
Network Aware Load-Balancing via Parallel VM
Migration for Data Centers

Kun-Ting Chen2, Chien Chen12, Po-Hsiang Wang2

1Information Technology Service Center, 2Department of Computer Science
National Chiao Tung University, Hsin-Chu, Taiwan

quentin2007.cs96g@g2.nctu.edu.tw, chienchen@cs.nctu.edu.tw, btc889874.cs98g@g2.nctu.edu.tw

Abstract—It becomes a challenge to design an efficient load
balancing method via live virtual machine (VM) migration without
degrading application performance. Two major performance
impacts on hosted applications that run on a VM are the system
load balancing degree and the total time till a balanced state is
reached. Existing load balancing methods usually ignore the VM
migration time overhead. In contrast to sequential migration-
based load balancing, this paper proposes using a network-
topology aware parallel migration to speed up the load balancing
process in a data center. We transform the VM migration-based
multi-resource load-balancing problem into a minimum weighted
matching problem over a weighted bipartite graph. By obtaining
the minimum weighted matching pairs through the Hungarian
method, we parallel migrate multiple VMs from overloaded hosts
to underutilized hosts to reduce the time it takes to reach a load
balanced state. The experimental results show that our algorithm
not only obtains a compatible multi-resource load balancing
performance but also improves the balanced time which results in
at most a 10% throughput gain by assuming a large batch
application running on all VMs.

I. INTRODUCTION
Cloud data centers employ virtualization-based technology

to consolidate hardware resource usage to provide application
hosting for multiple service providers. In a cloud data center,
thousands of commodity computers work in parallel with host
virtual machines (VMs) that support different applications. The
CPU speed, memory size, and network bandwidth of different
commodity computers are widely heterogeneous. Besides, a
physical host may run multiple services with different types of
resource demands. Without proper allocation, the loads of
different resources may become unbalanced among different
physical hosts. Even with careful resource provisioning at the
beginning, due to dynamic arriving and leaving of running
workload, the cloud system could still become a load unbalanced
state later. Thus, a cloud system may have quite a few
overloaded hosts while lots of underutilized hosts are still
available.

Load-balancing mechanisms improve system performance
by reducing resource contention (e.g., CPU, network bandwidth,
and memory) on overloaded hosts. More importantly, it can
prevent a higher hardware failure rate in overloaded hosts.

Load-balancing mechanisms are effectively studied in many
research areas, including distributed systems, web servers, and
cloud systems, to maximize resource utilization and minimize
the variance of the load of multiple servers [1] [2]
 [3] [4] [5] [6] [7] [8] [9] [10] [11]. While most recent research
focuses on the VM migration as a mean to achieve load
balancing in cloud systems [4] [5] [6] [7] [8] [9] [10] [11]

[20][21], a few of them focus on the impact of the total time
required to reach system balance. Normally, the existing load
balancing algorithms search for a VM to instantiate a VM
migration from overloaded hosts to under-loaded hosts. They
usually select and start the next VM migration when the previous
migration completely terminates. These schemes aim to achieve
an egalitarian state without considering the waiting time for
other hosts to offload their workload. This paper calls such
schemes “sequential migration-based load balancing methods.”
These methods could lead to all overloaded hosts taking a long
time to offload their workload. Consequently, the applications
running on those overloaded hosts will contend for resources for
a longer time. Therefore, users could experience application
performance degradation.

In this work, we study the multi-resource load balancing
problem for a cloud data center with heterogeneous hardware
capacity. Compared with sequential migration-based load
balancing methods, this paper proposes a parallel VM migration
approach that focuses on minimizing the joint multi-resource
imbalance and the time it takes to reach a balanced state. In
addition, the migration delay based on the network topology of
a data center is considered, especially if the migration pairs are
between machines with a large hop distance. In order to improve
the application performances, this paper minimizes the time till
a balanced state is reached by migrating VMs parallel between
independent pairs of hosts while considering the underlying
network topology. To be specific, this paper models the load
balancing problem with a weighted bipartite graph (WBG). The
over- and underutilized hosts in a data center are selected as two
disjoint sets of vertices: Trigger (TR) node and Non-Trigger
(NTR) node sets. A physical host is said to be a trigger node if
its resource utilization exceeds a system threshold on any
dimensions of resources; otherwise, it is a non-trigger node.
Each edge between the two sets is designated with a weight
according to the multi-resource requirements of VMs, the
various resource capacities of the hosts, and the network cost
between two hosts. By solving the minimum weighted matching
problem using the Hungarian method [12], this paper could
migrate a set of VMs between over- and underutilized hosts in
parallel.

The experimental results show that our algorithm achieves
a compatible multi-resource load balancing while improving
the balancing time, which results in at most a 10% running
application’s throughput gain compared to conventional
algorithms which perform load balancing in a sequential
manner.

The rest of this paper is organized as follows. Section II
describes related works. Section III elaborates the motivation

978-1-4799-3572-7/14/$31.00 ©2014 IEEE204

behind this work. Section IV describes the network-aware
bipartite matching load balancing algorithm in detail.
Experimental results of the simulation will be presented in
section VI. Finally this paper concludes with some remarks in
section VII.

II. RELATED WORKS
A number of researches have proposed load balancing

methods [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] for cloud data
center. Most of these works focus on balancing the resource
requirement of VMs on physical machines. Based on their
algorithms, they migrate either single or multiple VMs in each
round of the load balancing procedure. These load-balancing
schemes for cloud computing measure the load on physical hosts
in different ways. However, none of their efforts address the
multi-resource load balancing issue [1] [2] [3]. Zhao and Huang
[2] use the number of VMs of a host as their load measurement.
Recent study [3] mimics the animal behavior of honeybees
foraging and scouting to harvest foods for load-balancing.
Though the scheme works for a dynamic workload, they assume
each host is homogeneous and deal with single resources only.
And yet [4] considers the multi-resource demands of VMs and
heterogeneous capacity in each host. They propose a load
balancing method called VectorDot (VD). Their goal is to bring
overloaded hosts below their threshold by migrating one or more
VMs sequentially. They extend the Toyoda heuristic for a single
knapsack problem to solve a multidimensional knapsack
problem. VD treats a VM in an overloaded host as an item to be
placed into an appropriate node. Then, this VM is migrated to
the selected destination node. This procedure is repeated until
there are no more overloaded hosts. From a practical perspective
VM migration takes a while to finish. Thus migrating VMs in a
one-by-one manner could take a long time until the system is
balanced, and thereby exacerbate the running applications that
are hosted on overloaded machines.

Recent works that consider VM migration overhead for load
balancing can be found in [7] [8] [9] [10] [11]. Since a cloud
system involves cloud operators and network operators with
different goals in mind, [7] studies the problem of making both
objects meet. On one hand, the cloud operators wish to assign a
number of VMs to some selected hosts for the purpose of
meeting the VM scheduling deadline. Thus, the cloud operators
wish to pair each VM with a destination host that minimizes the
migration time. On the other hand, the network operators wish
to minimize the network bandwidth. To make both ends meet,
[7] models a balanced stable matching problem for both
requirements of cloud operators and network operators. VM
migration overhead is derived from the network topology and

the transfer memory volume. However, their matching does not
consider the bandwidth of NIC sharing at the destination host.
Thus they could migrate several VMs from multiple distinct
hosts to an identical host which could degrade into sequential
migration. In contrast, we consider finding independent pairs
between the end hosts for load balancing via parallel migration.

Recent works [8] [9] conduct a number of experiments on
the cloud testbed to study the factors that influence VM
migration time and impact of live migration on application
performances. In [8], they show that VM migration could
contend for resources with the running workload on the source
and destination host, especially as the number of concurrently
migrating VMs between one source and one destination host
increases. Hence they study the problem of selecting a number
of VMs to migrate that minimize the resource contention
overhead. [8] models a VM migration as processes that run at
source and destination hosts. They show that by carefully
assigning VMs they could reduce the VM migration overhead.
Though, it is difficult to formulate the impact of migration time
given different combination of jobs and VM migrations running
on machines with various resource configurations. As
the cloud system gets larger, the resource contention model
would become more difficult to build. [9] shows that the
destination host CPU reserved for the migration process has little
to do with migration time. The source host CPU impacts the
migration time when the host is overloaded, especially when its
memory dirty rate is high. However, they only suggest a
direction to balance multi-resource load without relating it to the
performance overhead incurred by concurrent VM migrations.
In contrast to [8] [9], this paper performs an experimental study
of live migrations and application throughputs with multiple,
concurrent VM migrations (in next section). These experiment
results provide a motivation to a new parallel migration-based
load balancing algorithm.

Recent studies [10] [11] formulate the load balancing
problem with migration overhead being the distance measured
by the number of hops on the Internet. Nevertheless these
schemes often do not consider the heterogeneous capacity of
multi-resource in each host. In addition, the concurrent
migration approach they adopt still has a chance to migrate
multiple VMs to an identical destination host or from a single
source to multiple distinct destinations.

III. MOTIVATION
Even through the modern cloud administrators migrate

multiple VMs concurrently, if the hosts of migration pairs do not
choose carefully, concurrent migration still has a chance to
degrade into sequential migration. The worst case circumstance

Fig. 1. Migration time vs. VM memory size Fig. 2. Total elapsed migration time vs. number of

VMs
Fig. 3. Number of completed operations vs. number of

VMs

205

in load balancing is to migrate many VMs from different hosts
to one under-utilized host (many-to-1) concurrently. In this
section, we measure the real application performance and
compare parallel migration with a range of many-to-1 and 1-to-
many concurrent migration. The experiment is conducted on a
real testbed based on Xen [13]. In this system, we reserve the
network bandwidth as 100 Mbps at each host NIC for VM
migration. Each VM runs the crypto.rsa application in SPECjvm
[14]. VMs serving the same application type are allocated with
identical resources. During live migrations, applications running
on VMs persist in execution with a small interruption time
compared to non-live migration [13]. We first measure the time
taken for each individual VM during concurrent migration by
observing different combinations of VM pairs. Then we observe
the application performance for an increasing number of
concurrently migrating VMs. A conclusion that leads to the
work in this paper follows thereafter. Each evaluation is an
averaged result for 10 times.
Fig. 1 shows the individual VM migration time for migrating
two VMs with increasing total migrating memory volume.
Consistently with [8], as each VM memory size increases from
256 to 1280 MB (where the total migrated size increases from
512MB to 2048MB, respectively,) VM migration time increases
linearly proportional to the volume of transferred memory. As
two distinct hosts migrate to a single host (i.e., 2-to-1), it suffers
from a linearly increasing time for both VM migrations since the
network capacity at the destination host’s NIC is shared by the
two migrations. When migrating from a single host to two
distinct hosts (i.e., 1-to-2), one VM does not start migrating until
another finishes migrating. This is the mechanism implemented
by the Xen platform1 which would start VM migration after the
previous one finishes, that behaves the same as sequential
migration in the case of migrating two VMs from one host to the
other host. As opposed to the above cases, the parallel VM
migration scheme (i.e., 2-to-2) achieves the smallest migration
time without suffering from additional network delays.

Given that migrating two VMs could degrade into
sequential migration in the 2-to-1 and 1-to-2 cases, we would
like to know the performance impact of migrating multiple VMs
concurrently in a larger scale, especially in an overloaded system
environment. We assume that an overloaded environment
consists of overloaded hosts and idle hosts. In the following
experiments we assume that all the VMs run on those overloaded
hosts. In such an overloaded environment, the workload on one
VM contends resources with all other VMs resident on the same
host. Thus the time until a VM is migrated to an idle host could
affect the application performance running

1Xen provides migrating modules for synchronous and asynchronous modes.
The only difference is whether the migrating thread immediately returns to user
thread or returns until migration completes. Both implementations migrate VMs
in sequential manner even they are issued concurrently.
on that VM.

We study the impact of total migration time of different
number of migrating VMs on the performance of workload on
the migrating VMs, where the total migration time denotes the
longest completion time for migrating a number of VMs. In the
many-to-1 case, we concurrently migrate 2, 3, and 4 VMs each
from 2, 3, and 4 overloaded hosts to one idle host. On the
contrary, the 1-to-many case exhibits that 2, 3, and 4 VMs in one
overloaded host are migrated to 2, 3, and 4 idle hosts respectively.

The 1-to-1 case let 2, 3, and 4 VMs migrate from an overloaded
host to an idle host. Parallel migration independently migrates 2,
3, and 4 VMs each from 2, 3, and 4 overloaded hosts to 2, 3, and
4 idle hosts. Each VM migration is instantiated by our controller
1 minute after the workload starts running. During VM
migration, we measure the application performance obtained on
migrating VMs. In order to measure the impact on the running
application, the iteration duration parameter of the crypto.rsa
application is set to last after all VMs finish migrating. This
parameter ensures that the VM continues to demand resources
during VM migration. The baseline performance is
approximately 108 operations under baseline single core CPU at
2.67GHz.

Fig. 2 shows the total migration time under 2, 3, and 4 VM
migrations. As the number of VM migrations increases, the
completion time of migration in the many-to-1, 1-to-many, and
1-to-1 cases increases. However, the total migration time of
parallel migration remains almost the same. It’s the smallest
among the other cases. Consistently with [8], as the total transfer
memory size of concurrent VM migrations increases, the total
migration time also increases. Given that the total transfer
volume of memory between two hosts is fixed, they observe that
the total migration time increases as the number of concurrent
VM migrations increases. This is due to the resource contention
between those migration processes and running workload on the
source and destination host. In order to improve application
performance, they study the VM assignment problem by
selecting different pairs of VM migrations to lower the impact
of resource contention.

Fig. 3 shows the total number of completed operations of
crypto.rsa observed on migrating VMs. The case of a single host
to multiple distinct hosts (1-to-many) completes 4%, 9%, and 10%
fewer operations than parallel migration, as the number of
concurrently migrating VMs increase from 2, to 3, to 4.
Although the many-to-1 case experiences a smaller total
migration time than that of the 1-to-many as shown in Fig. 2, the
number of completed operations of many-to-1 decreases more
severely than that of 1-to-many with 15%, 34%, and 61% fewer
operations done than parallel migration. Further, the many-to-1
case is also close to the worst case without migration (i.e. no load
balancing). The 1-to-many case completes more operations than
the case of many-to-1 where it suffers from a longer migration
delay for each individual VM as shown in the 2-to-1 case in Fig.
1. Among them, parallel migration shows the highest workload
completion rate. These observations suggest that maneuvering
parallel VM migrations is a feasible way to improve application
performances.

IV. NETWORK-AWARE BIPARTITE MATCHING LOAD-
BALANCING ALGORITHM

Load balancing for multi-resource requirements while
considering heterogeneous resource capacity has been a
challenging problem, especially in a large scale cloud hosting
environment. In this paper, we study the load balancing problem
for a cloud data center. Especially, we try to reduce the time
taken for a cloud data center to reach its load balance state. Since
a live migration of VM takes some time to accomplish,
sequentially migrating VMs from trigger nodes to non-trigger
nodes may take a long time to offload workload for overload
hosts. Further, the migration delay between two hosts varies

206

according to the underlying network architecture and the transfer
volume of VM memory. Thus, we propose a Network-Aware
Bipartite matching (NABM) load balancing algorithm. This
paper first transforms the load-balancing problem into a
minimum weighted matching problem. According to the
minimum weighted matching obtained from the Hungarian
method, this paper migrates VMs from overloaded hosts to
underutilized hosts in parallel. Furthermore, this paper adds the
hop distance between source and destination hosts to reflect the
impact of the network to the VM migration time. By reducing
the VM migration time, it can shorten the time for a cloud system
to reach its load balanced state.

A. Preliminary
The notations for use in NABN will be defined as follows.

Let ^ `1 2, , , mhH h h } and ^ `1 2, ,, vV vm vm vm} denote a set
of m hosts and v VMs in a cloud system, respectively, with an
existing allocation :A V Ho where ()iA vm denotes the host
where vmi resides. The n different dimensions of resources
consumed by a VM vmβ is represented by ^ `^ `1,2, ,i i nS sE E � } ∣ .
The input to our load balancing algorithm includes a capacity
value, a current utilization value and a suggested threshold
fraction between 0 and 1. Let ^ `| {1,2,..., }i

aaC c i n � and

> @ ^ `^ `0,1 , 1,2, ,a
i i
a aU u u i n � � }∣

denote the vectors of capacity

and resource utilization along n dimensions of resources for a
Host ha, respectively. ^ `| [0,1], {1,2,..., }i iT t t i n � � denotes
the vector of the system threshold along each dimension of
resources. Our load balancer will maintain the usage of the
resources below those thresholds. Moreover, the available
capacity for a host ha in any dimension of resources i can be
represented as in (1).

� � � ^ `^ `1,2,1 , ,i i i i
a a a a aF f f u c i n � � � }∣ �� ����

B. Bipartite Matching Load-Balancing
Similar to [4] , NABM collects multi-dimensional resource

utilization information of hosts and resource requirements of
VMs as input. In the real testbed deployed with Xen, we send
XML-RPC requests to collect load information from any host
in the same server farm through a control domain. Xen
implements multiple control domains in charge of sending and
receiving end hosts’ control messages. To construct a weighted
bipartite graph (WBG), NABM leverages three decision policies:
participation, candidate selection, and location, as defined in
[15]. The participation policy decides which hosts are involved
in the load balancing process. In this paper, we specify two node
sets for over- and under-loaded hosts. They can be defined as a
triggered set: ^ `^ `, 1(,2 ,) ,,i

a a a iTR h h i u t iH n � !� � }∣ and

a non-triggered set: ^ `,a a aNTR h h H h TR � �∣ , respectively.
The triggered set is a set of hosts for which resource utilization
exceeds the system threshold in any dimension of resources.
The hosts that are not marked as the triggered nodes belong to

the non-triggered set. These two sets together form two vertex
sets for the weighted bipartite graph used in NABM.

Both the candidate selection policy and the location policy
play the intermediate roles of generating edges and edges’
weight for the WBG. The candidate selection policy chooses the
VMs to transfer to alleviate an overloaded hot spot. A VM is a
candidate if the removal of this VM turns a triggered host into
a non-triggered host. However, if the removal of any VM in a
trigger node couldn’t turn the trigger host into a non-trigger host,
then all tenant VMs in this triggered host are chosen for the
candidate set. For a triggered host ha and any dimension of
resource i, we identify the candidate set as (2).

^ `
^ `

^ `
^ `

) ,
(max{ ,0}),
, (max{ ,0

(
1,2, , .

1,2, , ,}),
) ,

, (max{ ,0}),
(

1,2, ,

a a
i i
a i

i i
a ia

a a
i i
a i

h h TR
i u

vm A vm
n

n
vm A

s t i
if i u s t iCE

h h TR
if i u s

vm
t ni

E E

E

E

E E

E

E

E

­­ ½ �
°® ¾� � d¯ ¿°° � � � d ®
° �
°

� � �

� }
� }

° � }!¯

∣

∣ ������
����

The location policy selects the destination host to which the
candidate VM previously selected is migrated. A Host ha in
NTR is said to be feasible if after migration its capacity
constraint Ca is not violated. For any avm CEE � the location
policy determines the set of potential destination hosts from the
feasible hosts in NTR set. Since we attempt not to increase the
number of triggered nodes after the migration of VMs, a
feasible node can be a potential destination node only if the VM
migration wouldn’t turn it into a triggered node. The set of
potential destination hosts for any candidate VM avm CEE � is
shown in (3).

^ `
(max{ ,0}) ,(

1,2, , ,)(,
.

i

i
a

si
a a ic

a

a

vm
n A vm

NTR

h i u t
EP i h

h

E
E

E E� }

­ ½� � d
° °

 z®
�

¾
° °
¯ ¿

,)∣

���������������
����

This policy then associates a cost with each (vmβ, ha). The
cost is denoted as the sum of the resource requirements of vmβ

divided by the residual capacity on n dimensions of the potential
destination host ha. It indicates that a host with scarce remaining
resources exhibits a higher cost. The formal load balancing cost
function for a VM migration for a pair of hosts (hsrc, hdst, vmβ)
can be defined in equation (4).

1
(, ,)

n

LB src dst
i

i

i
dst

s
h vCost h m

f
E

E

 ¦ ���

where vmβ resides on hsrc which belongs to TR, hdst belongs to
NTR, si

β denotes resource demands of vmβ over each resource
dimension i, f i

dst denotes the available resource of hsrc, and n
denotes the total number of machine resources. For the
candidate VM avm CEE � , the location policy selects a
destination host out of the potential destination host set
according to cost. We can apply one of the strategies in the

207

best-fit, first-fit, worst-fit, and relaxed-best-fit [4] to determine
the destination host. With the best-fit, we select a destination
host with the smallest cost. Thus, the potential destination host
with higher cost is less likely to be selected as a destination for
the candidate VM. However, it requires a linear search from a
set of potential destination hosts. Thus, the relaxed-best-fit
exhibits a better search time by investigating the smallest cost
from a much smaller set of the potential destination hosts which
are randomly chosen from the original potential destination
hosts. With the relaxed-best-fit, it also reduces the chance of
picking the same best potential hosts among different VMs and
thereby increases the number of valid edges in a weighted
bipartite graph. NABM applies only relaxed-best-fit (RBF) as in
[4].

Fig. 4. An illustration of our WBG

For a candidate VM in CEa, relaxed-best-fit selects a

destination host to form an edge in EPa. Since multiple
candidate VMs residing at the same host could select the same
destination host, it causes multiple edges between triggered and
non-triggered nodes. We discard all such edges except for the
edge with the smallest weight. Fig. 4 shows an illustration of
WBG with two triggered nodes and three non-triggered nodes.
Since candidate VM 1 and VM 2 in the Trigger node 1 select
the Non-Trigger node 1 as their potential destination host, two
potential edges associated with the weights are formed between
the Trigger node 1 and Non-Trigger node 1. However, since the
solid edge has a smaller weight than the dotted edge, the dotted
edge is discarded from our final weighted bipartite graph. For
any node pair, the edge set is computed as (5).

(,)
((,

((, ,) (, ,))),

,

,

,src dst src dst

j

LB src dst j LB src dst

j src

h h h h
vm jE Cost h h Cos

TR NTR
vm

vm vm
vm

t h h
Cv Em

E

E

E

E
�­ ½

° °� z
 ® ¾t
° °
¯

�
�

� ¿

∣

�� ����

Finally, we construct a weighted bipartite graph: G=(V,E,W)
where V TTR N R � and E is the edge set obtained from (5),
W is the cost function defined in (4).

After constructing the WBG, NABM applies the Hungarian
algorithm [12] to solve the minimum weighted matching
problem. Since the Hungarian algorithm solves the instance of
WBG with perfect matching, NABM must ensure that the WBG
created above has an equal number of nodes for TR and NTR.
Thus NABM algorithm adds pseudo nodes to either TR or NTR,
whichever one has the smaller number of nodes, until they have
the same number of nodes. Pseudo edges associated with a

significantly large value also are added from a pseudo node to
all nodes in the other set. Based on the outcome of each match
from the Hungarian algorithm except for the pairs connected
with pseudo edges, NABM migrate VMs from triggered nodes
to their corresponding non-triggered nodes in parallel for
balancing load. Compared with the sequential migrations
described earlier, NABM not only migrates VMs concurrently
but also prevents from exhibiting the migration overhead due to
contention at the end hosts’ NIC.

NABM iterates the steps of constructing a weighted bipartite
graph, finding its minimum weighted bipartite match, and
parallel migrating the corresponding VMs until either there’s no
triggered node left or the match consists of nothing but the
pseudo edges. We omit the pseudo-code of NABM due to space
limit.

C. Network-aware Extension
In addition to the weighted bipartite match that increases the

total number of VM migration pairs in each round, the length of
the duration between each parallel migration round also plays an
important role in reducing total time till balance load. The time
between each round depends on the longest migration time
among all migrations. Since the network hop distance between
two hosts will affect the migration time [7], we further consider
network hop distance in the location policy. Like [6], we assume
that the traffic patterns rarely change in the production data
center. Even though the traffic distribution could be highly
uneven, a balanced traffic distribution could still be obtained in
the data center network. For example, the cloud operators could
reassign traffic flows among communicating VMs via equal-
cost-multiple-path (ECMP) [16] or a centralized network
controller such as NOX [17].

Under even traffic distribution assumption, VM migration
between end hosts with a long network path exhibits a higher
probability of long network delay. According to (6), it indicates
that the migration time is proportional to the size of VM transfer
memory and communication distance while being
disproportional to the bottleneck of end hosts’ NIC bandwidth.
NABM extends the previous cost function in (4) to account for
migration cost which is related to the network hop distance and
the size of VM transfer memory as defined in (6).

� (, ,) (,).
min(,)

mem

mig src dst src dstbw bw
src dst

s
Cost h h vm D h h

f f
E

E � � ����

where vmβ resides on hsrc which belongs to TR, hdst belongs to
NTR, smem

β is memory volume of vmβ, fbw
src and fbw

dst denote the
available bandwidth for VM migration in source and destination
NIC, respectively, and D(i, j) is network hop distance between
Host i and j. An example of D(i, j) is to

account for the hop count between end hosts in some data center
network architectures such as fat-tree [18] and VL2 [16]. This
paper implements fat-tree and VL2 as the underlying network
architectures. The extension of NABM takes a normalized cost
of (4) and (6) as in (7).

208

� � � (1) ()

((

, , , ,

, ,))
src dst src dst

sr

LB

mig c dst

h h Cost h h vm

Cost h h vm

Cost vmE E

E

D

UD �

�

�

 � � ����������

where U is an adjustable parameter for normalizing the
migration cost with load balancing cost; andα is the parameter
for adjusting the relative importance between the two costs. For
example, it considers there to be no network cost if α is zero.
During the construction of the WBG, the edge weight is
substituted with (, ,)src dstCost h h vmE

in (7) in the location policy.
This paper conducts a number of event-driven simulation
analyses to study how parameter α affects the time till system is
balanced, the mean VM migration time between each round, and
the application performances in section VI.

V. EXPERIMENTAL EVALUATION
This section studies the effectiveness and scalability of the

NABM algorithms by comparing them with VectorDot (VD) [4]
using the NetworkCloudSim [19] simulation platform.

A. Experimental Settings
To vary the system scale we simulate with 50~1050 hosts

and 157~3244 VMs. The baseline host is equipped with a
2.8GHz (approximately 12,000 MIPS) quad-core CPU, 4 GB
memory, and 1024 Mbps NIC. The multi-resource and
heterogeneous capacity of each host is generated as baseline
capacity*(1±heterogeneous degree.) The heterogeneous degree
is 0.2. Each VM consumes 12%~25% multi-resource demands

of the baseline host capacity. Each VM runs a large-scale Bag-
of-Task (BoT) application which is independent without the
need to communicate with other VMs. The workload consists of
287,712,000 million instructions which take approximately 9
hours to finish for a VM with 8880 MIPS CPU. Typical

examples of such workload are biological computation, data
mining, and scientific engineering applications. The 37% of
hosts are over provisioned, which are considered to be
overloaded hosts. The average system utilization along each
resource dimension is approximately 57%. In order to
accommodate the variance of multi-resource load balancing, the
triggered node threshold is set to 75% along each dimension of
resources.

For the network parameters, we assume that the workload in
VM consumes on average 57% of host NIC bandwidth. This
bandwidth is reserved and not used by VM migrations. The
network topologies fat-tree and VL2 used in our simulation are
built according to [6]. The network parameter α is set from 0 to
1 with 0.2 increment. While D = 0, NABM would not consider
any impact of the network topology. We take a modest value of
network weight D equal to 0.6 for the simulation results in Fig.
5, 6, and 7. The available bandwidth of core and aggregate
switch reserved for VM migration is set to 1184 Mbps in the
following experiments. The parameter U is determined as
follows. We observe that load balancing cost CostLB in general
is in the range (0, 1.8]. In order to combine the costs of load
balancing and migration, we normalize the migration cost to be
in the range (0, 1.8]. Thus we take U as 1.8 divided by the
maximum value of migration cost which is in the range [1000,
2800] in our experiments. For the rest of simulation, we fix U =
1.8/1500.

All the performance results are an average of 10 repeated
runs and obtained at the moment of system convergence. We use
the following metrics to evaluate NABM and VD: the system
utilization and standard deviation of multi-resources of

the hosts, the time it takes for the load balancing process to reach
a balanced state, the number of VM migrations taken during the
load balancing process, and the total application completion time.

Fig. 5(a). STD of CPU utilization Fig. 5(b). STD of memory utilization Fig. 5(c). STD of network utilization

Fig. 6(a). Average CPU utilization Fig. 6(b) Average memory utilization Fig. 6(c). Average network utilization

209

B. Experimental Results
Fig. 5(a), (b), and (c) and Fig. 6(a), (b), and (c) show the

average standard deviation of resource usage of CPU, memory,
network bandwidth, and their average resource utilization,
respectively, for different numbers of hosts. Both NABM and VD
exhibit a lower resource standard deviation than NOLB, which
does not do any load balancing. The differences of average
standard deviation between NABM and VD are less than 5%
which means that NABM still maintains a good degree of
imbalance at balanced states compared with VD.
Fig. 7 (a) shows that the time for NABM to get the system to a
balanced state is much less than the time for VD especially in a
data center with a large number of hosts. For VD, the balance
time increases along with increases of the number of VM
migrations. This is because VD sequentially migrates one VM at
a time. In contrast, NABM concurrently migrates VMs according
to the number of independent matching pairs. While the average
number of VM migrations per round for VD is constant (equal
to 1), the average number of VM migrations per round for
NABM increases as the number of hosts increases as shown in

Fig. 7(c). This is because as the number of hosts increases, the
matching pairs in the minimum weighted matching also
increases. Fig. 7(d) shows that the total application completion
time of the NABM algorithm is better than VD by 1%, 3%,
5%,7%, 9%, and 10%, respectively, under different numbers of
hosts. This is because NABM handles multiple overloaded hosts
at a time, decreasing the load on those hosts and thus decreasing
the degree of resource contention amongst the applications
running on the VMs. In contrast, VD handles only one trigger
node at a time and the algorithm needs to spend a longer times
to decrease the amount of trigger nodes. When the number of
hosts is increased, there
are more VMs in the hotspot competing for the resources. For
VD, it will take more rounds (i.e. time) to alleviate the hot spot.

Fig. 8 shows the VM migration time and the time it takes to
reach a load balancing state under different weights of network
parameter D. As the weight of network parameter D increases,
NABM can select more hosts with shorter paths to migrate VMs
for both fat-tree and VL2 as shown in Fig. 8(a) and 8(b). Fig. 8(c)
shows that the time till the system reaches the balanced state is

Fig. 7(a) Total time taken to reach a balanced state Fig. 7(b) Number of VM migrations to reach a

balanced state
Fig. 7(c) Number of average VM migrations per

round

Fig. 7(d) Total batch completion time in different

number of hosts
Fig. 8(a) Fat-tree: the number of VM migrations with

different hop count
Fig. 8(b) VL2: the number of VM migrations with

different hop count

Fig. 8(c) Total time taken to reach a balanced state in

fat-tree and VL2
Fig. 8(d) Total batch completion time in fat-tree

topology
Fig. 8(e). STD of CPU utilization in different

network parameters

210

reduced as the network parameter D increases. It’s because
migrating VMs along a shorter path could improve the mean
migration time. Especially, compared with no network cost or
very small network cost cases, considering the network hop
distance (D > 0.2) saves us more than half of the time it takes to
reach a balancing state. With the decline of migration time,
network-aware further improves application performances as
shown in Fig. 8(d). However, a large network parameter value
could still hurt the time till the system reaches balance and
application performance. This is why we pick network weight D
equal to 0.6 in our previous experiment setting. Fig. 8(e) shows
the standard deviation of CPU utilization verse network weight
while NABM reaches a balance state. When network weight D
increases, the standard deviation of CPU utilization also
increases. It indicates the tradeoff between VM migration time
and load balancing degree. .

VI. CONCLUSION & FUTURE WORKS

We propose a network-aware multi-resource load-balancing
scheme using a parallel VM migration. We transform the
parallel VM migration to a minimum weighted matching
problem of a weighted bipartite graph in a cloud system. Our
algorithm migrates VMs parallel with each other to minimize the
time to get the system to a balanced state and thus increases the
throughput of overloaded hosts. Since the network hop distance
between two hosts will affect the migration time, we further
consider network hop distance in our cost function. Simulation
results show that our NABM algorithm improves the throughput
on overloaded machines up to 10% compared with VD. In the
future, we will take network bandwidth into consideration. In
order to avoid multiple migrations sharing a same network link,
a greedy algorithm will be applied to select one VM migration
pair at a time until no more migration pairs can be selected.
However, the VM migrations still can be performed in parallel.

ACKNOLEGEMENT

This work has been supported in part by a garnt from D-
Link Systems, Inc.

REFERENCES
[1] T. Chieu, A. Mohindra, A. Karve and A. Segal, “Dynamic Scaling of Web

Applications in a Virtualized Cloud Computing Environment,” in ICEBE,
2009.

[2] Y. Zhao and W. Huang, "Adaptive distributed load balancing algorithm
based on live migration of virtual machines in cloud," in Fifth
International Joint Conference on INC, IMS and IDC, 2009, pp. 170-175.

[3] M. Randles, et al., "A comparative study into distributed load balancing
algorithms for cloud computing," in IEEE 24th International Conference
on Advanced Information Networking and Applications Workshops, 2010,
pp. 551-556.

[4] A. Singh, et al., "Server-storage virtualization: integration and load
balancing in data centers," in Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, 2008, p. 53.

[5] V. Shrivastava, et al., "Application-aware virtual machine migration in
data centers," in Proceedings IEEE INFOCOM, 2011, pp. 66-70.

[6] X. Meng, et al., "Improving the scalability of data center networks with
traffic-aware virtual machine placement," in Proceedings IEEE
INFOCOM, 2010, pp. 1-9.

[7] H. Xu and B. Li, "Egalitarian stable matching for VM migration in cloud
computing," in IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), 2011, pp. 631-636.

[8] S.-H. Lim, et al., "Migration, assignment, and scheduling of jobs in
virtualized environment," ACM USENIX workshop HotCloud, 2011, vol.
40, p. 45, 2011.

[9] K. Ye, et al., "Live migration of multiple virtual machines with resource
reservation in cloud computing environments," in IEEE International
Conference on Cloud Computing, 2011, pp. 267-274.

[10] D. Arora, et al., "On the benefit of virtualization: Strategies for flexible
server allocation," in Proc. USENIX Workshop on Hot Topics in
Management of Internet, Cloud, and Enterprise Networks and Services
(Hot-ICE), 2011.

[11] M. Bienkowski, et al., "Competitive analysis for service migration in
vnets," in Proceedings of the second ACM SIGCOMM workshop on
Virtualized infrastructure systems and architectures, 2010, pp. 17-24.

[12] H. W. Kuhn, "The Hungarian method for the assignment problem," Naval
research logistics quarterly, vol. 2, pp. 83-97, 2006.

[13] Xen. Available: http://www.cl.cam.ac.uk/research/srg/netos/xen/

[14] SPECjvm. Available: http://www.spec.org/

[15] K. P. Bubendorfer and J. H. Hine, "A compositional classification for
load-balancing algorithms," technical report, No.CS-TR-99-9, 1998.

[16] A. Greenberg, et al., "VL2: a scalable and flexible data center network,"
in ACM SIGCOMM Computer Communication Review, 2009, pp. 51-62.

[17] NOX. Available: http://www.noxrepo.org/

[18] M. Al-Fares, et al., "A scalable, commodity data center network
architecture," in ACM SIGCOMM Computer Communication Review,
2008, pp. 63-74.

[19] S. K. Garg and R. Buyya, "NetworkCloudSim: Modelling Parallel
Applications in Cloud Simulations," in Fourth IEEE International
Conference on Utility and Cloud Computing, 2011, pp. 105-113.

[20] D. Kliazovich, et al., "DENS: data center energy-efficient network-aware
scheduling," in Cluster Computing, Volume 16, Issue 1, March 2013, pp
65-75.

[21] D. Kliazovich, et al., "Accounting for load variation in energy-efficient
data centers, " in IEEE International Conference on Communication (ICC),
2013, pp. 1154-1159

211

	Table of Contents:

