
Experimental Study of Virtual Machine Migration in
Support of Reservation of Cluster Resources

Ming Zhao Renato J. Figueiredo

Advanced Computing and Information Systems Laboratory (ACIS)

Electrical and Computer Engineering, University of Florida

{ming, renato}@acis.ufl.edu

ABSTRACT

Virtual Machines are becoming increasingly valuable to resource
consolidation and management, providing efficient and secure
resource containers, along with desired application execution
environments. This paper focuses on the VM-based resource
reservation problem, that is, the reservations of CPU, memory and
network resources for individual VM instances, as well as for VM
clusters. In particular, it considers the scenario where one or
several physical servers need to be vacated to start a cluster of
VMs for dedicated execution of parallel jobs. VMs provide a
primitive for transparently vacating workloads through migration;
however, the process of migrating several VMs can be time-
consuming and needs to be estimated. To achieve this goal, this
paper seeks to provide a model that can characterize the VM
migration process and predict its performance, based on a
comprehensive experimental analysis. The results show that,
given a certain VM’s migration time, it is feasible to predict the
time for a VM with other configurations, as well as the time for
migrating a number of VMs. The paper also shows that migration
of VMs in parallel results in shorter aggregate migration times,
but with higher per-VM migration latencies. Experimental results
also quantify the benefits of buffering the state of migrated VMs
in main memory without committing to hard disks.

1. INTRODUCTION
With the rapid growth of computational power on compute
servers, and the fast maturing of x86 virtualization technologies,
Virtual Machines (VM) have become increasingly important to
supporting efficient and flexible resource provisioning. Modern
virtual machine technologies (e.g. [14] [15] [2]) allow a single
physical server to be carved into multiple virtual resource
containers, each delivering a powerful, secure, and isolated
execution environment for applications. In addition to providing
access to resources, such environments can be customized to
encapsulate the entire software and hardware platform needed by
the applications and support their seamless deployments.

The management of these VM-based resource containers, e.g.

lifecycle management and resource allocation, can be conducted
through the interfaces provided by the virtualization platforms.
This allows the VMs to be scheduled as processes in typical
operating systems, and QoS-aware schedulers, similar to those
available in operating systems, can be employed to allow the VMs
to time- and space-share resources, and in the meantime provide
QoS guarantees for the applications running inside of the VMs.

This paper focuses on the VM-based resource reservation, that is,
the reservations of CPU, memory and network resources for
individual VM instances, as well as for VM clusters. The
fundamental goal is to enable an application to request the
creation of virtual machines and clusters based on high-level
specifications of both the VMs’ environments and its desired QoS.
This scenario has been motivated by the need encountered by
scientists in the brain-machine interface domain [5]. Their
applications are time-sensitive during their execution, but need
only be active during the execution of an experiment (e.g. a trial
with an animal, or a training/testing run).

Allocating dedicated resources in this scenario can lead to
resource inefficiencies; VMs here allow time-sharing of resources
at a coarse granularity and can lead to better resource utilization.
Hence, it is desirable to reserve cluster resources for creating a set
of VMs to run these tasks. To implement such policy, all hosted
VMs from the cluster to be reserved need to be vacating - through
suspension, or if other resources are available, through migration.
This preparation should be done in time to meet the reserved
schedule, but cannot be too early and waste the resources that are
useful to serve other tasks.

In order to make efficient resource reservation, this VM-based
approach need take into account the overhead, which requires
accurate cost estimation for both the migration of the existing
VMs, and the instantiation and configuration of the scheduled
new VMs. In addition, the overhead on the applications running
inside of the migrated VMs should also be considered. Previous
work has shown that the VM creation’s overhead can be small
and accountable [8] [13], which can be leveraged in this cost
estimation. However, there is no extensive study on the cost
associated with migration of multiple VMs with the goal of
vacating a resource. Addressing to this problem, this paper seeks
to provide a model that can characterize the VM migration
process and predict its performance, based on a comprehensive
experimental analysis.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

A series of experiments were conducted to measure and model the
different phases for migrating a number of running VMs from one
physical host to another. The results show that, given a certain VTDC’07, November 12, 2007, Reno, NV, USA

Copyright 2007 ACM 978-1-59593-897-8/07/0011 ...$5.00

VM’s migration time, it is feasible to predict the time for a VM
with other configurations, as well as the time for migrating a
number of VMs. The impact of a VM’s migration on its
application is also studied in this paper, which shows that it takes
longer for the application to recover than the actual VM migration
time. Finally, different migration strategies are compared and the
results show that parallel migration is faster for migrating
multiple VMs, but it has more interference to the performance of
the applications on the migrated VMs.

The rest of this paper is organized as follows: Section 2 describes
the background of VM-based resource reservation; Section 3
presents the experimental analysis of VM migration; Section 4
discusses the related work, and Section 5 concludes the paper.

2. VM-BASED RESOURCE
RESERVATION
Figure 1 illustrates the architecture for VM-based resource
reservation. It consists of two levels of resource management,
which cooperate to serve resource requests, received from, e.g. a
job manager that schedules job submissions.

2.1 Virtual Resource Manager
The virtual resource manager provides a centralized management
for the virtualized resources that are distributed across the
physical hosts. It exposes an abstract interface to the resource
clients and serves their resource requests. The clients do not need
to know the details of the resource provisioning, and in fact, they
can be even unaware of that the resources are virtualized. They
only need to specify the types and quantities of resources that are
necessary for the scheduled jobs, e.g. the amount of CPU cycles,
memory space, storage capability and network bandwidth. To
make an advance resource reservation, a time schedule can also
be associated with the desired resource usage in the request.
(Because a VM-based resource container incurs additional
overhead from the virtualization, a resource controller that can

correctly estimate the resource usage for a given job’s VM is
necessary for making the resource requests. However, this is not
the focus of this paper, and previous work [17] can be leveraged
to provide this functionality.)

VM
Scheduler

P1 P3P3
Virtual

Resource
Manager

VM1

VM
Scheduler

P2

VM
Scheduler

Job
Manager

1) Request resources
for job submissions

3) Reserve resources

2) Admission control
6) Return resource handlers

4) Migrate existing VMs
5) Create VMs for new jobs

VM2 VM9

VM1’ VM5’
! ! !

VM6’ VM9’
! ! !! ! !

VM1 VM2 VM3

VM4 VM5

VM6 VM7

VM8 VM9

VM

VM

VM1 VM2 VM3

VM VM4 VM5

VM VM6 VM7

VM8

VM

VM1 VM2 VM3

VM VM4 VM5

VM VM6 VM7

VM8 VM9

P1

VM9

P2

P3

VM

VM

VM

VMVM VM

(I) P1 is shared by
VMs running

various workloads

(II) P1 is reserved by
migrating the existing

VMs to P2 and P3

(III) P1 is dedicated to
the VMs created for a
parallel application

P1 P1

P2 P2

P3 P3

Figure 1: VM-based resource reservation. It consists of two levels of resource management which cooperate to serve resource
reservation. As shown in (a), the virtual resource manager decides to vacate physical cluster P1 in order to start a set of new VMs
to satisfy the resource request from the job manager. It coordinates with the VM schedulers to migrate the VMs (V1-V9) from
physical cluster P1 to P2 and P3. After the new VMs are started, their resource handles are returned to the job manager for job
submissions. The change of resource allocation on the clusters during this reservation process is also illustrated in (b).

(a) (b)

Upon receiving such a resource request (1), the virtual resource
manager first performs the admission control based on the current
resource allocation and reservation state of the physical hosts (2).
If there are resources available for the requested quantity and
schedule, it then proceeds and interacts with the VM schedulers to
make the resource reservation on the selected physical hosts (3).
The VM schedulers then migrate the existing VMs as needed (4)
and create new VMs for the scheduled jobs accordingly (5). After
the reservation is completed, one or several resource handlers
(e.g. IPs and accounts of the allocated VMs) are returned to the
client (6), and they are valid for job submissions when the
scheduled time arrives. On the other hand, a request is rejected if
the virtual resource manager determines that the available
resources are not sufficient to satisfy the request.
The virtual resource manger also supports the request of preparing
a desired software environment on the reserved resources. Such
an environment includes the operating system, applications, and
libraries that are necessary for the job executions. For instance, a
dedicated VMPlant service [8] can be leveraged by the virtual
resource manager to provide this support. This service enables the
automated VM creation and customization, using a graph-based
model to define VM configuration actions, and providing instant
VM creations based on cloning from a set of typical VM images.

2.2 Virtual Machine Scheduler
A VM scheduler is on every physical server to manage the VMs
that are hosted on it. It runs side by side with the VM monitor,
and leverages the interface provided by the VM software to
control the configurations and lifecycles of the VMs. Such an
interface can be the scripting API provided for VMware Server,
the web service interface for VMware Infrastructure, and the
command-line interface for managing Xen.

The VM schedulers provide a unified interface for resource
reservation, which allows the virtual resource manager to make
resource reservations without knowing their underlying control
mechanisms that can be very different and specific to the VM
software deployed on their physical hosts. The virtual resource
manager only needs to specify the quantity and schedule of the
necessary resources, and the VM schedulers are responsible to
carry out the resource reservation and VM creations using the
mechanisms provided by the VM software.

2.3 VM Migration Based Resource Reservation
VM-based resource reservation needs to take into account the
overhead associated with this approach, and accurate cost
estimation is important for the virtual resource manager to
provide correct admission control and make efficient resource
reservation. Specifically, the requested resources must be
prepared in time to satisfy the requested schedule, but they should
not be allocated too early and waste the resources that can
potentially serve other tasks. The costs from VM-based resource
reservation include both the overhead for migrating existing VMs
and making the resources available for the new jobs, and the time
needed to create and configure the desired environment with
VMs. Previous work has shown that the later can be small and
accountable [8] [13], so this paper focuses on modeling the cost
associated with the VM migrations.
In particular, we consider the problem of allowing a cluster
resource to be reserved for a parallel application with real-time
constraints. The motivation is drawn from brain-machine interface
(BMI) experiments where a cluster is used to execute several
computational models in parallel during a closed-loop experiment
which involves data acquisition (from sensors in an implanted
animal), processing, visualization and robot actuation [5]. The
goal is to support parallel processing using dedicated resources
when such an experiment takes place, while also allowing a
cluster resource to be utilized by other workloads when such
experiments are not taking place.
To support the above scenario, the virtual resource manager needs
to vacate a cluster for the parallel application, and move all the
existing VMs, which are running various other workloads, to
other hosts (Figure 1(b)). It thus needs to make efficient
reservations for resources on both the hosts being dedicated for
the task, and the hosts where the VMs are migrated to. The
migrations of these VMs can take a considerable amount of time,
and may cause a certain amount of performance degradation on
the jobs that are running on these migrated VMs. Hence, the
virtual resource manager must consider these factors when it
makes the reservation decision. In order to achieve this, a clear
understanding of the VM migration process is necessary, and a
model is also desirable for estimating the migration cost based on
the configurations and running state of the migrated VMs. In the
following section, an extensive experimental analysis is
conducted towards these goals.

3. EXPERIMENTAL ANALYSIS
3.1 Setup
To help the decision of VM-based resource reservation, a series of
experiments were conducted to model and analyze the process of

migrating a number of running VMs from one host to another.
The studies reported in this paper focus on the VMware Server
(1.0.3) based VM monitor. The VMs are hosted on a cluster of
physical servers. Each physical node has two dual-core 2.33GHz
Xeon processors and 4GB of memory, runs Fedora Core 6 with
kernel 2.6.22, and is connected with Gigabit Ethernet. Due to the
limitation of the physical nodes, the VM memory size considered
in these experiments is up to 1GB. However, the findings from
the experiments are also applicable if more physical resources are
available for VMs with larger memory sizes.

The VMs are installed with UBUNTU 7 with kernel 2.6.20. The
VMs’ virtual disks share the same read-only image, which is
stored on a storage server and accessed through NFS (version 3
 [3]). Changes to the virtual disks from the VM executions are
stored in the form of redo log files. Running VMs’ memory state
is also mapped to files, which capture the VMs’ memory
snapshots when they are suspended. In the absence of an efficient
shared storage system in our setup, for performance reasons these
disk redo logs and memory state files are stored on the local file
system (EXT3 in the ordered mode) of the hosts.

The VM migration process considered in this paper entails of
three phases, “suspend”, “copy” and “resume”. In the suspend
phase, the VM is suspended on the origin host, and its memory is
captured to the memory state file. In the copy phase, the VM’s
configuration, memory state and disk redo files are transferred to
the destination host through FTP. In the resume phase, the VM
restores its memory state from the snapshot and then resumes its
execution. The default background memory restoration used by
VMware is disabled so that an exact measurement of the resume
phase can be obtained.

This migration strategy is not based on VMotion [18] or other
migration mechanisms provided by VMware. It is analyzed since
the primary goal is to vacate multiple VMs from a resource in a
timely fashion rather than minimize the downtime per VM.

All the experiments were repeated for more than 50 runs, and
their results are reported in the following subsections with both
average values and standard deviations. Because the system time
inside of VMs can be imprecise, the system time from a separate
physical server was used for timekeeping during the experiments.

3.2 Migrating a Single VM
The first group of experiments studies the three migration phases
for a single VM, and analyzes its migration time with different
VM configurations.

3.2.1 Experiments with Different Memory Sizes
Since a VM’s memory state file is often the major part of the data
that need be transferred during the migration process, this
experiment considers VMs with different memory sizes to
investigate the impact of size on migration times. The
experimental results (Figure 2) show that the times needed for the
suspend and resume phases are relatively stable, and only
increases slightly as the memory size increases, because more
memory pages need be processed during these two phases. On the
other hand, the copy time quickly grows and dominates the
migration time for larger memory sizes.

In order to find out the relationship between the time needed for
the copy phase and the size of the VM memory, regression
methods are used to model it. Based on the data from this
experiment, a polynomial function can best characterize this
relationship, as illustrated by the diamond-shaped points and the
solid line in Figure 3. The reason for a nonlinear model is that
when the memory size is relatively small, the speed of the copy
phase is limited by the network bandwidth (Gigabit/s); however,
for greater memory sizes, a large amount of dirty pages are
buffered in memory during the copy phase, and the kernel forces
to flush these data in foreground, which throttles the copy phase
by the throughput of the disk (about 50MB/s). Because the
kernel’s I/O scheduling policy decides when and how to flush the
data, this model is dependent on the kernel parameters.

To isolate the impact of the disk I/O on the migration process, we
have also conducted an experiment using a RAM-based file
system (RAMFS) on the destination host to store the state of the
migrated VM. (RAMFS can also be set up on the source host to
reduce disk I/Os in the suspend phase.) The results from this setup
also represent the cases where other mechanisms, e.g. direct
memory-to-memory copy, are available to avoid this problem.
Since the VM’s memory state is not backed by stable storage, a
viable recovery scheme is necessary for the VM in case of a
crash. Figure 4 shows the times needed for the migration phases
when RAMFS is used, and the dashed line in Figure 3 models the

copy phase (round-shaped points) using regression methods. It is
evident that a linear function can very well characterize this
relationship between the copy time and the VM memory size.

0

2

4

6

8

10

12

14

16

18

20

22

suspend copy resume

ti
m

e
 (

s
)

128MB

256MB

384MB

512MB

640MB

768MB

896MB

1024MB

Figure 2: The times needed for the three phases of migrating a
single VM with different memory sizes. A local disk on the
destination host was used to store the migrated VM states.

0

2

4

6

8

10

12

14

16

18

20

22

suspend copy resume

ti
m

e
 (

s
)

128MB

256MB

384MB

512MB

640MB

768MB

896MB

1024MB

Figure 4: The times needed for the three phases of migrating a
single VM with different memory sizes. A RAMFS on the
destination host was used to store the migrated VM states.

0

2

4

6

8

10

12

14

16

18

20

22

0 200 400 600 800 1000 1200

Size (MB)

ti
m

e
 (

s
) Using disk

Using RAMFS

Figure 3: Using regression methods to model the relationship
between the time needed for the copy phase and the size of
the VM memory.

0

2

4

6

8

10

12

14

16

18

20

22

suspend resume

ti
m

e
 (

s
)

baseline

256MB

512MB

768MB

1024MB

Figure 5: The times needed for the suspend and resume
phases of migrating a VM with different amounts of
continuously modified memory.

The above two models demonstrate that, given a VM’s migration
time for a particular memory size, it is feasible to predict the time
for migrating a VM with other memory sizes. In addition, this
analysis is also applicable if the size of other VM state, e.g., the
disk redo files, needs to be considered.

3.2.2 Experiments with Memory-intensive Workloads

The above results also show that the times needed for both
suspend and resume phases are small. The resume phase is
typically very fast since after the copy phase is done, the VM’s
memory state is already buffered in memory (assuming the
destination host has enough memory for the migrated VM), and
thus the resuming does not require additional disk reads. The
suspend time is also usually short, because the running VM’s
memory is frequently synchronized with its memory state file,
and the suspend phase does not involve many disk writes either.

If a considerable amount of memory pages need be synchronized
when the VM is suspended, this phase will take longer. To study
the impact of this factor, a program which continuously touches a
given amount of memory was intentionally started in a VM that
was under migration (with a memory size of 1.1GB). The resume

and suspend times, with different amounts of modified memory,
are compared to the baseline performance when this program is
not used (Figure 5). (The time for the copy phase is not affected
by the workloads of the migrated VMs, since FTP need transfer
the same amount data across network no matter whether the
memory state files are sparse or not.) The results show that the
resume phase is indeed fast and stable, but the suspending time
increases nearly proportionally with respect to the size of the
modified memory. Note that typical applications do not possess
such a bad behavior, and the suspend phase is generally fast as
also confirmed by the following experiments. The results from
using this “rogue” program give an upper bound on the resuming
time based on this worst-case scenario.

3.3 Migrating a Sequence of VMs
The second group of experiments investigates the process of
migrating a sequence of VMs, and study whether it is feasible to
predict the total migration time based on the time for a single VM.

3.3.1 Experiments with Different Number of VMs

In this experiment, different numbers of VMs are migrated
consecutively, each with a memory size of 256MB. Figure 6 plots
the per-VM’s migration time, when the local disk on the

destination host is used to store the copied VM state. The results
show that the suspend and copy phase are not affected by the
number of VMs, but the resume phase becomes slower as more
VMs are migrated, and its variance also increases significantly.
This is also because of the aforementioned flushing of dirty data
from copying a VM’s state files. It not only throttles this VM’s
migration, but also interferes with the following VMs’ migrations
because of the uncompleted writes. This situation aggravates as
more VMs are migrated in sequence. In the worst case, the entire
CPU is in the I/O wait state, and this write “hog” blocks all the
following migration processes for a considerable period of time.

-2

0

2

4

6

8

10

12

suspend copy resume total

ti
m

e
 (

s
)

single VM

two VMs

four VMs

eight VMs

Figure 6: The per-VM migration times when different
numbers of VMs, each with a 256MB memory, were migrated
in sequence. A local disk on the destination host is used to
store the migrated VM state.

0

2

4

6

8

10

12

14

suspend copy resume total

ti
m

e
 (

s
)

single VM

two VMs

four VMs

Figure 8: The per-VM migration times when different
numbers of VMs, each with a 512MB memory, were migrated
in sequence. A local disk on the destination host was used to
store the migrated VM state.

0

2

4

6

8

10

12

suspend copy resume total

ti
m

e
 (

s
)

single VM

two VMs

four VMs

eight VMs

Figure 7: The per-VM migration times when different
numbers of VMs, each with a 256MB memory, were
migrated in sequence. A RAMFS on the destination host was
used to store the migrated VM state.

0

2

4

6

8

10

12

14

suspend copy resume total

ti
m

e
 (

s
)

single VM

two VMs

four VMs

Figure 9: The per-VM migration times when different
numbers of VMs, each with a 512MB memory, were
migrated in sequence. A RAMFS on the destination host was
used to store the migrated VM state.

Figure 7 shows the results from using the RAMFS on the
destination host to store the copied VM state, which prove again
that such a setup can effectively solve the above problem, and the
migration time becomes very consistent regardless of the number
of migrated VMs. Figure 8 and Figure 9 show the times for
migrating a sequence of larger VMs, each with 512MB memory,
using the local disk and the RAMFS, respectively. The results
confirm that the former setup causes increase in the resume time
and its variance, while the later one helps to make the migration
process stable and predictable. Therefore, this RAMFS setup was
used for all the following experiments.

Memory space on the physical host may be a concern for using
RAMFS to store the VM state. However, a RAMFS’ size is
dynamically adjusted, growing or shrinking as needed by the data,
and it does not necessarily consume extra memory, since the
memory pages used by a VM’s state files on the RAMFS can be
shared with the VM’s memory. Moreover, after the migration is
completed, the VM’s state can still be backed up on local disks
when a snapshot need be taken on persistent storage.

3.3.2 Experiments with Different Workloads

To further study the interference between the workloads running
inside of the VMs and the migration process, several different
types of workloads were used to load four VMs, each with
512MB of memory, and their sequential migrations are analyzed
in this subsection. We have considered two representative cases of
workloads in this study: CPU-intensive and memory-intensive. A
comprehensive analysis using a larger set of benchmarks is
subject of future work.

The first one is a CPU-intensive workload, which is adapted from
the Freebench’s Distray benchmark [19]. It runs iteratively, where
each cycle takes exactly 2 seconds and consumes 100% of CPU
when executed on the VMs. This benchmark was started on each
of the four VMs, which thus fully utilized all the CPUs available
on their physical host. Their migration times as well the
benchmark’s performance degradation are shown in Figure 10.
The performance degradation is defined as the runtime of the

iteration being affected by the migration, minus the regular
iteration time. The results show that the performance degradation
time is longer than the VM migration time by about 2 seconds,
which means that it takes additional time for the benchmark to
recover to its full performance after the its VM is migrated.
Figure 11 illustrates one sample of the performance data collected
from the benchmark during the migration process.

0

2

4

6

8

10

12

14

16

18

VM1 VM2 VM3 VM4

M
ig

r
a
ti
o
n
 d

e
la

y
 (

s
)

Performance degradation VM migration time

Figure 10: The migration time and performance degradation
when four VMs were migrated in sequence, each with 512MB
memory and a CPU-intensive benchmark running inside.

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

VM1 VM2 VM3 VM4

M
ig

r
a
ti
o
n
 d

e
la

y
 (

s
)

Performance degradation VM migration time

Figure 12: The migration time and performance degradation
when four VMs were migrated in sequence, each with 512MB
memory and a memory-intensive benchmark running inside.

0

2

4

6

8

10

12

14

16

18

Time (s)

It
e
r
a
ti
o
n
 T

im
e
 (

s
)

VM1

VM2

VM3

VM4

Figure 11: The performance of a CPU-intensive benchmark
running inside of four VMs that were under migration.

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

Time (s)

It
e
r
a
ti
o
n
 t
im

e
 (

s
)

VM1

VM2

VM3

VM4

Figure 13: The performance of a memory-intensive
benchmark running inside of four VMs that were under
migration.

The second workload uses a memory-intensive program that is
similar to the one used in Section 3.2.2. It runs iteratively, where
during each cycle it modifies almost the entire VM’s memory
once, and then sleeps 1 second. The average iteration time is 1.75
second, with a standard deviation of 0.06 second. With this
program running inside the VMs, their migration times and the
program’s performance degradation are plotted in Figure 12.
Because two iterations of the program were affected by the
migration, the performance degradation is the sum of these two
iterations’ times, minus twice of the regular iteration time.

The results show that the performance degradation experienced
by the program is longer than the VM migration time by around 5
seconds. The migration has a greater impact on this program than
the previous CPU-intensive workload, which infers that it is a
more memory-intensive process. Figure 13 illustrates one sample
of the performance data reported by the program during the
migration process. It is noticeable that the first VM’s migration
takes more time than the other ones. This is because suspending
the VMs for this memory-intensive program involves a

considerable amount of disk writes, and the first VM’s migration
has an additional start-up overhead from initiating the I/Os.

The last workload considers typical web applications by using
Apache (version 2.24) web servers on the four VMs to serve
HTTP requests. The HTTP clients were based on httperf [10],
which issued requests with a constant rate (100 connections per
second), and they were run separately on another four VMs,
hosted on a different physical server. The average migration time
for these VMs is around 9 seconds. A sample of the web servers’
throughputs as well as the aggregate throughput is plotted in
Figure 14, which shows that the performance impact of migration
also stays a few seconds longer than the actual migration time.

3.4 Migrating Multiple VMs in Parallel
The last group of experiments considers migrating multiple VMs
in parallel and studies its benefits and costs in comparison to
sequential migration. In these experiments, different numbers of
VMs were migrated in parallel, each with the same memory size
of 256MB or 512MB. Figure 15 shows the total migration times
for a sequence of VMs, compared to the times needed when they
were migrated in sequential. The results show that parallel
migration is faster, and the advantage becomes larger when more
VMs are migrated together. For VMs with 256MB of memory,
the speed up is 1.4 times for 4 VMs and 1.6 times for 8 VMs. For
VMs with 512MB memory size, the speedup is 1.3 times for 4
VMs, which is less than that of the smaller VMs. This is because
the advantage from parallel migration is mostly from overlapping
the suspend and resume phases of multiple VMs, since the copy

phase is bounded by the available network bandwidth. For larger
VMs, their migrations are dominated by the copy phase and thus
cannot gain much from the parallel migration.

VM1

0

50

100

150

200

250

R
e
p
ly

 r
a
te

VM2

0

50

100

150

200

250

R
e
p
ly

 r
a
te

VM3

0

50

100

150

200

250

R
e
p
ly

 r
a
te

VM4

0

50

100

150

200

250

R
e
p
ly

 r
a
te

Aggregate

250

300

350

400

450

500

550

0 10 20 30 40 50 60 7
Time (s)

R
e

p
ly

 r
a

te

0

Figure 14: The throughputs of web servers running on four
VMs that were under migration.

0

5

10

15

20

25

30

35

40

45

50

55

1 2 4 8

Number of VMs

M
ig

ra
ti
o
n
 t
im

e
 (
s
)

256M-P

256M-S

512M-P

512M-S

Figure 15: The comparison of total migration times for a
sequence of VMs between parallel and sequential migration.

0

5

10

15

20

25

30

1 2 4 8

Number of VMs

M
ig

r
a
ti
o
n
 t
im

e
 (

s
)

256M-P

256M-S

512M-P

512M-S

Figure 16: The comparison of per-VM migration times for a
sequence of VMs between parallel and sequential migration.

Figure 16 compares parallel migration to sequential migration
from the perspective of per-VM migration time. Contrary to the
above results, the parallel migration has a much worse per-VM
migration time than the sequential one. For VMs with 256MB
memory, the slowdown is 2.2 times for 4 VMs and 3.8 times for 8
VMs. For VMs with 512MB memory size, the slowdown is 1.5
times for 2VMs and 2.5 times for 4 VMs. This means that parallel
migration incurs more overhead for the applications running
inside of the migrated VMs. Therefore, there is a tradeoff between
increasing the speed of migrating multiple VMs and reducing the
impact on the performance of the VMs. These different migration
strategies can be selected based on the optimization needs.

4. RELATED WORK
Substantial research has been done on using VMs for resource
consolidation and management for various types of systems. The
In-VIGO project [1] proposes to build virtual grid systems using
VMs to share resources and provide customized execution
environments, and leveraging the VMPlant service [8] to
automate the VM creation and configuration. VMs are used in [6]
to provide virtual workspaces with desired software environment
and resource allocation, and [13] has studied the overhead from
managing these VMs. The Virtuoso project also considers VMs
for distributed computing, and is able to co-schedule batch and
interactive jobs’ VMs to satisfy the constraints on both

responsiveness and compute rates [9]. The Shirako system [7]
uses VMs to provide on-demand leasing of network shared
resources. In [17], virtualized data centers are realized using VM-
based resource containers, and controllers are developed to
estimate a VM’s resource usage based on its workload demand.
In such VM-based systems, VM migration is often considered as
an important means of reallocating resources and improving
performance. Particularly, in VIOLIN, a system built on VMs
connected with virtual networks, migration is used to relocate the
VMs for performance optimizations [11]. In [16], different VM
migration strategies are studied to eliminate performance hotspots
from data centers. This paper considers resource management and
VM migrations in the context of VM-based resource reservation,
whereas its results can also be useful to estimate the migration
cost for other management tasks on VM-based systems.
Because of its importance, optimization of VM migrations has
been studied in related research. In [12], several techniques are
presented to improve VM migrations, including using memory
ballooning to make a VM’s memory state more compressible,
demand paging of VM disks, and content-based block sharing
across disk state. Live migrations are also introduced for different
VM technologies to provide zero downtime migration of VMs
 [4] [18]. However, these techniques are not widely available,
while the suspend-copy-resume scheme considered in the paper is
still the common way of migrating VMs. In addition, live
migrations often take longer time to finish and are not suited
when timely migrations are needed. On the other hand, the
methodology used in this paper can also be applied to study the
migration when the above techniques can be leveraged.

5. CONCLUSIONS AND FUTURE WORK
VM migration is key to realizing VM-based resource reservation,
and understanding its overhead is important to make efficient
reservations. This paper seeks to model the migration process
based on an extensive experimental study, and several interesting
findings are revealed based on the results: An accurate estimation
of the migration time for a number of VMs is possible given the
measurement of a single VM’s migration time; The performance
degradation period caused by a VM’s migration is relatively
longer than the migration time; Different migration strategies can
be selected for different optimizations, where parallel migration
can deliver better speed when migrating multiple VMs, and
sequential migration can reduce the performance overhead for the
applications that are running on the migrated VMs.

The ongoing investigation is focused on generalizing this paper’s
results and evaluating the migration cost model across different
hardware platforms, and different virtualization technologies. In
the future work, the cost of another important type of migration
mechanism, live migration, will also be modeled to help the
resource reservation when it is available for use.

ACKNOWLEDGEMENT
Effort sponsored by NSF grant CNS-0540304. The authors are
thankful to the anonymous reviewers for their useful comments.
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the sponsors.

REFERENCES
[1] S. Adabala, et al., “From Virtualized Resources to Virtual

Computing Grids: The In-VIGO System”, In Future
Generation Computer Systems, Vol. 21, No. 6, June, 2005.

[2] P. Barham, et al., “Xen and the Art of Virtualization”, ACM
Symposium on Operating Systems Principles, October 2003.

[3] B. Callaghan, B. Pawlowski, P. Staubach, “NFS Version 3
Protocol Specification”, RFC 1813, June 1995.

[4] C. Clark, et al., “Live migration of Virtual Machines”, In
USENIX NSDI, 2005.

[5] J. DiGiovanna, et al., “Towards Real-Time Distributed
Signal Modeling for Brain Machine Interfaces”, International
Conference on Computational Science, 2007.

[6] K. Keahey, I. Foster, T. Freeman, X. Zhang, “Virtual
Workspaces: Achieving Quality of Service and Quality of
Life in the Grid”, Scientific Progamming Journal, 2005.

[7] D. Irwin, J. Chase, L. Grit, A. Yumerefendi, D. Becker,
“Sharing Networked Resources with Brokered Leases”,
USENIX Technical Conference, 2006.

[8] I. Krsul, et al., “VMPlants: Providing and Managing Virtual
Machine Execution Environments for Grid Computing”,
Supercomputing, 2004.

[9] B. Lin, P. Dinda, “VSched: Mixing Batch and Interactive
Virtual Machines Using Periodic Real-time Scheduling”,
Supercomputing, 2005.

[10] D. Mosberger, T. Jin, “httperf: A Tool for Measuring Web
Server Performance”, First Workshop on Internet Server
Performance, 1998.

[11] P. Ruth, J. Rhee, D. Xu, R. Kennell, S. Goasguen,
“Autonomic Live Adaptation of Virtual Computational
Environments in a Multi-Domain Infrastructure”, ICAC’06.

[12] C. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. Lam, M.
Rosenblum, “Optimizing the Migration of Virtual
Computers”, Proceedings of the 5th Symposium on
Operating Systems Design and Implementation, 2002.

[13] B. Sotomayor, K. Keahey, I. Foster, “Overhead Matters: A
Model for Virtual Resource Management”, VTDC, 2006.

[14] J. Sugerman, G. Venkitachalan, B-H. Lim, “Virtualizing I/O
Devices on VMware Workstation’s Hosted Virtual Machine
Monitor”, USENIX Annual Technical Conference, 2001.

[15] C. Waldspurger, “Memory resource management in VMware
ESX server”, SIGOPS Operating Systems Review, 2002.

[16] T. Wood, P. Shenoy, A. Venkataramani, M. Yousif, “Black-
box and Gray-box Strategies for Virtual Machine
Migration”, NSDI, 2007.

[17] J. Xu, M. Zhao, J. Fortes, R. Carpenter, M. Yousif, “On the
Use of Fuzzy Modeling in Virtualized Data Center
Management”, ICAC, 2007.

[18] M. Nelson, B.-H. Lim, G. Hutchins, “Fast Transparent
Migration for Virtual Machines”, USENIX Annual
Technical Conference, 2005.

[19] P. Rundberg, F. Warg, “The FreeBench v1.0 Benchmark
Suite”, URL: http://www.freebench.org

