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Abstract

Consolidation of applications in cloud computing envi-
ronments presents a significant opportunity for energy
optimization. As a first step toward enabling energy effi-
cient consolidation, we study the inter-relationships be-
tween energy consumption, resource utilization, and per-
formance of consolidated workloads. The study reveals
the energy performance trade-offs for consolidation and
shows that optimal operating points exist. We model the
consolidation problem as a modified bin packing prob-
lem and illustrate it with an example. Finally, we outline
the challenges in finding effective solutions to the con-
solidation problem.

1 Introduction
One of the major causes of energy inefficiency in data
centers is the idle power wasted when servers run at low
utilization. Even at a very low load, such as 10% CPU
utilization, the power consumed is over 50% of the peak
power [1]. Similarly, if the disk, network, or any such
resource is the performance bottleneck, the idle power
wastage in other resources goes up. In the cloud comput-
ing approach multiple data center applications are hosted
on a common set of servers. This allows for consoli-
dation of application workloads on a smaller number of
servers that may be kept better utilized, as different work-
loads may have different resource utilization footprints
and may further differ in their temporal variations. Con-
solidation thus allows amortizing the idle power costs
more efficiently.

However, effective consolidation is not as trivial as
packing the maximum workload in the smallest number
of servers, keeping each resource (CPU, disk, network,
etc) on every server at 100% utilization. In fact such an
approach may increase the energy used per unit service
provided, as we show later.

Performing consolidation to optimize energy usage
while providing required performance raises several con-
cerns. Firstly, consolidation methods must carefully de-
cide which workloads should be combinedon a com-
mon physical server. Workload resource usage, perfor-
mance, and energy usages are not additive. Understand-
ing the nature of their composition is thus critical to
decide which workloads can be packed together. Sec-
ondly, there exists anoptimal performance and energy
point. This happens because consolidation leads to per-
formance degradation that causes the execution time to

increase, eating into the energy savings from reduced idle
energy. Further, the optimal point changes with accept-
able degradation in performance and application mix.
Determining the optimal point and tracking it as work-
loads change, thus becomes important for energy effi-
cient consolidation.

This paper exposes some of the complexities in per-
forming consolidation for power optimization, and pro-
poses viable research directions to address the chal-
lenges involved. We experimentally study how perfor-
mance, energy usage, and resource utilization changes
as multiple workloads with varying resource usages are
combined on common servers. We use these exper-
imental insights to infer optimal operating points that
minimize energy usage with and without performance
constraints. We then discuss consolidation as a modi-
fied multi-dimensional bin-packing problem of allocat-
ing and migrating workloads to achieve energy opti-
mal operation. To concretely illustrate this research di-
rection, we present a computationally efficient heuris-
tic to perform consolidation in a simplified scenario.
There are many issues that affect consolidation, includ-
ing server and workload behavior, security restrictions
requiring co-location of certain application components,
and power line redundancy restrictions. The paper fo-
cuses only on a manageable but important subspace
spanned by CPU and disk resource combinations. The
many issues that need to be addressed to achieve a real-
world implementation of such consolidation methods are
also discussed to help point out fruitful research direc-
tions.

2 Understanding Consolidation
Understanding the impact of consolidating applications
on the key observable characteristics of execution, in-
cluding resource utilization, performance, and energy
consumption, is important to design an effective consol-
idation strategy.

To explore this impact, we used the experimental setup
shown in Figure 1. A cloud consisting ofm = 4 physi-
cal servers hostingk controlled applications services re-
quests from controlled clients. Each client generates re-
quests at a desired rate. Each request consists of jobs
with specified levels of resource usage on each server
resource (here, each server is considered as comprising
of two resources: processor and disk). Each server is
connected to a power meter (WattsUp Pro ES) to track



power consumption. The Wattsup meter samples power
at a maximum rate of 1 Hz, and hence any desired utiliza-
tion state must be sustained for more than 1 second. We
designed the request processing to maintain a uniform
utilization state for 60 seconds and averaged the readings
over this period to get accurate energy data. The resource
utilization is tracked using the operating system’s built
in instrumentation accessed through the Xperf utility to
track processor and disk usage.������ ������� ����	
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Figure 1:Experimental setup.

Consolidation influences utilization of resources in a
non-trivial manner. Clearly, energy usage does not lin-
early add when workloads are combined, due to a sig-
nificant percentage of idle energy. But utilization and
performance also change in a non-trivial manner. Perfor-
mance degradation occurs with consolidation because of
internal conflicts among consolidated applications, such
as cache contentions, conflicts at functional units of the
CPU, disk scheduling conflicts, and disk write buffer
conflicts.

To study the impact of consolidation with multiple
resources, we measured performance and energy while
varying both CPU and disk utilizations. First, an appli-
cation with 10% CPU utilization and 10% disk utiliza-
tion is started. Then, it is combined with workloads of
varying CPU and disk utilizations, ranging from 10% to
90% in each resource. The results are plotted in Figure
2(a). The performance degradation observed along the
CPU utilization axis is not as significant as that observed
along the disk utilization axis implying that increasing
disk utilization is a limiting factor for consolidated per-
formance on this server.

Energy consumptionper transactionof a consolidated
workload is influenced by both resource utilization and
performance. Typical variation of energy per transaction
with utilization (of a single resource) can be expected
to result in a “U”-shaped curve. When the resource uti-
lization is low, idle power is not amortized effectively
and hence the energy per transaction is high. At high
resource utilization on the other hand, energy consump-
tion is high due to performance degradation and longer
execution time.

Figure 2(b) plots the energy consumption per transac-
tion of the consolidated workload, for the same scenario.
We can make a few important observations from this re-
sult. Firstly, energy consumption per transaction is more
sensitive to variations in CPU utilization (as seen by the
deeper “U” along the CPU axis) than variations in disk
utilization as seen by the relatively flat shape of the curve
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(b) Energy consumption
Figure 2: Performance degradation and energy consumption with
varying combined CPU and disk utilizations.

along the axis of disk utilization. Secondly, there ex-
ists an optimal combination of CPU and disk utilizations
where the energy per transaction is minimum. This oc-
curs at 70% CPU utilization and 50% disk utilization for
this setup, though the numbers could depend on the spe-
cific machines and workloads used. This energy optimal
combination may vary if we further impose bounds on
the performance degradation tolerable to us, but we can
always find an optimal combination of resource utiliza-
tions that minimizes energy per transaction taking into
consideration both the resources. Note also that this op-
timal point may be significantly different than that deter-
mined by considering each resource in isolation.

3 Consolidation Problem
The goal of energy aware consolidation is to keep servers
well utilized such that the idle power costs are efficiently
amortized but without taking an energy penalty due to
internal contentions.
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The problem of loading servers to a desired utiliza-
tion level for each resource may be naı̈vely modeled as
a multi-dimensional bin packing problem where servers
are bins with each resource (CPU, disk, network, etc) be-
ing one dimension of the bin. The bin size along each di-
mension is given by the energy optimal utilization level.
Each hosted application with known resource utilizations
can be treated as an object with given size in each dimen-
sion. Minimizing the number of bins should minimize
the idle power wastage. However, that is not true in gen-
eral, causing the energy aware consolidation problem to
differ from traditional vector bin packing:
Performance degradation: Unlike objects packed in
bins, the objects here have a characteristic not modeled
along the bin dimensions: performance. When two ob-
jects are packed together, their performance (such as
throughput) degrades. Since performance degradation
increases energy per unit work, minimizing the number
of bins may not necessarily minimize energy. This as-
pect must be accounted for in the solution.
Power variation: In a traditional bin packing problem,
if the minimum number of bins isn, then filling upn−1
bins completely and placing a small object in then-th bin
may be an optimal solution. Here, even given the optimal
number of bins, the actual allocation of the objects may
affect the power consumed.

Designing an effective consolidation problem thus re-
quires a new solution. The actual implementation must
also address several other challenges discussed in sec-
tion 4. Before discussing those issues, we consider an
example heuristic for consolidation, to help illustrate the
problem concretely (though not necessarily providing a
final or optimal solution).

3.1 Consolidation Algorithm
This algorithm aims to find a minimal energy allocation
of workloads to servers. Minimum energy consumption
occurs at a certain utilization and performance. How-
ever, that performance may not be within the desired per-
formance constraints and hence we design the algorithm
to minimize energy subject to a performance constraint.
This constraint also helps account for the first difference
mentioned above from traditional bin-packing: if we set
the performance constraint to that needed for optimal en-
ergy consumption, the algorithm will not attempt to min-
imize the number of bins beyond the number that min-
imizes power. If the performance constraint is tighter
than that required for optimal energy, the number of bins
is automatically never reduced below the optimal.

Also, while energy and performance change in a non-
trivial manner when workloads are combined, it is worth
noting that the resource utilizations themselves are ap-
proximately additive, especially at utilizations that are
lower than the optimal levels for each resource. Using

utilizations as the bin dimensions thus allows our algo-
rithm to operate with a closed form calculation of bin
occupancy when combining objects.

The algorithm proceeds as follows: The first step de-
termines the optimal point, from profiling data such as
shown in Figure 2(b). Next, as each request arrives, it
is allocated to a server, resulting in the desired workload
distribution across servers. The crux lies in using a sim-
ple, efficient and scalable heuristic for bin packing. The
heuristic used here maximizes the sum of the Euclidean
distances of the current allocations to the optimal point at
each server. This heuristic is based on the intuition that
we can use both dimensions of a bin to the fullest (where
“full” is defined as the optimal utilization point) after the
current allocation is done, if we are left with maximum
empty space in each dimension after the allocation. The
n-dimensional Euclidean distance (δe) provides a scalar
metric that depends on the distances to the optimal point
along each dimension. If the request cannot be allocated,
a new server is turned on and all requests are re-allocated
using the same heuristic, in an arbitrary order. This ap-
proach is adaptive to changing workloads (temporal vari-
ations in requests) as we allocate newer requests to ap-
propriate servers. It also works seamlessly in presence
of heterogeneity: in that case the optimal combinations
would be different for each type of server.

To illustrate the heuristic, consider the simple exam-
ple shown in Table 1. The current status of two servers
is shown: server A is currently executing at [30, 30],
which represents 30% CPU utilization and 30% disk
utilization, and Server B is at [40, 10]. A new re-
quest with workload requirement [10,10] is to be allo-
cated. Suppose the optimal point for both A and B is
[80, 50]. If the application is allocated to A, the sum of
the Euclidean distances to the respective optimal points,
δA
e ([40, 40]− [80, 50])+ δB

e ([40, 10]− [80, 50]) = 97.8,
is greater than that achieved by allocating the request to
B. Thus the request is allocated to A, leaving A running
at [40, 40] and B at [40, 10].

CPU Disk Opt CPU Opt Disk δe

∑
δe

A orig 30 30 80 50 53.8 97.8
A after 40 40 80 50 41.2
B orig 40 10 80 50 56.6 96.2
B after 50 20 80 50 42.4

Table 1:Scenario to illustrate proposed heuristic.

Note that an optimal algorithm may find better allo-
cations. In the example above, as a result of the alloca-
tion chosen, it is feasible to allocate subsequent requests
such as [10, 40], [20, 40], [30, 40], [40, 30], and [40,
40], but not requests such as [50, 10], [50, 20], which
would have been feasible if the current request of [10,10]
was allocated to B. At each decision point the heuristic
chooses an allocation that would leave the system capa-
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ble of servicing the widest range of future requests. An
optimal scheme however, would choose the allocations
based on all requests simultaneously rather than allocat-
ing the current request without changing existing alloca-
tions. In general, while it is possible to develop better
heuristic algorithms, the algorithm presented here serves
as an illustration to show that energy savings are possible
over the base case. We reserve a more detailed study of
the pathological cases for this algorithm (like extremely
random disk accesses) for future work.

The optimal scheme may have a very high computa-
tional overhead, making it infeasible to be operated at the
request arrival rate. However, for the purpose of compar-
ison, we implemented the optimal scheme based on an
exhaustive search of all possible allocations for a very
small cloud consisting of four servers.

# Apps Total CPU utilization Total disk utilization
Mix1 6 84.87 85.86
Mix2 6 93.72 53.87
Mix3 6 78.79 150.58
Mix4 6 91.37 108.92

Table 2:Various mixes of applications considered for our multipro-
grammed workload.

3.2 Experimental Evaluations
Table 2 shows the characteristics of various mixes of ap-
plications used in the comparison of the example heuris-
tic with the optimal. The application mixes represent a
range of consolidated workloads. Mix1 and Mix4 have
equal CPU and disk utilizations but vary in the abso-
lute total resource used. Mix2 and Mix3 are skewed to-
ward high CPU utilization and high disk utilization re-
spectively. The energy consumption per transaction of
consolidated workloads is experimentally measured us-
ing the setup of Figure 1.
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(b) tolerance =∞.

Figure 3: Comparison of our heuristic scheme with the optimal
scheme.

Energy per transaction with a maximum performance
degradation tolerance of 20% and infinite tolerance are
plotted in Figures 3(a) and 3(b) respectively. Clearly,
greater energy savings are achieved by both schemes at
higher tolerance in performance degradation. The en-
ergy used by the proposed heuristic is about 5.4% more
than optimal (not considering the energy spent on com-
puting the optimal) on an average at 20% tolerance. It ap-

proaches the optimal at infinite tolerance in performance
degradation for the test scenario.

4 Discussion
The consolidation problem discussed above helps ap-
preciate some of the key aspects of the performance-
utilization-energy relationship. Our ongoing effort in de-
signing a solution has helped uncover several complica-
tions, not addressed in the illustrative algorithm above,
that lead to a rich set of research issues.

Multi-tiered Applications:Unlike the application de-
scribed in the previous section, a realistic application
may use multiple servers such as a front-end request clas-
sification server, a back-end database server to access re-
quested data, an authentication server to verify relevant
credentials and so on. Such an application is commonly
referred to as a multi-tiered application. Each tier has a
different resource footprint and the footprints change in
a correlated manner as the workload changes. The con-
solidation problem involves allocating the multiple tiers
of all applications across a subset of available physical
servers such that each application may operate at its de-
sired performance level with minimum total energy us-
age. The allocation may have to be adapted dynamically
as workloads evolve over time, either via intelligent allo-
cation of new requests, or via explicit migration of exist-
ing state from one physical server to another.

Composability Profiles:We showed how the perfor-
mance, resource utilization, and energy vary as multiple
applications are consolidated on a common server with
varying workload serviced. The utilization and perfor-
mance was tracked using Xperf and power using an ex-
ternal power meter. In a real cloud computing scenario,
the overhead of running performance tracking and de-
ploying external power meters may be unacceptable and
better alternatives may be needed [4]. Also, measuring
the energy-performance relationship itself is non-trivial
as the number of applications and the number of possi-
ble combinations of their multiple tiers, across multiple
server types, may be very large. The use of extra running
time for profiling of an application’s performance and
energy behavior with varying mixes may not be feasible
due to cost reasons. Run time variations may even render
profiles less relevant. Thus, consolidation research also
involves developing efficient methods to understand the
composability behavior of applications at run time.

Migration and Resume Costs:While the example
in the previous section assumed an application serving
small stateless requests, that is not the only type of ap-
plications. Other applications may maintain a signifi-
cant persistent state, such as a long lived chat session
[1] or a video streaming session. Such applications in-
volve a non-trivial overhead in migration from one ma-
chine to another. Migration may involve initiating the re-
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quired configuration and virtual machine needed for the
migrating application, incurring additional costs. Also,
the dynamic nature of allocation implies that the sleep
and wake-up costs of the servers need to be considered.
When multiple servers are running at low utilization due
to workload dwindling off, their applications may be
consolidated to fewer servers allowing some physical
servers to be set to sleep mode. However, the migration
costs and sleep/wake-up costs may sometimes overshoot
the benefit from shutdown of servers. Efficient meth-
ods to dynamically adapt to the workload variations with
realistic migration and server resume costs for different
categories of applications is an interesting problem.

Server Heterogeneity and Application Affinities:We
initially assumed that any application may be hosted on
any machine. However, in practice, certain applications
may have affinities for certain physical resources. For in-
stance, it may be more efficient to run a database server
directly on the physical server that hosts the disk drives,
since the database software may be optimized for the spe-
cial read-write characteristics of disks and may directly
access the raw storage sectors on the disks. Running
the database over network connected storage with addi-
tional intermittent layers of storage drivers and network
file system abstractions may make it inefficient. Aside
from configuration, servers in a cloud facility may vary
in energy-performancecharacteristics due to age of hard-
ware. These variations are crucial to be exploited in con-
solidation as the energy usage of an application would
depend on which server is used and in what application
mix. The consolidator may not always run an applica-
tion on the server most efficient for it since a global opti-
mization is performed. Migration and resume costs may
restrict the application from migrating to a more efficient
server. Ensuring globally optimal operation in a dynamic
and heterogeneous setting is an important problem.

Application Feedback:Our performance-energy study
controlled the workload to measure energy and perfor-
mance, assuming constant quality of service is provided
at each performance level. However, certain applications
may change their behavior in response to resource avail-
ability. For instance, a streaming application may be de-
signed to lower the video streaming rate based on sys-
tem load, the network stack may have built in conges-
tion control, and so on. Consolidation may reduce re-
source availability by increasing utilization, incurringan
acceptable level of performance degradation to save en-
ergy. However, if the application changes its behavior
in response to resource availability, such feedback may
result in complex behavior that makes it hard to guar-
antee the performance constraints. Designing consoli-
dation methods for such applications or designing appli-
cations to be consolidation-friendly is an interesting re-
search challenge.

Additionally, the example methods discussed here
only considered the CPU and disk resources. Other re-
sources such as network and memory should also be
considered, as these may be the bottleneck resources
for certain applications. Operational constraints such as
co-location of certain data and components for security,
power line redundancies, and cooling load distribution
may affect the design as well. Consolidation methods
may need to account for several variations such as the
multiple types of requests served by an applications -
their expected processing times and the exact set of tiers
used to service them. Some of the applications may use
external services, not hosted by the cloud operator, fur-
ther making the relationship more complex.

5 Related work
Consolidation of resources and controlling resource uti-
lizations has been researched in recent times. A frame-
work for adaptive control of virtualized resources in
utility computing environments is presented in [5]. In
the past, cluster resource management has posed simi-
lar problems to that of consolidation of virtualized re-
sources. For instance, [7] proposes a two level resource
distribution and scheduling scheme, and [8] proposes a
cluster level feedback control scheme for performance
optimization. Power aware load balancing and migration
of activity within a processor, among multicore proces-
sors and servers has also been studied in [3, 2, 6]. How-
ever, there has been little work on joint power and perfor-
mance aware schemes for multi-dimensional resource al-
location. Specifically, characterizing power-performance
characteristics of consolidated workloads with respect to
multiple resources has not been adequately addressed.
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