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ABSTRACT 

Virtual Machines are becoming increasingly valuable to resource 
consolidation and management, providing efficient and secure 
resource containers, along with desired application execution 
environments. This paper focuses on the VM-based resource 
reservation problem, that is, the reservations of CPU, memory and 
network resources for individual VM instances, as well as for VM 
clusters. In particular, it considers the scenario where one or 
several physical servers need to be vacated to start a cluster of 
VMs for dedicated execution of parallel jobs. VMs provide a 
primitive for transparently vacating workloads through migration; 
however, the process of migrating several VMs can be time-
consuming and needs to be estimated. To achieve this goal, this 
paper seeks to provide a model that can characterize the VM 
migration process and predict its performance, based on a 
comprehensive experimental analysis. The results show that, 
given a certain VM’s migration time, it is feasible to predict the 
time for a VM with other configurations, as well as the time for 
migrating a number of VMs. The paper also shows that migration 
of VMs in parallel results in shorter aggregate migration times, 
but with higher per-VM migration latencies. Experimental results 
also quantify the benefits of buffering the state of migrated VMs 
in main memory without committing to hard disks. 

1. INTRODUCTION 
With the rapid growth of computational power on compute 
servers, and the fast maturing of x86 virtualization technologies, 
Virtual Machines (VM) have become increasingly important to 
supporting efficient and flexible resource provisioning. Modern 
virtual machine technologies (e.g.  [14] [15] [2]) allow a single 
physical server to be carved into multiple virtual resource 
containers, each delivering a powerful, secure, and isolated 
execution environment for applications. In addition to providing 
access to resources, such environments can be customized to 
encapsulate the entire software and hardware platform needed by 
the applications and support their seamless deployments.  

The management of these VM-based resource containers, e.g. 

lifecycle management and resource allocation, can be conducted 
through the interfaces provided by the virtualization platforms. 
This allows the VMs to be scheduled as processes in typical 
operating systems, and QoS-aware schedulers, similar to those 
available in operating systems, can be employed to allow the VMs 
to time- and space-share resources, and in the meantime provide 
QoS guarantees for the applications running inside of the VMs. 

This paper focuses on the VM-based resource reservation, that is, 
the reservations of CPU, memory and network resources for 
individual VM instances, as well as for VM clusters. The 
fundamental goal is to enable an application to request the 
creation of virtual machines and clusters based on high-level 
specifications of both the VMs’ environments and its desired QoS. 
This scenario has been motivated by the need encountered by 
scientists in the brain-machine interface domain  [5]. Their 
applications are time-sensitive during their execution, but need 
only be active during the execution of an experiment (e.g. a trial 
with an animal, or a training/testing run).  

Allocating dedicated resources in this scenario can lead to 
resource inefficiencies; VMs here allow time-sharing of resources 
at a coarse granularity and can lead to better resource utilization. 
Hence, it is desirable to reserve cluster resources for creating a set 
of VMs to run these tasks. To implement such policy, all hosted 
VMs from the cluster to be reserved need to be vacating - through 
suspension, or if other resources are available, through migration. 
This preparation should be done in time to meet the reserved 
schedule, but cannot be too early and waste the resources that are 
useful to serve other tasks. 

In order to make efficient resource reservation, this VM-based 
approach need take into account the overhead, which requires  
accurate cost estimation for both the migration of the existing 
VMs, and the instantiation and configuration of the scheduled 
new VMs. In addition, the overhead on the applications running 
inside of the migrated VMs should also be considered. Previous 
work has shown that the VM creation’s overhead can be small 
and accountable  [8] [13], which can be leveraged in this cost 
estimation. However, there is no extensive study on the cost 
associated with migration of multiple VMs with the goal of 
vacating a resource. Addressing to this problem, this paper seeks 
to provide a model that can characterize the VM migration 
process and predict its performance, based on a comprehensive 
experimental analysis. 
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VM’s migration time, it is feasible to predict the time for a VM 
with other configurations, as well as the time for migrating a 
number of VMs. The impact of a VM’s migration on its 
application is also studied in this paper, which shows that it takes 
longer for the application to recover than the actual VM migration 
time. Finally, different migration strategies are compared and the 
results show that parallel migration is faster for migrating 
multiple VMs, but it has more interference to the performance of 
the applications on the migrated VMs. 

The rest of this paper is organized as follows: Section 2 describes 
the background of VM-based resource reservation; Section 3 
presents the experimental analysis of VM migration; Section 4 
discusses the related work, and Section 5 concludes the paper. 

2. VM-BASED RESOURCE 
RESERVATION 
Figure 1 illustrates the architecture for VM-based resource 
reservation. It consists of two levels of resource management, 
which cooperate to serve resource requests, received from, e.g. a 
job manager that schedules job submissions. 

2.1 Virtual Resource Manager 
The virtual resource manager provides a centralized management 
for the virtualized resources that are distributed across the 
physical hosts. It exposes an abstract interface to the resource 
clients and serves their resource requests. The clients do not need 
to know the details of the resource provisioning, and in fact, they 
can be even unaware of that the resources are virtualized. They 
only need to specify the types and quantities of resources that are 
necessary for the scheduled jobs, e.g. the amount of CPU cycles, 
memory space, storage capability and network bandwidth. To 
make an advance resource reservation, a time schedule can also 
be associated with the desired resource usage in the request. 
(Because a VM-based resource container incurs additional 
overhead from the virtualization, a resource controller that can 

correctly estimate the resource usage for a given job’s VM is 
necessary for making the resource requests. However, this is not 
the focus of this paper, and previous work  [17] can be leveraged 
to provide this functionality.) 
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Figure 1: VM-based resource reservation. It consists of two levels of resource management which cooperate to serve resource 
reservation. As shown in (a), the virtual resource manager decides to vacate physical cluster P1 in order to start a set of new VMs 
to satisfy the resource request from the job manager. It coordinates with the VM schedulers to migrate the VMs (V1-V9) from 
physical cluster P1 to P2 and P3. After the new VMs are started, their resource handles are returned to the job manager for job 
submissions. The change of resource allocation on the clusters during this reservation process is also illustrated in (b). 

(a) (b) 

Upon receiving such a resource request (1), the virtual resource 
manager first performs the admission control based on the current 
resource allocation and reservation state of the physical hosts (2). 
If there are resources available for the requested quantity and 
schedule, it then proceeds and interacts with the VM schedulers to 
make the resource reservation on the selected physical hosts (3). 
The VM schedulers then migrate the existing VMs as needed (4) 
and create new VMs for the scheduled jobs accordingly (5). After 
the reservation is completed, one or several resource handlers 
(e.g. IPs and accounts of the allocated VMs) are returned to the 
client (6), and they are valid for job submissions when the 
scheduled time arrives. On the other hand, a request is rejected if 
the virtual resource manager determines that the available 
resources are not sufficient to satisfy the request.  
The virtual resource manger also supports the request of preparing 
a desired software environment on the reserved resources. Such 
an environment includes the operating system, applications, and 
libraries that are necessary for the job executions. For instance, a 
dedicated VMPlant service  [8] can be leveraged by the virtual 
resource manager to provide this support. This service enables the 
automated VM creation and customization, using a graph-based 
model to define VM configuration actions, and providing instant 
VM creations based on cloning from a set of typical VM images. 

2.2 Virtual Machine Scheduler 
A VM scheduler is on every physical server to manage the VMs 
that are hosted on it. It runs side by side with the VM monitor, 
and leverages the interface provided by the VM software to 
control the configurations and lifecycles of the VMs. Such an 
interface can be the scripting API provided for VMware Server,   
the web service interface for VMware Infrastructure, and the 
command-line interface for managing Xen. 



The VM schedulers provide a unified interface for resource 
reservation, which allows the virtual resource manager to make 
resource reservations without knowing their underlying control 
mechanisms that can be very different and specific to the VM 
software deployed on their physical hosts. The virtual resource 
manager only needs to specify the quantity and schedule of the 
necessary resources, and the VM schedulers are responsible to 
carry out the resource reservation and VM creations using the 
mechanisms provided by the VM software. 

2.3 VM Migration Based Resource Reservation 
VM-based resource reservation needs to take into account the 
overhead associated with this approach, and accurate cost 
estimation is important for the virtual resource manager to 
provide correct admission control and make efficient resource 
reservation. Specifically, the requested resources must be 
prepared in time to satisfy the requested schedule, but they should 
not be allocated too early and waste the resources that can 
potentially serve other tasks. The costs from VM-based resource 
reservation include both the overhead for migrating existing VMs 
and making the resources available for the new jobs, and the time 
needed to create and configure the desired environment with 
VMs. Previous work has shown that the later can be small and 
accountable  [8] [13], so this paper focuses on modeling the cost 
associated with the VM migrations. 
In particular, we consider the problem of allowing a cluster 
resource to be reserved for a parallel application with real-time 
constraints. The motivation is drawn from brain-machine interface 
(BMI) experiments where a cluster is used to execute several 
computational models in parallel during a closed-loop experiment 
which involves data acquisition (from sensors in an implanted 
animal), processing, visualization and robot actuation  [5]. The 
goal is to support parallel processing using dedicated resources 
when such an experiment takes place, while also allowing a 
cluster resource to be utilized by other workloads when such 
experiments are not taking place. 
To support the above scenario, the virtual resource manager needs 
to vacate a cluster for the parallel application, and move all the 
existing VMs, which are running various other workloads, to 
other hosts (Figure 1(b)). It thus needs to make efficient 
reservations for resources on both the hosts being dedicated for 
the task, and the hosts where the VMs are migrated to. The 
migrations of these VMs can take a considerable amount of time, 
and may cause a certain amount of performance degradation on 
the jobs that are running on these migrated VMs. Hence, the 
virtual resource manager must consider these factors when it 
makes the reservation decision. In order to achieve this, a clear 
understanding of the VM migration process is necessary, and a 
model is also desirable for estimating the migration cost based on 
the configurations and running state of the migrated VMs. In the 
following section, an extensive experimental analysis is 
conducted towards these goals. 

3. EXPERIMENTAL ANALYSIS 
3.1 Setup 
To help the decision of VM-based resource reservation, a series of 
experiments were conducted to model and analyze the process of 

migrating a number of running VMs from one host to another. 
The studies reported in this paper focus on the VMware Server 
(1.0.3) based VM monitor. The VMs are hosted on a cluster of 
physical servers. Each physical node has two dual-core 2.33GHz 
Xeon processors and 4GB of memory, runs Fedora Core 6 with 
kernel 2.6.22, and is connected with Gigabit Ethernet. Due to the 
limitation of the physical nodes, the VM memory size considered 
in these experiments is up to 1GB. However, the findings from 
the experiments are also applicable if more physical resources are 
available for VMs with larger memory sizes. 

The VMs are installed with UBUNTU 7 with kernel 2.6.20. The 
VMs’ virtual disks share the same read-only image, which is 
stored on a storage server and accessed through NFS (version 3 
 [3]). Changes to the virtual disks from the VM executions are 
stored in the form of redo log files. Running VMs’ memory state 
is also mapped to files, which capture the VMs’ memory 
snapshots when they are suspended. In the absence of an efficient 
shared storage system in our setup, for performance reasons these 
disk redo logs and memory state files are stored on the local file 
system (EXT3 in the ordered mode) of the hosts.  

The VM migration process considered in this paper entails of 
three phases, “suspend”, “copy” and “resume”. In the suspend 
phase, the VM is suspended on the origin host, and its memory is 
captured to the memory state file. In the copy phase, the VM’s 
configuration, memory state and disk redo files are transferred to 
the destination host through FTP. In the resume phase, the VM 
restores its memory state from the snapshot and then resumes its 
execution. The default background memory restoration used by 
VMware is disabled so that an exact measurement of the resume 
phase can be obtained. 

This migration strategy is not based on VMotion  [18] or other 
migration mechanisms provided by VMware.  It is analyzed since 
the primary goal is to vacate multiple VMs from a resource in a 
timely fashion rather than minimize the downtime per VM. 

All the experiments were repeated for more than 50 runs, and 
their results are reported in the following subsections with both 
average values and standard deviations. Because the system time 
inside of VMs can be imprecise, the system time from a separate 
physical server was used for timekeeping during the experiments. 

3.2 Migrating a Single VM 
The first group of experiments studies the three migration phases 
for a single VM, and analyzes its migration time with different 
VM configurations. 

3.2.1 Experiments with Different Memory Sizes 
Since a VM’s memory state file is often the major part of the data 
that need be transferred during the migration process, this 
experiment considers VMs with different memory sizes to 
investigate the impact of size on migration times. The 
experimental results (Figure 2) show that the times needed for the 
suspend and resume phases are relatively stable, and only 
increases slightly as the memory size increases, because more 
memory pages need be processed during these two phases. On the 
other hand, the copy time quickly grows and dominates the 
migration time for larger memory sizes. 



In order to find out the relationship between the time needed for 
the copy phase and the size of the VM memory, regression 
methods are used to model it. Based on the data from this 
experiment, a polynomial function can best characterize this 
relationship, as illustrated by the diamond-shaped points and the 
solid line in Figure 3. The reason for a nonlinear model is that 
when the memory size is relatively small, the speed of the copy 
phase is limited by the network bandwidth (Gigabit/s); however, 
for greater memory sizes, a large amount of dirty pages are 
buffered in memory during the copy phase, and the kernel forces 
to flush these data in foreground, which throttles the copy phase 
by the throughput of the disk (about 50MB/s). Because the 
kernel’s I/O scheduling policy decides when and how to flush the 
data, this model is dependent on the kernel parameters. 

To isolate the impact of the disk I/O on the migration process, we 
have also conducted an experiment using a RAM-based file 
system (RAMFS) on the destination host to store the state of the 
migrated VM. (RAMFS can also be set up on the source host to 
reduce disk I/Os in the suspend phase.) The results from this setup 
also represent the cases where other mechanisms, e.g. direct 
memory-to-memory copy, are available to avoid this problem. 
Since the VM’s memory state is not backed by stable storage, a 
viable recovery scheme is necessary for the VM in case of a 
crash. Figure 4 shows the times needed for the migration phases 
when RAMFS is used, and the dashed line in Figure 3 models the 

copy phase (round-shaped points) using regression methods. It is 
evident that a linear function can very well characterize this 
relationship between the copy time and the VM memory size.  
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Figure 2: The times needed for the three phases of migrating a 
single VM with different memory sizes. A local disk on the 
destination host was used to store the migrated VM states. 
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Figure 4: The times needed for the three phases of migrating a 
single VM with different memory sizes. A RAMFS on the 
destination host was used to store the migrated VM states. 
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Figure 3: Using regression methods to model the relationship 
between the time needed for the copy phase and the size of 
the VM memory. 
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Figure 5: The times needed for the suspend and resume 
phases of migrating a VM with different amounts of 
continuously modified memory. 

The above two models demonstrate that, given a VM’s migration 
time for a particular memory size, it is feasible to predict the time 
for migrating a VM with other memory sizes. In addition, this 
analysis is also applicable if the size of other VM state, e.g., the 
disk redo files, needs to be considered. 

3.2.2  Experiments with Memory-intensive Workloads 

The above results also show that the times needed for both 
suspend and resume phases are small. The resume phase is 
typically very fast since after the copy phase is done, the VM’s 
memory state is already buffered in memory (assuming the 
destination host has enough memory for the migrated VM), and 
thus the resuming does not require additional disk reads. The 
suspend time is also usually short, because the running VM’s 
memory is frequently synchronized with its memory state file, 
and the suspend phase does not involve many disk writes either.  

If a considerable amount of memory pages need be synchronized 
when the VM is suspended, this phase will take longer. To study 
the impact of this factor, a program which continuously touches a 
given amount of memory was intentionally started in a VM that 
was under migration (with a memory size of 1.1GB). The resume 



and suspend times, with different amounts of modified memory, 
are compared to the baseline performance when this program is 
not used (Figure 5). (The time for the copy phase is not affected 
by the workloads of the migrated VMs, since FTP need transfer 
the same amount data across network no matter whether the 
memory state files are sparse or not.) The results show that the 
resume phase is indeed fast and stable, but the suspending time 
increases nearly proportionally with respect to the size of the 
modified memory. Note that typical applications do not possess 
such a bad behavior, and the suspend phase is generally fast as 
also confirmed by the following experiments. The results from 
using this “rogue” program give an upper bound on the resuming 
time based on this worst-case scenario. 

3.3 Migrating a Sequence of VMs 
The second group of experiments investigates the process of 
migrating a sequence of VMs, and study whether it is feasible to 
predict the total migration time based on the time for a single VM. 

3.3.1 Experiments with Different Number of VMs 

In this experiment, different numbers of VMs are migrated 
consecutively, each with a memory size of 256MB. Figure 6 plots 
the per-VM’s migration time, when the local disk on the 

destination host is used to store the copied VM state. The results 
show that the suspend and copy phase are not affected by the 
number of VMs, but the resume phase becomes slower as more 
VMs are migrated, and its variance also increases significantly. 
This is also because of the aforementioned flushing of dirty data 
from copying a VM’s state files. It not only throttles this VM’s 
migration, but also interferes with the following VMs’ migrations 
because of the uncompleted writes. This situation aggravates as 
more VMs are migrated in sequence. In the worst case, the entire 
CPU is in the I/O wait state, and this write “hog” blocks all the 
following migration processes for a considerable period of time. 
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Figure 6: The per-VM migration times when different 
numbers of VMs, each with a 256MB memory, were migrated 
in sequence. A local disk on the destination host is used to 
store the migrated VM state. 
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Figure 8: The per-VM migration times when different 
numbers of VMs, each with a 512MB memory, were migrated 
in sequence. A local disk on the destination host was used to 
store the migrated VM state. 
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Figure 7: The per-VM migration times when different 
numbers of VMs, each with a 256MB memory, were 
migrated in sequence. A RAMFS on the destination host was 
used to store the migrated VM state. 
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Figure 9: The per-VM migration times when different 
numbers of VMs, each with a 512MB memory, were 
migrated in sequence. A RAMFS on the destination host was 
used to store the migrated VM state. 

Figure 7 shows the results from using the RAMFS on the 
destination host to store the copied VM state, which prove again 
that such a setup can effectively solve the above problem, and the 
migration time becomes very consistent regardless of the number 
of migrated VMs. Figure 8 and Figure 9 show the times for 
migrating a sequence of larger VMs, each with 512MB memory, 
using the local disk and the RAMFS, respectively. The results 
confirm that the former setup causes increase in the resume time 
and its variance, while the later one helps to make the migration 
process stable and predictable. Therefore, this RAMFS setup was 
used for all the following experiments. 



Memory space on the physical host may be a concern for using 
RAMFS to store the VM state. However, a RAMFS’ size is 
dynamically adjusted, growing or shrinking as needed by the data, 
and it does not necessarily consume extra memory, since the 
memory pages used by a VM’s state files on the RAMFS can be 
shared with the VM’s memory. Moreover, after the migration is 
completed, the VM’s state can still be backed up on local disks 
when a snapshot need be taken on persistent storage. 

3.3.2 Experiments with Different Workloads 

To further study the interference between the workloads running 
inside of the VMs and the migration process, several different 
types of workloads were used to load four VMs, each with 
512MB of memory, and their sequential migrations are analyzed 
in this subsection. We have considered two representative cases of 
workloads in this study: CPU-intensive and memory-intensive. A 
comprehensive analysis using a larger set of benchmarks is 
subject of future work. 

The first one is a CPU-intensive workload, which is adapted from 
the Freebench’s Distray benchmark  [19]. It runs iteratively, where 
each cycle takes exactly 2 seconds and consumes 100% of CPU 
when executed on the VMs. This benchmark was started on each 
of the four VMs, which thus fully utilized all the CPUs available 
on their physical host. Their migration times as well the 
benchmark’s performance degradation are shown in Figure 10. 
The performance degradation is defined as the runtime of the 

iteration being affected by the migration, minus the regular 
iteration time. The results show that the performance degradation 
time is longer than the VM migration time by about 2 seconds, 
which means that it takes additional time for the benchmark to 
recover to its full performance after the its VM is migrated. 
Figure 11 illustrates one sample of the performance data collected 
from the benchmark during the migration process. 
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Figure 10: The migration time and performance degradation 
when four VMs were migrated in sequence, each with 512MB 
memory and a CPU-intensive benchmark running inside. 
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Figure 12: The migration time and performance degradation 
when four VMs were migrated in sequence, each with 512MB 
memory and a memory-intensive benchmark running inside. 
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Figure 11: The performance of a CPU-intensive benchmark 
running inside of four VMs that were under migration. 
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Figure 13: The performance of a memory-intensive 
benchmark running inside of four VMs that were under 
migration. 

The second workload uses a memory-intensive program that is 
similar to the one used in Section 3.2.2. It runs iteratively, where 
during each cycle it modifies almost the entire VM’s memory 
once, and then sleeps 1 second. The average iteration time is 1.75 
second, with a standard deviation of 0.06 second. With this 
program running inside the VMs, their migration times and the 
program’s performance degradation are plotted in Figure 12. 
Because two iterations of the program were affected by the 
migration, the performance degradation is the sum of these two 
iterations’ times, minus twice of the regular iteration time.  

The results show that the performance degradation experienced 
by the program is longer than the VM migration time by around 5 
seconds. The migration has a greater impact on this program than 
the previous CPU-intensive workload, which infers that it is a 
more memory-intensive process. Figure 13 illustrates one sample 
of the performance data reported by the program during the 
migration process. It is noticeable that the first VM’s migration 
takes more time than the other ones. This is because suspending 
the VMs for this memory-intensive program involves a 



considerable amount of disk writes, and the first VM’s migration 
has an additional start-up overhead from initiating the I/Os. 

The last workload considers typical web applications by using 
Apache (version 2.24) web servers on the four VMs to serve 
HTTP requests. The HTTP clients were based on httperf  [10], 
which issued requests with a constant rate (100 connections per 
second), and they were run separately on another four VMs, 
hosted on a different physical server. The average migration time 
for these VMs is around 9 seconds. A sample of the web servers’ 
throughputs as well as the aggregate throughput is plotted in 
Figure 14, which shows that the performance impact of migration 
also stays a few seconds longer than the actual migration time. 

3.4 Migrating Multiple VMs in Parallel 
The last group of experiments considers migrating multiple VMs 
in parallel and studies its benefits and costs in comparison to 
sequential migration. In these experiments, different numbers of 
VMs were migrated in parallel, each with the same memory size 
of 256MB or 512MB. Figure 15 shows the total migration times 
for a sequence of VMs, compared to the times needed when they 
were migrated in sequential. The results show that parallel 
migration is faster, and the advantage becomes larger when more 
VMs are migrated together. For VMs with 256MB of memory, 
the speed up is 1.4 times for 4 VMs and 1.6 times for 8 VMs. For 
VMs with 512MB memory size, the speedup is 1.3 times for 4 
VMs, which is less than that of the smaller VMs. This is because 
the advantage from parallel migration is mostly from overlapping 
the suspend and resume phases of multiple VMs, since the copy 

phase is bounded by the available network bandwidth. For larger 
VMs, their migrations are dominated by the copy phase and thus 
cannot gain much from the parallel migration. 
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Figure 14: The throughputs of web servers running on four 
VMs that were under migration. 
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Figure 15: The comparison of total migration times for a 
sequence of VMs between parallel and sequential migration. 
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Figure 16: The comparison of per-VM migration times for a 
sequence of VMs between parallel and sequential migration. 

Figure 16 compares parallel migration to sequential migration 
from the perspective of per-VM migration time. Contrary to the 
above results, the parallel migration has a much worse per-VM 
migration time than the sequential one. For VMs with 256MB 
memory, the slowdown is 2.2 times for 4 VMs and 3.8 times for 8 
VMs. For VMs with 512MB memory size, the slowdown is 1.5 
times for 2VMs and 2.5 times for 4 VMs. This means that parallel 
migration incurs more overhead for the applications running 
inside of the migrated VMs. Therefore, there is a tradeoff between 
increasing the speed of migrating multiple VMs and reducing the 
impact on the performance of the VMs. These different migration 
strategies can be selected based on the optimization needs. 

4. RELATED WORK 
Substantial research has been done on using VMs for resource 
consolidation and management for various types of systems. The 
In-VIGO project  [1] proposes to build virtual grid systems using 
VMs to share resources and provide customized execution 
environments, and leveraging the VMPlant service  [8] to 
automate the VM creation and configuration. VMs are used in  [6] 
to provide virtual workspaces with desired software environment 
and resource allocation, and  [13] has studied the overhead from 
managing these VMs. The Virtuoso project also considers VMs 
for distributed computing, and is able to co-schedule batch and 
interactive jobs’ VMs to satisfy the constraints on both 



responsiveness and compute rates  [9]. The Shirako system  [7] 
uses VMs to provide on-demand leasing of network shared 
resources. In  [17], virtualized data centers are realized using VM-
based resource containers, and controllers are developed to 
estimate a VM’s resource usage based on its workload demand. 
In such VM-based systems, VM migration is often considered as 
an important means of reallocating resources and improving 
performance. Particularly, in VIOLIN, a system built on VMs 
connected with virtual networks, migration is used to relocate the 
VMs for performance optimizations  [11]. In  [16], different VM 
migration strategies are studied to eliminate performance hotspots 
from data centers. This paper considers resource management and 
VM migrations in the context of VM-based resource reservation, 
whereas its results can also be useful to estimate the migration 
cost for other management tasks on VM-based systems. 
Because of its importance, optimization of VM migrations has 
been studied in related research. In  [12], several techniques are 
presented to improve VM migrations, including using memory 
ballooning to make a VM’s memory state more compressible, 
demand paging of VM disks, and content-based block sharing 
across disk state. Live migrations are also introduced for different 
VM technologies to provide zero downtime migration of VMs 
 [4] [18]. However, these techniques are not widely available, 
while the suspend-copy-resume scheme considered in the paper is 
still the common way of migrating VMs. In addition, live 
migrations often take longer time to finish and are not suited 
when timely migrations are needed. On the other hand, the 
methodology used in this paper can also be applied to study the 
migration when the above techniques can be leveraged. 

5. CONCLUSIONS AND FUTURE WORK 
VM migration is key to realizing VM-based resource reservation, 
and understanding its overhead is important to make efficient 
reservations. This paper seeks to model the migration process 
based on an extensive experimental study, and several interesting 
findings are revealed based on the results: An accurate estimation 
of the migration time for a number of VMs is possible given the 
measurement of a single VM’s migration time; The performance 
degradation period caused by a VM’s migration is relatively 
longer than the migration time; Different migration strategies can 
be selected for different optimizations, where parallel migration 
can deliver better speed when migrating multiple VMs, and 
sequential migration can reduce the performance overhead for the 
applications that are running on the migrated VMs. 

The ongoing investigation is focused on generalizing this paper’s 
results and evaluating the migration cost model across different 
hardware platforms, and different virtualization technologies. In 
the future work, the cost of another important type of migration 
mechanism, live migration, will also be modeled to help the 
resource reservation when it is available for use. 
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