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Abstract—It becomes a challenge to design an efficient load 
balancing method via live virtual machine (VM) migration without 
degrading application performance. Two major performance 
impacts on hosted applications that run on a VM are the system 
load balancing degree and the total time till a balanced state is 
reached. Existing load balancing methods usually ignore the VM 
migration time overhead. In contrast to sequential migration-
based load balancing, this paper proposes using a network-
topology aware parallel migration to speed up the load balancing 
process in a data center. We transform the VM migration-based 
multi-resource load-balancing problem into a minimum weighted 
matching problem over a weighted bipartite graph. By obtaining 
the minimum weighted matching pairs through the Hungarian 
method, we parallel migrate multiple VMs from overloaded hosts 
to underutilized hosts to reduce the time it takes to reach a load 
balanced state. The experimental results show that our algorithm 
not only obtains a compatible multi-resource load balancing 
performance but also improves the balanced time which results in 
at most a 10% throughput gain by assuming a large batch 
application running on all VMs. 

I. INTRODUCTION 
Cloud data centers employ virtualization-based technology 

to consolidate hardware resource usage to provide application 
hosting for multiple service providers. In a cloud data center, 
thousands of commodity computers work in parallel with host 
virtual machines (VMs) that support different applications. The 
CPU speed, memory size, and network bandwidth of different 
commodity computers are widely heterogeneous. Besides, a 
physical host may run multiple services with different types of 
resource demands. Without proper allocation, the loads of 
different resources may become unbalanced among different 
physical hosts. Even with careful resource provisioning at the 
beginning, due to dynamic arriving and leaving of running 
workload, the cloud system could still become a load unbalanced 
state later. Thus, a cloud system may have quite a few 
overloaded hosts while lots of underutilized hosts are still 
available. 

Load-balancing mechanisms improve system performance 
by reducing resource contention (e.g., CPU, network bandwidth, 
and memory) on overloaded hosts. More importantly, it can 
prevent a higher hardware failure rate in overloaded hosts. 

Load-balancing mechanisms are effectively studied in many 
research areas, including distributed systems, web servers, and 
cloud systems, to maximize resource utilization and minimize 
the variance of the load of multiple servers [1] [2] 
 [3] [4] [5] [6] [7] [8] [9] [10] [11]. While most recent research 
focuses on the VM migration as a mean to achieve load 
balancing in cloud systems [4] [5] [6] [7] [8] [9] [10] [11] 

[20][21], a few of them focus on the impact of the total time 
required to reach system balance. Normally, the existing load 
balancing algorithms search for a VM to instantiate a VM 
migration from overloaded hosts to under-loaded hosts. They 
usually select and start the next VM migration when the previous 
migration completely terminates. These schemes aim to achieve 
an egalitarian state without considering the waiting time for 
other hosts to offload their workload. This paper calls such 
schemes “sequential  migration-based load balancing methods.” 
These methods could lead to all overloaded hosts taking a long 
time to offload their workload. Consequently, the applications 
running on those overloaded hosts will contend for resources for 
a longer time. Therefore, users could experience application 
performance degradation. 

In this work, we study the multi-resource load balancing 
problem for a cloud data center with heterogeneous hardware 
capacity. Compared with sequential migration-based load 
balancing methods, this paper proposes a parallel VM migration 
approach that focuses on minimizing the joint multi-resource 
imbalance and the time it takes to reach a balanced state. In 
addition, the migration delay based on the network topology of 
a data center is considered, especially if the migration pairs are 
between machines with a large hop distance. In order to improve 
the application performances, this paper minimizes the time till 
a balanced state is reached by migrating VMs parallel between 
independent pairs of hosts while considering the underlying 
network topology. To be specific, this paper models the load 
balancing problem with a weighted bipartite graph (WBG). The 
over- and underutilized hosts in a data center are selected as two 
disjoint sets of vertices: Trigger (TR) node and Non-Trigger 
(NTR) node sets. A physical host is said to be a trigger node if 
its resource utilization exceeds a system threshold on any 
dimensions of resources; otherwise, it is a non-trigger node. 
Each edge between the two sets is designated with a weight 
according to the multi-resource requirements of VMs, the 
various resource capacities of the hosts, and the network cost 
between two hosts. By solving the minimum weighted matching 
problem using the Hungarian method [12], this paper could 
migrate a set of VMs between over- and underutilized hosts in 
parallel. 

The experimental results show that our algorithm achieves 
a compatible multi-resource load balancing while improving 
the balancing time, which results in at most a 10% running 
application’s throughput gain compared to conventional  
algorithms which perform load balancing in a sequential 
manner.  

The rest of this paper is organized as follows. Section II 
describes related works. Section III elaborates the motivation 
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behind this work. Section IV describes the network-aware 
bipartite matching load balancing algorithm in detail. 
Experimental results of the simulation will be presented in 
section VI. Finally this paper concludes with some remarks in 
section VII. 

II. RELATED WORKS 
A number of researches have proposed load balancing 

methods [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] for cloud data 
center. Most of these works focus on balancing the resource 
requirement of VMs on physical machines. Based on their 
algorithms, they migrate either single or multiple VMs in each 
round of the load balancing procedure. These load-balancing 
schemes for cloud computing measure the load on physical hosts 
in different ways. However, none of their efforts address the 
multi-resource load balancing issue [1] [2] [3]. Zhao and Huang 
[2] use the number of VMs of a host as their load measurement. 
Recent study [3] mimics the animal behavior of honeybees 
foraging and scouting to harvest foods for load-balancing. 
Though the scheme works for a dynamic workload, they assume 
each host is homogeneous and deal with single resources only. 
And yet [4] considers the multi-resource demands of VMs and 
heterogeneous capacity in each host. They propose a load 
balancing method called VectorDot (VD). Their goal is to bring 
overloaded hosts below their threshold by migrating one or more 
VMs sequentially. They extend the Toyoda heuristic for a single 
knapsack problem to solve a multidimensional knapsack 
problem. VD treats a VM in an overloaded host as an item to be 
placed into an appropriate node. Then, this VM is migrated to 
the selected destination node. This procedure is repeated until 
there are no more overloaded hosts. From a practical perspective 
VM migration takes a while to finish. Thus migrating VMs in a 
one-by-one manner could take a long time until the system is 
balanced, and thereby exacerbate the running applications that 
are hosted on overloaded machines. 

Recent works that consider VM migration overhead for load 
balancing can be found in [7] [8] [9] [10] [11]. Since a cloud 
system involves cloud operators and network operators with 
different goals in mind, [7] studies the problem of making both 
objects meet. On one hand, the cloud operators wish to assign a 
number of VMs to some selected hosts for the purpose of 
meeting the VM scheduling deadline. Thus, the cloud operators 
wish to pair each VM with a destination host that minimizes the 
migration time. On the other hand, the network operators wish 
to minimize the network bandwidth. To make both ends meet, 
[7] models a balanced stable matching problem for both 
requirements of cloud operators and network operators. VM 
migration overhead is derived from the network topology and 

the transfer memory volume. However, their matching does not 
consider the bandwidth of NIC sharing at the destination host. 
Thus they could migrate several VMs from multiple distinct 
hosts to an identical host which could degrade into sequential 
migration. In contrast, we consider finding independent pairs 
between the end hosts for load balancing via parallel migration.  

Recent works [8] [9] conduct a number of experiments on 
the cloud testbed to study the factors that influence VM 
migration time and impact of live migration on application 
performances. In [8], they show that VM migration could 
contend for resources with the running workload on the source 
and destination host, especially as the number of concurrently 
migrating VMs between one source and one destination host 
increases. Hence they study the problem of selecting a number 
of VMs to migrate that minimize the resource contention 
overhead. [8] models a VM migration as processes that  run at 
source and destination hosts. They show that by carefully 
assigning VMs they could reduce the VM migration overhead. 
Though, it is difficult to formulate the impact of migration time 
given different combination of jobs and VM migrations running 
on machines with various resource configurations. As 
the cloud system gets larger, the resource contention model 
would become more difficult to build. [9] shows that the 
destination host CPU reserved for the migration process has little 
to do with migration time. The source host CPU impacts the 
migration time when the host is overloaded, especially when its 
memory dirty rate is high. However, they only suggest a 
direction to balance multi-resource load without relating it to the 
performance overhead incurred by concurrent VM migrations. 
In contrast to [8] [9], this paper performs an experimental study 
of live migrations and application throughputs with multiple, 
concurrent VM migrations (in next section). These experiment 
results provide a motivation to a new parallel migration-based 
load balancing algorithm.  

Recent studies [10] [11] formulate the load balancing 
problem with migration overhead being the distance measured 
by the number of hops on the Internet. Nevertheless these 
schemes often do not consider the heterogeneous capacity of 
multi-resource in each host. In addition, the concurrent 
migration approach they adopt still has a chance to migrate 
multiple VMs to an identical destination host or from a single 
source to multiple distinct destinations. 

III. MOTIVATION 
Even through the modern cloud administrators migrate 

multiple VMs concurrently, if the hosts of migration pairs do not 
choose carefully, concurrent migration still has a chance to 
degrade into sequential migration. The worst case circumstance 

   
Fig. 1. Migration time vs.  VM memory size Fig. 2. Total elapsed migration time vs. number of 

VMs  
Fig. 3. Number of completed operations vs. number of 

VMs 
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in load balancing is to migrate many VMs from different hosts 
to one under-utilized host (many-to-1) concurrently. In this 
section, we measure the real application performance and 
compare parallel migration with a range of many-to-1 and 1-to-
many concurrent migration. The experiment is conducted on a 
real testbed based on Xen [13]. In this system, we reserve the 
network bandwidth as 100 Mbps at each host NIC for VM 
migration. Each VM runs the crypto.rsa application in SPECjvm 
[14]. VMs serving the same application type are allocated with 
identical resources. During live migrations, applications running 
on VMs persist in execution with a small interruption time 
compared to non-live migration [13]. We first measure the time 
taken for each individual VM during concurrent migration by 
observing different combinations of VM pairs. Then we observe 
the application performance for an increasing number of 
concurrently migrating VMs. A conclusion that leads to the 
work in this paper follows thereafter. Each evaluation is an 
averaged result for 10 times.  
Fig. 1 shows the individual VM migration time for migrating 
two VMs with increasing total migrating memory volume. 
Consistently with [8], as each VM memory size increases from 
256 to 1280 MB (where the total migrated size increases from 
512MB to 2048MB, respectively,) VM migration time increases 
linearly proportional to the volume of transferred memory. As 
two distinct hosts migrate to a single host (i.e., 2-to-1), it suffers 
from a linearly increasing time for both VM migrations since the 
network capacity at the destination host’s NIC is shared by the 
two migrations. When migrating from a single host to two 
distinct hosts (i.e., 1-to-2), one VM does not start migrating until 
another finishes migrating. This is the mechanism implemented 
by the Xen platform1 which would start VM migration after the 
previous one finishes, that behaves the same as sequential 
migration in the case of migrating two VMs from one host to the 
other host. As opposed to the above cases, the parallel VM 
migration scheme (i.e., 2-to-2) achieves the smallest migration 
time without suffering from additional network delays. 

Given that migrating two VMs could degrade into 
sequential migration in the 2-to-1 and 1-to-2 cases, we would 
like to know the performance impact of migrating multiple VMs 
concurrently in a larger scale, especially in an overloaded system 
environment. We assume that an overloaded environment 
consists of overloaded hosts and idle hosts. In the following 
experiments we assume that all the VMs run on those overloaded 
hosts. In such an overloaded environment, the workload on one 
VM contends resources with all other VMs resident on the same 
host. Thus the time until a VM is migrated to an idle host could 
affect the application performance running  
 
1Xen provides migrating modules for synchronous and asynchronous modes. 
The only difference is whether the migrating thread immediately returns to user 
thread or returns until migration completes. Both implementations migrate VMs 
in sequential manner even they are issued concurrently. 
on that VM.  

We study the impact of total migration time of different 
number of migrating VMs on the performance of workload on 
the migrating VMs, where the total migration time denotes the 
longest completion time for migrating a number of VMs. In the 
many-to-1 case, we concurrently migrate 2, 3, and 4 VMs each 
from 2, 3, and 4 overloaded hosts to one idle host. On the 
contrary, the 1-to-many case exhibits that 2, 3, and 4 VMs in one 
overloaded host are migrated to 2, 3, and 4 idle hosts respectively. 

The 1-to-1 case let 2, 3, and 4 VMs  migrate from an overloaded 
host to an idle host. Parallel migration independently migrates 2, 
3, and 4 VMs each from 2, 3, and 4 overloaded hosts to 2, 3, and 
4 idle hosts. Each VM migration is instantiated by our controller 
1 minute after the workload starts running. During VM 
migration, we measure the application performance obtained on 
migrating VMs. In order to measure the impact on the running 
application, the iteration duration parameter of the crypto.rsa 
application is set to last after all VMs finish migrating. This 
parameter ensures that the VM continues to demand resources 
during VM migration. The baseline performance is 
approximately 108 operations under baseline single core CPU at 
2.67GHz. 

Fig. 2 shows the total migration time under 2, 3, and 4 VM 
migrations. As the number of VM migrations increases, the 
completion time of migration in the many-to-1, 1-to-many, and 
1-to-1 cases increases. However, the total migration time of 
parallel migration remains almost the same. It’s the smallest 
among the other cases. Consistently with [8], as the total transfer 
memory size of concurrent VM migrations increases, the total 
migration time also increases. Given that the total transfer 
volume of memory between two hosts is fixed, they observe that 
the total migration time increases as the number of concurrent 
VM migrations increases. This is due to the resource contention 
between those migration processes and running workload on the 
source and destination host. In order to improve application 
performance, they study the VM assignment problem by 
selecting different pairs of VM migrations to lower the impact 
of resource contention. 

Fig. 3 shows the total number of completed operations of 
crypto.rsa observed on migrating VMs. The case of a single host 
to multiple distinct hosts (1-to-many) completes 4%, 9%, and 10% 
fewer operations than parallel migration, as the number of 
concurrently migrating VMs increase from 2, to 3, to 4. 
Although the many-to-1 case experiences a smaller total 
migration time than that of the 1-to-many as shown in Fig. 2, the 
number of completed operations of many-to-1 decreases more 
severely than that of 1-to-many with 15%, 34%, and 61% fewer 
operations done than parallel migration. Further, the many-to-1 
case is also close to the worst case without migration (i.e. no load 
balancing). The 1-to-many case completes more operations than 
the case of many-to-1 where it suffers from a longer migration 
delay for each individual VM as shown in the 2-to-1 case in Fig. 
1. Among them, parallel migration shows the highest workload 
completion rate. These observations suggest that maneuvering 
parallel VM migrations is a feasible way to improve application 
performances. 

IV. NETWORK-AWARE BIPARTITE MATCHING LOAD-
BALANCING ALGORITHM 

Load balancing for multi-resource requirements while 
considering heterogeneous resource capacity has been a 
challenging problem, especially in a large scale cloud hosting 
environment. In this paper, we study the load balancing problem 
for a cloud data center. Especially, we try to reduce the time 
taken for a cloud data center to reach its load balance state. Since 
a live migration of VM takes some time to accomplish, 
sequentially migrating VMs from trigger nodes to non-trigger 
nodes may take a long time to offload workload for overload 
hosts. Further, the migration delay between two hosts varies 
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according to the underlying network architecture and the transfer 
volume of VM memory. Thus, we propose a Network-Aware 
Bipartite matching (NABM) load balancing algorithm. This 
paper first transforms the load-balancing problem into a 
minimum weighted matching problem. According to the 
minimum weighted matching obtained from the Hungarian 
method, this paper migrates VMs from overloaded hosts to 
underutilized hosts in parallel. Furthermore, this paper adds the 
hop distance between source and destination hosts to reflect the 
impact of the network to the VM migration time. By reducing 
the VM migration time, it can shorten the time for a cloud system 
to reach its load balanced state. 

A. Preliminary 
The notations for use in NABN will be defined as follows. 

Let ^ `1 2, , , mhH h h } and ^ `1 2, ,, vV vm vm vm} denote a set 
of m hosts and v VMs in a cloud system, respectively, with an 
existing allocation :A V Ho where ( )iA vm denotes the host 
where vmi resides. The n different dimensions of resources 
consumed by a VM vmβ is represented by ^ `^ `1,2, ,i i nS sE E � } ∣ . 
The input to our load balancing algorithm includes a capacity 
value, a current utilization value and a suggested threshold 
fraction between 0 and 1. Let ^ `| {1,2,..., }i

aaC c i n � and

> @ ^ `^ `0,1 , 1,2, ,a
i i
a aU u u i n � � }∣

 
denote the vectors of capacity 

and resource utilization along n dimensions of resources for a 
Host ha, respectively. ^ `| [0,1], {1,2,..., }i iT t t i n � � denotes 
the vector of the system threshold along each dimension of 
resources. Our load balancer will maintain the usage of the 
resources below those thresholds. Moreover, the available 
capacity for a host ha in any dimension of resources i can be 
represented as in (1). 

� � � ^ `^ `1,2,1 , ,i i i i
a a a a aF f f u c i n  � � � }∣ �� ����

B. Bipartite Matching Load-Balancing 
Similar to [4] , NABM collects multi-dimensional resource 

utilization information of hosts and resource requirements of 
VMs as input. In the real testbed deployed with Xen, we send 
XML-RPC requests to collect load information from any host 
in the same server farm through a control domain. Xen 
implements multiple control domains in charge of sending and 
receiving end hosts’ control messages. To construct a weighted 
bipartite graph (WBG), NABM leverages three decision policies: 
participation, candidate selection, and location, as defined in 
[15]. The participation policy decides which hosts are involved 
in the load balancing process. In this paper, we specify two node 
sets for over- and under-loaded hosts. They can be defined as a 
triggered set: ^ `^ `, 1( ,2 ,) ,,i

a a a iTR h h i u t iH n � !� � }∣ and 

a non-triggered set: ^ `,a a aNTR h h H h TR � �∣ , respectively. 
The triggered set is a set of hosts for which resource utilization 
exceeds the system threshold in any dimension of resources.  
The hosts that are not marked as the triggered nodes belong to 

the non-triggered set. These two sets together form two vertex 
sets for the weighted bipartite graph used in NABM. 

Both the candidate selection policy and the location policy 
play the intermediate roles of generating edges and edges’ 
weight for the WBG. The candidate selection policy chooses the 
VMs to transfer to alleviate an overloaded hot spot. A VM is a 
candidate if the removal of this VM turns a triggered host into 
a non-triggered host. However, if the removal of any VM in a 
trigger node couldn’t turn the trigger host into a non-trigger host, 
then all tenant VMs in this triggered host are chosen for the 
candidate set. For a triggered host ha and any dimension of 
resource i, we identify the candidate set as (2). 

^ `
^ `

^ `
^ `

) ,
(max{ ,0} ),
, (max{ ,0

(
1,2, , .

1,2, , ,} ),
) ,

, (max{ ,0} ),
(

1,2, ,

a a
i i
a i

i i
a ia

a a
i i
a i

h h TR
i u

vm A vm
n

n
vm A

s t i
if i u s t iCE

h h TR
if i u s

vm
t ni

E E

E

E

E E

E

E

E

­­ ½ �
°® ¾� � d¯ ¿°° � � � d ®
°  �
°

� � �

� }
� }

° � }!¯

∣

∣ ������
����

The location policy selects the destination host to which the 
candidate VM previously selected is migrated. A Host ha in 
NTR is said to be feasible if after migration its capacity 
constraint Ca is not violated. For any avm CEE �  the location 
policy determines the set of potential destination hosts from the 
feasible hosts in NTR set. Since we attempt not to increase the 
number of triggered nodes after the migration of VMs, a 
feasible node can be a potential destination node only if the VM 
migration wouldn’t   turn   it   into   a   triggered node. The set of 
potential destination hosts for any candidate VM avm CEE �   is 
shown in (3). 

^ `
(max{ ,0}) ,(

1,2, , , )( ,
.

i

i
a

si
a a ic

a

a

vm
n A vm

NTR

h i u t
EP i h

h

E
E

E E� }

­ ½� � d
° °

 z®
�

¾
° °
¯ ¿

, )∣

���������������
����

This policy then associates a cost with each (vmβ, ha). The 
cost is denoted as the sum of the resource requirements of vmβ 

divided by the residual capacity on n dimensions of the potential 
destination host ha. It indicates that a host with scarce remaining 
resources exhibits a higher cost. The formal load balancing cost 
function for a VM migration for a pair of hosts (hsrc, hdst, vmβ) 
can be defined in equation (4).  

1
( , , )

n

LB src dst
i

i

i
dst

s
h vCost h m

f
E

E
 

 ¦ ���������������������������������������������

where vmβ resides on hsrc which belongs to TR, hdst belongs to 
NTR, si

β denotes resource demands of  vmβ over each resource 
dimension i, f i

dst denotes the available resource of hsrc, and n 
denotes the total number of machine resources. For the 
candidate VM avm CEE � , the location policy selects a 
destination host out of the potential destination host set 
according to cost.  We can apply one of the strategies in the 
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best-fit, first-fit, worst-fit, and relaxed-best-fit [4] to determine 
the destination host. With the best-fit, we select a destination 
host with the smallest cost. Thus, the potential destination host 
with higher cost is less likely to be selected as a destination for 
the candidate VM.  However, it requires a linear search from a 
set of potential destination hosts. Thus, the relaxed-best-fit 
exhibits a better search time by investigating the smallest cost 
from a much smaller set of the potential destination hosts which 
are randomly chosen from the original potential destination 
hosts. With the relaxed-best-fit, it also reduces the chance of 
picking the same best potential hosts among different VMs and 
thereby increases the number of valid edges in a weighted 
bipartite graph. NABM applies only relaxed-best-fit (RBF) as in 
[4].  

 
Fig. 4. An illustration of our WBG 

 
For a candidate VM in CEa, relaxed-best-fit selects a 

destination host to form an edge in EPa. Since multiple 
candidate VMs residing at the same host could select the same 
destination host, it causes multiple edges between triggered and 
non-triggered nodes. We discard all such edges except for the 
edge with the smallest weight. Fig. 4 shows an illustration of 
WBG with two triggered nodes and three non-triggered nodes. 
Since candidate VM 1 and VM 2 in the Trigger node 1 select 
the Non-Trigger node 1 as their potential destination host, two 
potential edges associated with the weights are formed between 
the Trigger node 1 and Non-Trigger node 1. However, since the 
solid edge has a smaller weight than the dotted edge, the dotted 
edge is discarded from our final weighted bipartite graph. For 
any node pair, the edge set is computed as (5). 

( , )
( ( ,

( ( , , ) ( , , ))),

,

,

,src dst src dst

j

LB src dst j LB src dst

j src

h h h h
vm jE Cost h h Cos

TR NTR
vm

vm vm
vm

t h h
Cv Em

E

E

E

E
�­ ½

° °� z
 ® ¾t
° °
¯

�
�

� ¿

∣

�� ����

Finally, we construct a weighted bipartite graph: G=(V,E,W) 
where V TTR N R �  and E is the edge set obtained from (5), 
W is the cost function  defined in (4). 

After constructing the WBG, NABM applies the Hungarian 
algorithm [12] to solve the minimum weighted matching 
problem. Since the Hungarian algorithm solves the instance of 
WBG with perfect matching, NABM must ensure that the WBG 
created above has an equal number of nodes for TR and NTR. 
Thus NABM algorithm adds pseudo nodes to either TR or NTR, 
whichever one has the smaller number of nodes, until they have 
the same number of nodes. Pseudo edges associated with a 

significantly large value also are added from a pseudo node to 
all nodes in the other set. Based on the outcome of each match 
from the Hungarian algorithm except for the pairs connected 
with pseudo edges, NABM migrate VMs from triggered nodes 
to their corresponding non-triggered nodes in parallel for 
balancing load. Compared with the sequential migrations 
described earlier, NABM not only migrates VMs concurrently 
but also prevents from exhibiting the migration overhead due to 
contention at the end hosts’ NIC. 

NABM iterates the steps of constructing a weighted bipartite 
graph, finding its minimum weighted bipartite match, and 
parallel migrating the corresponding VMs until either there’s no 
triggered node left or the match consists of nothing but the 
pseudo edges. We omit the pseudo-code of NABM due to space 
limit. 

C. Network-aware Extension 
In addition to the weighted bipartite match that increases the 

total number of VM migration pairs in each round, the length of 
the duration between each parallel migration round also plays an 
important role in reducing total time till balance load. The time 
between each round depends on the longest migration time 
among all migrations.  Since the network hop distance between 
two hosts will affect the migration time [7], we further consider 
network hop distance in the location policy. Like [6], we assume 
that the traffic patterns rarely change in the production data 
center. Even though the traffic distribution could be highly 
uneven, a balanced traffic distribution could still be obtained in 
the data center network. For example, the cloud operators could 
reassign traffic flows among communicating VMs via equal-
cost-multiple-path (ECMP) [16]  or a centralized network 
controller such as NOX [17].   

Under even traffic distribution assumption, VM migration 
between end hosts with a long network path exhibits a higher 
probability of long network delay. According to (6), it indicates 
that the migration time is proportional to the size of VM transfer 
memory and communication distance while being 
disproportional to the bottleneck of end hosts’ NIC bandwidth. 
NABM extends the previous cost function in (4) to account for 
migration cost which is related to the network hop distance and 
the size of VM transfer memory as defined in (6).  

� ( , , ) ( , ).
min( , )

mem

mig src dst src dstbw bw
src dst

s
Cost h h vm D h h

f f
E

E  � � ����

where vmβ resides on hsrc which belongs to TR, hdst belongs to 
NTR, smem

β is memory volume of  vmβ, fbw
src and fbw

dst denote the 
available bandwidth for VM migration in source and destination 
NIC, respectively, and D(i, j) is network hop distance between 
Host i and j. An example of D(i, j) is to  
 
account for the hop count between end hosts in some data center 
network architectures such as fat-tree [18] and VL2 [16]. This 
paper implements fat-tree and VL2 as the underlying network 
architectures. The extension of NABM takes a normalized cost 
of (4) and (6) as in (7). 
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� � � (1 ) ( )

( (

, , , ,

, , ))
src dst src dst

sr

LB

mig c dst

h h Cost h h vm

Cost h h vm

Cost vmE E

E

D

UD �

�

�

 � � ����������

where U  is an adjustable parameter for normalizing the 
migration cost with load balancing cost; andα is the parameter 
for adjusting the relative importance between the two costs. For 
example, it considers there to be no network cost if α is zero. 
During the construction of the WBG, the edge weight is 
substituted with ( , , )src dstCost h h vmE  

in (7) in the location policy. 
This paper conducts a number of event-driven simulation 
analyses to study how parameter α affects the time till system is 
balanced, the mean VM migration time between each round, and 
the application performances in section VI. 

V. EXPERIMENTAL EVALUATION 
This section studies the effectiveness and scalability of the 

NABM algorithms by comparing them with VectorDot (VD) [4] 
using the NetworkCloudSim [19] simulation platform. 

A. Experimental Settings 
To vary the system scale we simulate with 50~1050 hosts 

and 157~3244 VMs. The baseline host is equipped with a 
2.8GHz (approximately 12,000 MIPS) quad-core CPU, 4 GB 
memory, and 1024 Mbps NIC. The multi-resource and 
heterogeneous capacity of each host is generated as baseline 
capacity*(1±heterogeneous degree.) The heterogeneous degree 
is 0.2. Each VM consumes 12%~25% multi-resource demands  
 
of the baseline host capacity. Each VM runs a large-scale Bag-
of-Task (BoT) application which is independent without the 
need to communicate with other VMs. The workload consists of 
287,712,000 million instructions which take approximately 9 
hours to finish for a VM with 8880 MIPS CPU. Typical 

examples of such workload are biological computation, data 
mining, and scientific engineering applications. The 37% of 
hosts are over provisioned, which are considered to be 
overloaded hosts. The average system utilization along each 
resource dimension is approximately 57%. In order to 
accommodate the variance of multi-resource load balancing, the 
triggered node threshold is set to 75% along each dimension of 
resources. 

For the network parameters, we assume that the workload in 
VM consumes on average 57% of host NIC bandwidth. This 
bandwidth is reserved and not used by VM migrations. The 
network topologies fat-tree and VL2 used in our simulation are 
built according to [6]. The network parameter α is set from 0 to 
1 with 0.2 increment. While D = 0, NABM would not consider 
any impact of the network topology. We take a modest value of 
network weight D equal to 0.6 for the simulation results in Fig. 
5, 6, and 7. The available bandwidth of core and aggregate 
switch reserved for VM migration is set to 1184 Mbps in the 
following experiments. The parameter U  is determined as 
follows. We observe that load balancing cost CostLB in general 
is in the range (0, 1.8]. In order to combine the costs of load 
balancing and migration, we normalize the migration cost to be 
in the range (0, 1.8]. Thus we take U  as 1.8 divided by the 
maximum value of migration cost which is in the range [1000, 
2800] in our experiments. For the rest of simulation, we fix U  = 
1.8/1500. 

All the performance results are an average of 10 repeated 
runs and obtained at the moment of system convergence. We use 
the following metrics to evaluate NABM and VD: the system 
utilization and standard deviation of multi-resources of 
 
the hosts, the time it takes for the load balancing process to reach 
a balanced state, the number of VM migrations taken during the 
load balancing process, and the total application completion time. 

   
Fig. 5(a).  STD of CPU utilization Fig. 5(b).  STD of memory utilization Fig. 5(c).  STD of network utilization 

   
Fig. 6(a).  Average CPU utilization Fig. 6(b) Average memory utilization Fig. 6(c).  Average network utilization 
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B. Experimental Results 
Fig. 5(a), (b), and (c) and Fig. 6(a), (b), and (c) show the 

average standard deviation of resource usage of CPU, memory, 
network bandwidth, and their average resource utilization, 
respectively, for different numbers of hosts. Both NABM and VD 
exhibit a lower resource standard deviation than NOLB, which 
does not do any load balancing. The differences of average 
standard deviation between NABM and VD are less than 5% 
which means that NABM still maintains a good degree of 
imbalance at balanced states compared with VD. 
Fig. 7 (a) shows that the time for NABM to get the system to a 
balanced state is much less than the time for VD especially in a 
data center with a large number of hosts. For VD, the balance 
time increases along with increases of the number of VM 
migrations. This is because VD sequentially migrates one VM at 
a time. In contrast, NABM concurrently migrates VMs according 
to the number of independent matching pairs. While the average 
number of VM migrations per round for VD is constant (equal 
to 1), the average number of VM migrations per round for 
NABM increases as the number of hosts increases  as shown in 

Fig. 7(c). This is because as the number of hosts increases, the 
matching pairs in the minimum weighted matching also 
increases. Fig. 7(d) shows that the total application completion 
time of the NABM algorithm is better than VD by 1%, 3%, 
5%,7%, 9%, and 10%, respectively, under different numbers of 
hosts. This is because NABM handles multiple overloaded hosts 
at a time, decreasing the load on those hosts and thus decreasing 
the degree of resource contention amongst the applications 
running on the VMs. In contrast, VD handles only one trigger 
node at a time and the algorithm needs to spend a longer times 
to decrease the amount of trigger nodes. When the number of 
hosts is increased, there  
are more VMs in the hotspot competing for the resources. For 
VD, it will take more rounds (i.e. time) to alleviate the hot spot. 

Fig. 8 shows the VM migration time and the time it takes to 
reach a load balancing state under different weights of network 
parameter D. As the weight of network parameter D increases, 
NABM can select more hosts with shorter paths to migrate VMs 
for both fat-tree and VL2 as shown in Fig. 8(a) and 8(b). Fig. 8(c) 
shows that the time till the system reaches the balanced state is 

   
Fig. 7(a) Total time taken to reach a balanced state  Fig. 7(b) Number of VM migrations to reach a 

balanced state  
Fig. 7(c) Number of average VM migrations per 

round  

   
Fig. 7(d) Total batch completion time in different 

number of hosts 
Fig. 8(a) Fat-tree: the number of VM migrations with 

different hop count   
Fig. 8(b) VL2: the number of VM migrations with 

different hop count  

   
Fig. 8(c) Total time taken to reach a balanced state in 

fat-tree and VL2 
Fig. 8(d) Total  batch completion time in fat-tree 

topology 
Fig. 8(e). STD of CPU utilization in different 

network parameters 
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reduced as the network parameter D increases. It’s because 
migrating VMs along a shorter path could improve the mean 
migration time. Especially, compared with no network cost or 
very small network cost cases, considering the network hop 
distance (D > 0.2) saves us more than half of the time it takes to 
reach a balancing state. With the decline of migration time, 
network-aware further improves application performances as 
shown in Fig. 8(d). However, a large network parameter value 
could still hurt the time till the system reaches balance and 
application performance. This is why we pick network weight D 
equal to 0.6 in our previous experiment setting. Fig. 8(e) shows 
the standard deviation of CPU utilization verse network weight 
while NABM reaches a balance state. When network weight D 
increases, the standard deviation of CPU utilization also 
increases. It indicates the tradeoff between VM migration time 
and load balancing degree.                                                  . 

VI. CONCLUSION & FUTURE WORKS 

We propose a network-aware multi-resource load-balancing 
scheme using a parallel VM migration. We transform the 
parallel VM migration to a minimum weighted matching 
problem of a weighted bipartite graph in a cloud system. Our 
algorithm migrates VMs parallel with each other to minimize the 
time to get the system to a balanced state and thus increases the 
throughput of overloaded hosts. Since the network hop distance 
between two hosts will affect the migration time, we further 
consider network hop distance in our cost function. Simulation 
results show that our NABM algorithm improves the throughput 
on overloaded machines up to 10% compared with VD. In the 
future, we will take network bandwidth into consideration. In 
order to avoid multiple migrations sharing a same network link, 
a greedy algorithm will be applied to select one VM migration 
pair at a time until no more migration pairs can be selected. 
However, the VM migrations still can be performed in parallel.  
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