infrastructures. Simulation

enables quick evaluation of strategies in different scenarios,

which can be applied as an initial filter against approaches

that underperform compared to existing approaches. As noted

earlier, simulation tools exist to enable evaluation of policies

for cloud infrastructures, although without support for SDN

and all its benefits. Tools exist also that can simulate the effect

of SDN controllers on response time of network packets, but

without supporting cloud features.

As cloud infrastructures can benefit considerably from SDN

and its capabilities, a tool that enables design and test of

controller policies and its effect in cloud infrastructures is

desirable, and this is the objective of the tool proposed in

this paper. Thus, to achieve our goals of reproducible and

controlled experimentation of Software-Defined Cloud data

centers, we identified the following requirements:

• Capacity to represent core data center computing ele-

ments;

• Capacity to simulate flows and different policies that can

be implemented per flow in the infrastructure;
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Fig. 1. CloudSimSDN architecture.

• Support for flexible description of virtual networks that

can be deployed on top of the simulated physical network;

• Flexible model of applications, enabling representation

of both data transfer and computational needs of the

application;

• Support for reuse of network descriptions (network

topologies and data flows), possible via some standard

file output format; and

• Intuitive graphical user interface (GUI) for design of

physical and virtual topologies.

The above requirements drove the design and development

of our framework, which we detail in the next section.

IV. FRAMEWORK DESIGN

Our SDN simulator, CloudSimSDN, is built on top of

the CloudSim toolkit [6]. It leverages CloudSim’s capabil-

ities of modeling computational elements of data centers

and CloudSim’s simulation engine. To enable modeling and

simulation of SDN, we added a number of components to

simulate network traffic and SDN controller behaviors.

Figure 1 shows the architecture of CloudSimSDN. Users of

our framework supply user code and scenarios. Physical and

virtual topology configurations can be supplied either as JSON

files or as program codes (which are written in Java). Another

approach for user input is a GUI that translates requirements

into physical and virtual topology configurations.

Besides infrastructure description, end-users’ requests de-

scription, which compose the input workload for the simula-

tion, are supplied in CSV files. Each workload should specify

the submission time along with a list of job processing size

and traffic data size. In addition to workload and topology

configurations, scheduling policies should be provided, such

as VM placement algorithm and network policies. Brokers

can be programmed to simulate the behavior of end-users

or data centers. Regarding these policies, a user can either

utilize built-in policies or can develop their own (by extend-

ing abstract classes). The aforementioned user input feed to

topmost elements of the architecture, namely Virtual Topology
and Workload.

VM Services are in charge of managing VMs and network,
by calculating application execution and packet transmission

time between VMs. The next layer, Resource Provisioning,
is composed of two modules. VM Provisioning is a core

module to provision VMs within data center according to

VM placement policy specified by simulator users. Network

provisioning is performed according to the network policies

in use in the simulation. The next layer, Resource Allocation,
contains modules that allocate resources specified in the bot-

tommost layer of the architecture, Cloud Resources.
Figure 2 contains a simplified class diagram for the main

classes of our approach. These classes are discussed in the rest

of this section.

A. CloudSim core logic

The original CloudSim core logic is used to simulate the

basic compute elements that compose the cloud infrastructure.

On CloudSim, physical hosts can be defined with specific

configurations and VMs are placed on the host that meets

resource requirements such as CPU power, memory, and

storage size. CloudSim simulates a range of elements of the
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Fig. 2. CloudSimSDN Class Diagram.

cloud architecture, including data center, physical host, VM,

VM scheduler, workload scheduler, etc. Although network

bandwidth is one parameter of the configuration for physical

machines and VMs, bandwidth in CloudSim is used only as a

constraint for VM scheduler, and thus the proposed extension

is necessary for modeling of SDN features for networking

provisioning.

B. Abstracting physical and virtual topology

The physical topology includes hosts, switches, and links.

VMs are placed in physical hosts, and network packets are

transferred between hosts via switches. Hosts are specified

with their computational power, memory, and storage size.

Links connect a host to a switch or connect switches with

specified bandwidth.

Similarly, virtual topology includes VMs and virtual links.

VMs are described with the required computational power,

memory, and storage size. Virtual links connect VMs with

optional bandwidth amount. If the bandwidth is not specified

in a virtual link, then the simulator assumes that communi-

cation between them occurs without bandwidth reservation.

Case users specify virtual links between two points, band-

width reservation between the points need to be enforced.

Because the path connecting such two points could be chosen

among different paths of the physical topology, the problem

of mapping the virtual topology on the physical one needs to

be solved with some objective in mind (such as minimizing

the average path length or minimizing the number of network

devices involved in the solution). This problem is known as

Virtual Network Embedding (VNE) problem. There are various
researches conducted to solve the VNE problem [17], which

can be implemented and tested in our simulator.

C. Network modules

To simulate packet transfer between VMs, we developed a

Switch class performing SDN-enabled switch function man-

aged by a controller. Forwarding rules are installed by the

controller’s Network Operating System, and can be dynami-
cally changed depending on the network traffic. The virtual

links connecting switches and/or VMs are represented with a

Channel class that defines the physical path capacity of such
channels. The class holds a list of physical network elements,

such as switches and hosts, along with physical links between

those elements.

Once a network packet is generated from a VM and sent to

the underlying host, it is forwarded to the destination host

using a channel through forwarding routes. By default, a

channel is shared by all packets if they are sent from the same

source VM to the same destination VM. Since different virtual

channels could share the same physical link, each physical

link also maintains the list of channels passing through the

link itself. If a new channel is created and added to the link,

the link updates the shared bandwidth of all channels which

passes through the link.

By using the Network Operating System, it is also able to
create a dedicated channel for a specific traffic flow. As SDN

allows the controller to differentiate network flows depending

on the type of traffic, our framework also can create a channel

for a specific flow with dedicated bandwidth allocation. In this

case, an extra channel is created in addition to the default

channel, and the packets with specific flow id are forwarded

using the new channel.

Network Operating System class represents the central con-

troller managing the overall network behavior of the simu-

lation. It monitors all the network’s channels and packets,

and decides how to reconfigure each network element. User-

defined network policies can be developed by extending this

class. It also calculates the estimated arrival time for each

packet based on the allocated bandwidth for each channel and

the number of packets sharing the same channel. If there is

more than one channel sharing a link, each channel size is

also included in the bandwidth calculation.

Functions and behaviors supported by SDN are imple-

mented in the Network Operating System class. For example,

if dynamic bandwidth allocation is necessary to be simulated,

policies specifying how to allocate bandwidth to each flow are

implemented in this class.

D. Calculating packet transmission time

Simulation of network requires that the transmission time

for data transferred between hosts is calculated. Calculation is

straightforward if the data is transmitted for one hop that is

not shared with other hosts. However, it is more complicated

to estimate travel time when the packet needs to be transferred

to the host via multiple hops where some are shared by

other hosts. In fact, data is fragmented into several packets

involved in multiple fragmentation process on each network

layer depending on protocols. The fragmentation processes are

complicated and varied on different protocols.

Therefore we simplify the transmission process model and

the estimation of transmission time. We introduce the class

Channel, an end-to-end edge from sender to receiver consisting

of multiple links. It is a path for data packets that are going

through a series of queues of ports in different switches. The

class Link is a physical medium between ports of switches
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Fig. 3. User request modeling.

or hosts. The class Transmission refers the transferring data

between two hosts which travels through the channel.

In each link, bandwidth is first allocated to the priority

channel if SDN is configured to allocate a specific amount

of bandwidth to the channel. Afterwards, the remaining band-

width is equally shared by the channels passing through the

link. Thus, allocated bandwidth BWc,l for a channel c in the
link l is defined as BWc,l =

BWl

Nl
, where the link (l) has

available bandwidth (BWl) shared by the number of channels

(Nl).

As a channel is composed of multiple links, the transmission

speed of the channel basically depends on the least bandwidth

among the links. Even if some links have higher bandwidth,

there would be a bottleneck when packets pass through a link

with lower bandwidth. Thus, for the time period Δt, when
no channel has been added or removed, the amount of data

Dc transferred from sender to receiver on a channel c can be
calculated with Equation 1:

Dc = Δt × Min(BWc,l) (1)

When a new channel is added, Network Operating System

informs all links where the new channel passes through, and

existing channels are updated with a new lower bandwidth

value. Channels and links are also updated when a data

transmission is finished and the allocated channel is deleted.

In this case, the remaining channels will have more bandwidth

as there is one less channel using the link. Updated bandwidth

values are used to calculate the size of data transferred for the

next time period.

E. Abstracting user requests

In practice, a job associated with network transport can

be abstracted as a combination of computation processing

interleaved with packet transfers. For example, in a web

service model, when a request is received at the front-end

server, e.g. web server, the front-end server computes the

request and creates another request to the mid-tier server, e.g.

application server. In the same way, when the mid-tier server

receives a request, it processes the request, and sends another

request to the back-end server, e.g. database server.

In order to model a request containing both workloads and

network transmissions, three classes are implemented: Re-
quest, Processing and Transmission (see Figure 3). Request has
a list of either Processing or Transmission, while Processing
contains a computation workload (Cloudlet) and Transmission

has a network transmission requirement (Package). Several

Processing and Transmission objects can compose a Request

which should appear in order. If Transmission is appeared after

Processing in the Request, the Request is sent to the next VM

that is supposed to execute the following Processing. For easy

use, list of requests can be input in a CSV format in which

has multiple pairs of Processing and Transmission.

In order to estimate network transfer time for each packet,

we introduce a Queue in nodes for each flow. For example, if

a flow is set up between two hosts, the queue should be set

up in the sender’s host as well as in all switches that packets

go through.

F. GUI modules

On top of CloudSimSDN application logic, we also devel-

oped a GUI to enable visualization of the simulation input and

output. The GUI facilitates description of both physical and

virtual topology by drawing elements such as hosts, switches,

VMs, and links. The topologies can be saved and loaded in

JSON file format. It also supports direct execution of the

simulation using the loaded topologies and workload files.

The GUI module consists of three layers: Framework layer,

Business layer, and Interface layer. The Framework layer

consists of the core graphic modules to draw the graphical

user interface and the programming interface to supply the

topologies to the underlying application logic. The Business

layer is in charge of connecting the core logic to the Interface

layer. GraphView is the core part of the Business layer

where network topologies can be drawn by using the graph

visualization library, i.e. Java Swing. SDNExecution performs
CloudSimSDN simulation and presents the output. On top of

it, the Interface layer is used to interact with users by defining

user-friendly interface.

A screenshot of the GUI is shown in Figure 4. In the

center two main panels are to visulize the physical and logical

topologies. The tool bar above the main panels has several

buttons to be selected to draw vertices and edges for each

topology as well as to import and export to files. Management

functions are also executable through the GUI, such as starting

simulation execution, and showing the simulation result.

V. VALIDATION

Validation of CloudSimSDN is a focal point when it comes

to the applicability of the simulation. In order to validate

CloudSimSDN, we have conducted a series of experiments

that compare CloudSimSDN and Mininet with the same

workload. As noted earlier, Mininet is a network emulator
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Fig. 4. Screenshot of the graphical user interface of CloudSimSDN in the network topology design mode. The left panel contains the physical network
topology while the right panel contains the virtual topology.

for the creation of virtual network using the Linux kernel

and measurement of data transmission time sent via OS

protocol stack. Since it uses the actual Linux kernel for the

network emulation, Mininet generates more realistic results,

and is widely used to measure SDN-based traffic management

policies in controller. Our goal is to first build scenarios with

different data sizes and different shortest paths between hosts

(including different network elements). Next, for each scenario

we analyze how close is the data transfer time between hosts

in CloudSimSDN and Mininet which can demonstrate the

accuracy of the CloudSimSDN.

A. Mininet setup

Environment for Mininet experiments is set up in Python

using Mininet Python API [18]. Network topology in Mininet

is created by adding and configuring hosts, switches, and links,

and then each host is scheduled to start data transmission at the

same time with other hosts simultaneously. To achieve it, we

developed: 1) monitoring agents to measure data transmission

time between hosts; 2) Sender agents that generate dummy

data with specified size and send it to the receiver agent.

Before data transmission begins, the program waits until the

given time to make sure all senders start transmission at

the same time. When the receiver agent on the other side

finishes receiving all data, it sends back an acknowledgement.

Once done, the monitoring agent calculates the transmission

time. Time clocks of the emulated hosts within Mininet are

synchronized as they share the same system clock.

B. Testbed configuration

We created a tree topology of depth 2 with four hosts (see

Figure 5). The root is a core switch which has two edge

switches as child nodes. The leaves are four physical machines

connected to the edge switches. Although a tree topology
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Fig. 5. Physical topology configuration for the validation test.

can be effortlessly configured, it can support a number of

scenarios, e.g. data sending from VM1 to VM2 passes through

only an edge switch, while data from VM2 to VM3 passes

through the entire network. In addition, we created one VM

in each physical machine in CloudSimSDN because Mininet

does not allow VM simulation. Hence, each VM represents

a physical machine in Mininet. The configured link speed

between core and edge switches, and between edge switches

and hosts, are shown in Table I.

In each scenario in Table II, each host is configured to send

data with different sizes to the other hosts at the same time,

which makes links be shared among multiple connections. As
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TABLE I
LINK CONFIGURATION FOR THE VALIDATION EXPERIMENTS.

Link Bandwidth

Core ↔ Edge switches
10 Mbps

(1.25 MBytes/sec)

Edge switches ↔ Hosts
10 Mbps

(1.25 MBytes/sec)

TABLE II
VARIOUS SCENARIOS FOR VALIDATION.

Scenario Sender Receiver Data size

Scenario 1

VM1 VM4 10 MBytes

VM2 VM4 10 MBytes

VM3 VM4 10 MBytes

Scenario 2

VM1 VM4
Varied in uniform distribution

(a = 10 MBytes, b = 20 MBytes)
VM2 VM4

VM3 VM4

Scenario 3

VM1 VM2 10 MBytes

VM2 VM3 10 MBytes

VM3 VM1 10 MBytes

Scenario 4

VM1 VM2
Varied in uniform distribution

(a = 10 MBytes, b = 20 MBytes)
VM2 VM3

VM3 VM1

shown in Table II, scenarios differ in the path that the data

travels. All transmissions are set up to start at the same time,

hence if the data size is not the same, some transmissions finish

earlier than other transmissions, and then the links, which are

shared by terminated transmission, will have more bandwidth

for the rest of connections.

C. Validation results

Figure 6 shows the measured transmission time in

CloudSimSDN and Mininet for the four scenarios described

in Table II. In Scenario 1 for the fixed data size, the difference

between CloudSimSDN and Mininet is at most 2.5%. When

we have variable data size and the same path in Scenario

2, for the majority of cases (for each of which data size

is randomly generated based on the distribution described

in Table II) the differences is below 4.6%. In Scenario 3,

where the path includes more network elements, the difference

slightly increased compared to Scenario 1. For the case of

Scenario 4, with the same path as Scenario 3 and variable data

size, there is only a narrow increase in the difference. This is

because factors that affect the network performance, such as

TCP window size, OS layer delay, fragmentation latency, etc.,

are abstracted away from the simulation model. However, this

slight loss of accuracy comes with extra advantage of enabling

larger-scale evaluation (as our framework does not limit the

number of simulated hosts) and also representation of the

whole software stack (including the application running on the

cloud platform) in the evaluation scenario, as we demonstrate

in the next section.
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Fig. 6. Comparison of CloudSimSDN with Mininet for average transmission
time for each scenario.

VI. USE CASE EVALUATION

We focus on two use cases (built in the context of multi-

tier web applications) to demonstrate the simulator capabilities
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TABLE III
VM CONFIGURATIONS USED FOR JOINT HOST-NETWORK ENERGY

EFFICIENT RESOURCE ALLOCATION USE CASE.

VM Type Cores MIPS Bandwidth

Web Server 2 2000 100 Mbps

App Server 8 1500 100 Mbps

DB Server 8 2400 100 Mbps

Proxy 8 2000 500 Mbps

Firewall 8 3000 500 Mbps

TABLE IV
ENERGY CONSUMPTION AND THE MAXIMUM NUMBER OF

SIMULTANEOUSLY UTILIZED HOSTS FOR DIFFERENT VM PLACEMENT

POLICIES.

Algorithm
Energy consumption (Wh) Max Nodes

Hosts Switches Total Hosts Switches

Worst Fit (A) 2,396,380 112,492 2,508,871 100 11

Best Fit (B) 1,848,038 92,493 1,940,532 30 4

Energy saving

(A-B)

548,341

(23%)

19,999

(18%)

568,340

(23%)
- -

and to highlight the advantages of adopting SDN in data

centers. The use cases are joint host-network energy efficient

resource allocation and traffic prioritization to improve QoS

of priority users. Note that such evaluation can only be done

with CloudSimSDN (not Mininet) as our simulator supports

both compute and network simulations.

A. Joint host-network energy efficient resource allocation

The first use case evaluates the energy savings in SDN-

enabled cloud data center via VM consolidation. If resources

are consolidated, unused hosts and switches can be switched

off by the controller, which maximizes energy efficiency. In

this experiment, we tested different VM placement policies

and estimated the energy consumption of hosts and switches.

For the test, a data center with 100 hosts and 11 switches

is created in CloudSimSDN. Each host is configured with 16

processing cores, and each of them has a capacity of 4000

MIPS. The link bandwidths of host-network connections are

set to 1 Gbps.

500 VM creation requests are generated based on randomly

selected VM types specified in Table III, and each request has

different start time and lifetime following exponential distri-

bution and Pareto distribution respectively [19]. The network

workload is also created for the execution time of VMs to

ensure switches are working throughout the VM lifetime. We

assumed that VMs are fully utilized and continuously generate

network traffic.

We evaluated two commonly used heuristics for VM place-

ment: Best Fit and Worst Fit. The Best Fit policy selects a

host whose resources are the most utilized but still available to

accommodate allocation requests. In this approach, VMs tend

to be consolidated to a smaller number of hosts, and network

traffic between hosts can be reduced as more VMs are placed

within a host. In contrast, the Worst Fit algorithm selects the

���

�

���

�

���

��

���

�  

���

�

!!!

!�!�!

!�!�! !!!
���

�


���� 

����


����

���
������

Fig. 7. Physical topology for traffic prioritization use case evaluation.

TABLE V
VM CONFIGURATIONS FOR TRAFFIC PRIORITIZATION USE CASE.

VM Type Cores MIPS

Web Server 2 2000

App Server 2 1500

DB Server 8 2400

freest host which has the maximum available resources, in

which VMs can maximize their computational power. To find

the most or the least utilized host, we used a normalized unit

to combine CPU requirements (total MIPS) and bandwidth

constraints, since the two dimensional requirements should be

considered at the same time. Power consumption for hosts and

switches are modeled based on the works by Pelley at al. [20]

and Wang et al. [21], respectively.

We compared the result of the two algorithms in terms of

two metrics: energy consumption of hosts and switches, and

the maximum number of simultaneously utilized nodes. As

shown in Table IV, the result depicts that overall 23% of

energy consumption of the data center can be saved when the

Best Fit is applied for VM placement. Although this result is

mainly attributed to the hosts that saved 23% of their power

consumption in Best Fit, consolidation of network traffic and

deactivation of idle switches also saved 18% of energy usage

from switches.

B. Traffic prioritization

In traditional cloud data center networks, prioritizing net-

work traffic based on the user type was difficult due to

complexity and overhead of configuring network elements in

such a dynamic environments. However, it is viable in SDN-

enabled cloud data center to allocate bandwidth to premium

users. This is because the controller is fully aware of network

topology and traffic and is capable of controlling queues in

SDN switches and dynamically assigning flows to network

paths. In this use case, we demonstrate how CloudSimSDN

effectively models this capability of SDN.

In simulation, we modeled a data center with depth 3

tree topology and 100 hosts (see Figure 7). That is, one

core switch connected to 10 edge switches, and each edge

switch connected to 10 hosts. Each host is configured with 16
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TABLE VI
CHARACTERISTICS OF REQUESTS USED FOR TRAFFIC PRIORITIZATION

EVALUATION. REQUESTS ARE BASED ON THE MODEL PROPOSED BY

ERSOZ ET AL. [22].

Distribution Parameters

Request inter-
arrival times

Log-normal Dist. μ=1.5627, σ=1.5458

Packet sizes Log-normal Dist. μ=5.6129, σ=0.1343 (Ch1)

μ=4.6455, σ=0.8013 (Ch2)

μ=3.6839, σ=0.8261 (Ch3)

μ=7.0104, σ=0.8481 (Ch4)

Workload
sizes

Pareto Dist. location=12.3486, shape=0.9713

processing cores and 8000 MIPS processing capacity. Physical

links are configured with 1Gbps (125 MBytes/sec) bandwidth

and 0.5 msec latency.

There are 50 different customers using the cloud infras-

tructure in total, 10 users among them are premium users.

Each user has an application running on three VMs: Web

Server, App Server, and DB Server. Configuration of each VM

is shown in Table V. As this experiment aims at evaluating

application processing and network performance, the sizes of

RAM and storage are not considered as constraints. In the sim-

ulation environment, the controller can create separate virtual

channels for different data flows. The idea is to allow priority

traffic to consume more bandwidth than normal traffic. Thus,

virtual channels between VMs are dynamically segmented into

two different channels: priority channel and standard channel.

By default, without traffic prioritization (when SDC is not

used) a standard channel is used to transfer data between VMs

regardless user priority where the bandwidth is evenly shared

among all packets in the same channel. In contrast, by enabling

traffic prioritization feature, a specific amount of bandwidth is

exclusively and dynamically allocated for the priority channel,

and thus such a bandwidth becomes unavailable for other

channels.

For each user, different workloads are generated synthet-

ically based on a typical web service model [22]. Table VI

shows the characteristics of synthetic data used for the eval-

uation. Each request consists of five application processing

and four data transmissions in between. At first, processing

is done in the Web Server, and then the request is passed to

App Server via network transmission. Similarly, App Server

has processing and requests data to DB Server. DB Server

processes data and return to App Server. Finally, Web Server

receives processed data from App Server and responds to the

end-user.

When traffic prioritization is enabled, for each priority chan-

nel we exclusively provide minimum of 333 Mbps bandwidth.

If the bandwidth demand from priority channels exceeds the

link capacity, it is equally shared among the priority channels,

and no bandwidth is allocated to the standard channels. To

make the experiment simple, traffic prioritization is simplified

in the simulation without considering sophisticated traffic
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Fig. 8. Effect of traffic prioritization.

shaping methods. We measured the response time for each

request from submission at the Web Server until return to the

end-user.

Figure 8a shows detailed performance improvement for each

premium user when traffic prioritization is enabled. While

response times for Premium User 5 to 10 have remained

almost same, Premium User 1 to 4 experienced improvement

in application performance. The reason is when the Premium

User 1 to 4 are entered, the system experienced higher load

and therefore assigning the exclusive bandwidth to the flow of

priority requests decreased the response time. This dynamic

allocation of bandwidth per-flow is an important feature of

SDN to control the QoS in data centers.

In addition, as shown in Figure 8b, average application

response time for premium users decreased from 1.636 to

1.325 seconds when traffic prioritization is enabled, in which

performance is improved by 19.0% on average. On the other

hand, overall response time for normal users is slightly in-

creased from 1.929 to 2.009 seconds.

Via this use case, we show how cloud providers can

use SDN flow management capability to offer services with

various QoS levels. As demonstrated, there is a certain amount

of bandwidth reserved for the priority channel that allows

priority requests to be served in much shorter time. However,

still policies need to be developed to dynamically derive this

certain amount of bandwidth based on the changes in the

workload, the user QoS requirements (maximum response
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time), and the priorities of users.

VII. CONCLUSIONS AND FUTURE WORK

To accommodate the increasing demand for cloud

computing-related services, there is an increasing need of

scalable and cost-efficient data center computer networks sup-

porting multi-tenancy. Software-Defined Networking enables

such features in cloud data centers by allowing network ele-

ments to be dynamically controlled through the programmable

controller that can overlook the entire network.

Given that the infrastructures where SDN operates are large-

scale, methods that enable evaluation of SDN configurations

before the controller configurations are crucial, and it can

be achieved via simulation. To this purpose, we introduced

in this paper the design and implementation of a simulation

framework for Software-Defined Cloud infrastructures. The

SDN controller is programmable in the simulator, as well as

VM management policies and workload scheduling algorithms

can be tested in the same framework.

We described our framework design and its components in

detail. Validation experiments showed that our simulator is

comparable to Mininet in terms of accuracy, and provides the

extra features of supporting the arbitrary number of simulated

hosts and the simulation of the whole cloud software stack

up to the application layer. We also discussed two use cases

demonstrating the potential of joint host and network energy-

efficient resource allocation and three-tier application, to pri-

oritize data traffic depending on the user type.

As future work, we will combine a practical SDN emulator

that supports direct plug-in of OpenFlow SDN controller, e.g.

Mininet, with our framework to improve the ease of testing and

the accuracy of the network model. We will also add support

for modeling and simulation of middleboxes and Virtualized

Network Functions.
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J. Carretero, and I. M. Llorente, “iCanCloud: A flexible and scalable
cloud infrastructure simulator,” Journal of Grid Computing, vol. 10,
no. 1, pp. 185–209, Mar. 2012.

[10] D. Kliazovich, P. Bouvry, and S. U. Khan, “GreenCloud: a packet-level
simulator of energy-aware cloud computing data centers,” Journal of
Supercomputing, vol. 62, no. 3, pp. 1263–1283, Dec. 2012.

[11] “The network simulator ns-2,” http://www.isi.edu/nsnam/ns/, 1989.
[12] I. Sriram, “SPECI, a simulation tool exploring cloud-scale data cen-

tres,” in Proceedings of the First International Conference on Cloud
Computing Technology and Science (CloudCom), ser. Lecture Notes in
Computer Science. Springer, 2009, vol. 5931, pp. 381–392.

[13] D. Citron and A. Zlotnick, “Testing large-scale cloud management,” IBM
Journal of Research and Development, vol. 55, no. 6, Nov. 2011.

[14] “The network simulator ns-3,” http://www.nsnam.org/.
[15] J. Teixeira, G. Antichi, D. Adami, A. Del Chiaro, S. Giordano, and

A. Santos, “Datacenter in a box: Test your sdn cloud-datacenter con-
troller at home,” in Proceedings of the 2013 Second European Workshop
on Software Defined Networks (EWSDN), Oct 2013, pp. 99–104.

[16] NOXRepo.org. About pox. [Online]. Available:
http://www.noxrepo.org/pox/about-pox/

[17] A. Fischer, J. Botero, M. Till Beck, H. de Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” Communications Surveys Tuto-
rials, IEEE, vol. 15, no. 4, pp. 1888–1906, Fourth 2013.

[18] Mininet Team. Mininet python api reference manual. [Online].
Available: http://mininet.org/api/annotated.html

[19] K. Mills, J. Filliben, and C. Dabrowski, “Comparing vm-placement
algorithms for on-demand clouds,” in Proceedings of the 2011 IEEE
Third International Conference on Cloud Computing Technology and
Science (CloudCom), Nov 2011, pp. 91–98.

[20] S. Pelley, D. Meisner, T. F. Wenisch, and J. W. VanGilder, “Understand-
ing and abstracting total data center power,” in Workshop on Energy-
Efficient Design, 2009.

[21] X. Wang, Y. Yao, X. Wang, K. Lu, and Q. Cao, “Carpo: Correlation-
aware power optimization in data center networks,” in Proceedings of
the 2012 IEEE INFOCOM, March 2012, pp. 1125–1133.

[22] D. Ersoz, M. S. Yousif, and C. R. Das, “Characterizing network traffic
in a cluster-based, multi-tier data center,” in Proceedings of the 27th
International Conference on Distributed Computing Systems, 2007.
ICDCS’07. IEEE, 2007, pp. 59–59.

484


