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Abstract—As tenants take networked virtual machines (VMs)
as their requirements, effective placement of VMs is needed to
reduce the network cost in cloud data centers. The cost is one
of the major concerns for the cloud providers. In addition to the
cost caused by network traffics (N-cost), the cost caused by the
utilization of physical machines (PM-cost) is also non-negligible.
In this paper, we focus on the optimized placement of VMs
to minimize the cost, the combination of N-cost and PM-cost.
We define N-cost by various functions, according to different
communication models. We formulate the placement problem,
and prove it to be NP-hard. We investigate the problem from two
aspects. Firstly, we put a special emphasis on minimizing the N-
cost with fixed PM-cost. For the case that tenants request the same
amount of VMs, we present optimal algorithms under various
definitions of N-cost. For the case that tenants require different
numbers of VMs, we propose an approximation algorithm. Also,
a greedy algorithm is implemented as the baseline to evaluate
the performance. Secondly, we study the general case of the
VM placement problem, in which both N-cost and PM-cost
are taken into account. We present an effective binary-search-
based algorithm to determine how many PMs should be used,
which makes a tradeoff between PM-cost and N-cost. For all
of the algorithms, we conduct theoretical analysis and extensive
simulations to evaluate their performance and efficiency.

Index Terms—Clouds, cost optimization, data center, subset-
sum problem, vector bin packing, virtual machine placement.

I. INTRODUCTION

Virtualization has been proven to be an efficient technology
for achieving resource sharing in cloud data centers. How-
ever, effective resource management is still one of the main
challenges for the cloud providers. In modern virtualization-
based cloud data centers, e.g. Amazon EC2 [1] and Cisco data
center [2] , virtual machine (VM) placement is the primary
issue facing the effective scheduling of cloud resources [9]. A
good placement will lead to better resource utilization and less
cost. Usually, we use a slot to represent one basic resource
unit [13], including CPU, memory, disk, etc., each slot can
host one VM. Tenants submit their resource requirements, in
terms of the number of VMs (slots), to cloud system, and the
cloud decides the further resource allocation. This process is
well known as virtual machine placement (VMP). It is the
functional requirement for the cloud providers to respond the
required VMs. Meanwhile, it is a major concern to conduct
cost control for the cloud providers. In a data center, overall
cost consists of many parts. The result in [7] shows that
servers/physical machines (PMs) consume near 45% overall
cost, and network occupies about 15%; other costs include
infrastructure and electrical utility. We should notice that other

(a) placement with fewer PMs (b) placement with fewer traffics

Fig. 1. Two placements for the same requests (r1, r2, r3, r4). rij indicates
the VMs placed on PM j of request ri. (a) Fewer PMs are occupied, but there
exists more inter-PM traffic. (b) More PMs, but no inter-PM traffic.

costs are also proportional to the cost caused by PMs and
network, e.g. cooling systems. Therefore, in this work, we put
our focus on the network cost and PM cost, and treat them as
being representative of the overall cost.

In this paper, we study the VM placement problem for
cost minimization. The cost caused by PMs (PM-cost) is
proportional to the number of running PMs [12]. We assume
that the network cost (N-cost) is mainly determined by inter-
PM traffic [7] [10], which occurs when the VMs from the same
tenant are placed on different PMs, due to the communication
between VMs of the same tenant. For example, in Fig. 1, the
traffics between PMs, (PM 1, PM 2) and (PM 2, PM 3), lead to
the N-cost, the utilization of the PMs 1, 2, 3, and 4 causes PM-
cost. As a result, for given requests, we tend to open the fewest
PMs in order to minimize the PM-cost, and place the VMs of
the same tenant on the same PM, in order to reduce the N-cost.
Unfortunately, it is nearly impossible to achieve both minimal
PM-cost and minimal N-cost, due to the capacity constraints
of PMs. Fig. 1 shows an example of placing four requests,
represented by r1, r2, r3, r4. Actually, each tenant can be a
project team or a work group; one VM should be allocated for
each member. In Fig. 1, rij refers to the VMs placed on PM j
of request ri. Two placements with different costs are shown.
The placement in Fig. 1(a) uses fewer PMs, since the required
VMs of r4 is split into three pieces: r41, r42, and r43. There
is no inter-PM traffic in the placement of Fig. 1(b), since no
request is split.

Clearly, we should make a tradeoff between PM-cost and
N-cost; motivated by the above example, some requests will
be split into multiple pieces, as r4 in Fig. 1(a). In most related
works [8] [10] [18], the traffics between VMs are assumed
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to be known, and the placement is presented based on this
assumption. We argue that it is a very strong assumption that
the cloud providers are aware of the traffics. Here, we let the
N-cost only depend on the final placement. Specifically, the
N-cost is determined by the amount of inter-PM traffic links
and the sizes of the pieces. To characterize the N-cost, we
introduce three cost functions, each of which corresponds to
one communication model, as shown in Fig. 2. The first two
cost functions only consider the number of inter-PM traffic
links, and corresponds to the star structure and clique structure,
respectively. The third cost function takes into account both
inter-PM traffic links and the sizes of pieces.

We formulate the VM placement problem for cost mini-
mization. For the general case, both PM-cost and N-cost are
taken into account; we prove that the placement problem is NP-
hard. Due to the NP-hardness, we conduct the investigation
by two steps. (1) First, we put the emphasis on minimizing
the N-cost for given PMs, which is still a NP-hard problem.
According to the number of the required VMs of tenants,
the problem is further classified into two cases: homogeneous
case and heterogeneous case. In homogeneous case, the tenants
request the same amount of VMs, while the required number
of VMs is different in the heterogeneous case. The problem
is discussed under the three cost functions for both cases.
(2) Then, we study the general case, where both N-cost and
PM-cost are considered. The tradeoff between PM-cost and
N-cost is also discussed. In summary, our main contributions
are summarized as follows:

(1) We formulate a VM placement problem for cost min-
imization in cloud data centers; both N-cost and PM-cost are
taken into account. Different from the previous works, we do
not assume that the inter-VM traffics are previously known.
We first prove that the problem is NP-hard. We investigate
the problem by two steps. We first study the VM placement
problem to minimize the N-cost for given PMs. We then study
the general case, which considers the combination of PM-cost
and N-cost.

(2) For the first step, we put special emphasis on the
optimization of N-cost, and further classify the problem into
homogeneous case and heterogeneous case. For the homoge-
neous case, we present optimal algorithms under the three
cost functions. We conduct theoretic performance analysis and
prove the optimality of the algorithms. For the heterogeneous
case, we present an approximation algorithm, which works for
all of the three cost functions. The algorithm can achieve 2-
approximation ratio for the first cost function.

(3) For the second step, we take into account both N-cost
and PM-cost as the general case of the problem. We study how
the cost changes as various numbers of PMs are used. On the
basis of the previous results, we present an efficient binary
search based heuristic algorithm to achieve a better tradeoff
between N-cost and PM-cost.

(4) For all of the algorithms, we conduct theoretical anal-
ysis and extensive simulations to evaluate their performance.

The remainder of this paper is organized as follows. We
give the problem statement in Section II. We investigate the
homogeneous case and heterogeneous case in Section III and
Section IV, respectively. Then, the general case is discussed
in Section V. We evaluate our algorithms in Section VI.

Related work is introduced in Section VII. Finally, we make
a conclusion in Section VIII.

II. PROBLEM STATEMENT

In this section, we present the problem statement. We first
introduce the scenario and some notations. Then, we formally
define the VM placement problem for cost minimization and
analyze its complexity. Cost functions are discussed at the end.

A. Problem Description

We investigate the problem of placing VMs on a set
of PMs. We use a slot to represent one resource unit
(CPU/memory/disk), and each slot can host one VM. We
consider the scenario where a cloud data center consists of
uniform PMs, and tenants submit their resource demands, in
terms of the number of slots (VMs), to the cloud. The cloud
allocates the required resource units to tenants. We can imagine
that each tenant is a project team, and each team member
owns one VM. The team members work cooperatively for
the project. For each request, it is preferable to place all the
required VMs on the same PM (perfect placement), since there
may be communication between VMs. The inter-PM traffic
will cause N-cost. To realize the above perfect placement, one
extreme case is the allocation of one PM for each tenant (we
assume that the required resource does not exceed the capacity
of PM). However, PM-cost will be very large. It is inefficient
to open too many PMs. In this paper, we aim to minimize the
overall cost. Hence, to minimize the objective cost, we need
to make a tradeoff. For some tenants, the required VMs would
be split into multiple pieces and be placed on different PMs,
respectively.

To formulate the VM placement problem, we introduce
some notations. Let each PM have c slots. For each tenant
Γi (0 ≤ i < n), the required number of VMs is ri. In the
final placement, let ri be split into Ki pieces, represented by
rijκ (1 ≤ κ ≤ Ki), where jκ is the PM where the κth piece
is placed on.

For each request ri, we define cost function φi to indicate
the N-cost caused by ri in the final placement. Intuitively, φi is
mainly determined by Ki and rijκ ; we will discuss this later.
Here, we just let φi be an indicator function, i.e. if Ki > 1,
φi = 1; otherwise, φi = 0. Let the unit PM-cost be ρ. We
define the VM placement for cost minimization problem as
follows:

Definition 1 (VM Placement for Cost Minimization): We
are given requests set R = {ri|0 ≤ i < n}, and a set of
uniform PMs with c slots in a data center. Present a VM
placement such that the overall cost is minimized. It can be
formalized as:

min
n−1∑

i=0

φi +m · ρ (1)

where m is the number of PMs utilized in the final placement.
The resource capacity constraint is employed for all PMs.

B. Hardness

Theorem 1: The VM Placement for Cost Minimization
(VMP-CM) problem is NP-hard.
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(a) Centralized Model (b) Distributed Model

Fig. 2. Request ri is split into 4 pieces (ri0, ri1, ri2, ri3), represented
by circles, and placed on four different PMs. There are two communication
models for the pieces to cooperate with each other. One piece acts as the
central node in centralized model, and all of the other pieces communicate
with it. In the distributed model, there is traffic between every pair of pieces.

Proof: In the optimal solution, the N-cost should be zero,
and the number of running PMs is minimized. For a given
requests set, we can easily get the lower bound of the number
of PMs, i.e. m ≥ �∑n−1

i=0 ri/c�, where n is the number of
requests. Hence, we can fix m as its lower bound. Next,
we prove that minimizing the value of the sum of N-cost
(
∑n−1

i=0 φi) is NP-hard.

First of all, it is easy to verify the feasibility of a given
solution in polynomial time. We next show that VMP-CM
problem can be reduced from the subset-sum problem. The
subset-sum problem can be formulated as follows: given a set
of integers A = {I1, · · · , In}, determine whether there exists
a subset Ac, such that

∑
Ii∈Ac Ii =

∑
Ii∈A Ii/2.

Then, given an input as listed above, we construct a VMP-
CM problem as follows: in the constructed case, we have n
requests {r1, r2, · · · , rn} and two PMs {p1, p2}. Assume the
required amount of each request is ri = Ii, and the capacity of
each PM is

∑n
i=1 ri/2 =

∑n
i=1 Ii/2. Clearly, if there exists a

subset of numbers from A such that the sum of those numbers∑
Ii∈Ac Ii =

∑
Ii∈A Ii/2, we are able to find a VM placement

with zero cost by placing all requests in Ac to PM p1, and place
the remaining requests to PM p2. This placement ensures that
all requests can be placed without partition. On the other hand,
if there exists a VM placement with zero cost, we can pick
those requests that are placed on the same PM, and the union
of corresponding integers must be a feasible Ac.

C. Cost Function

From the Theorem 1, the general VMP-CM problem is
hard, even when we just consider the simplest cost function.
Here, we introduce three cost functions, each of which cor-
responds to one communication model. As mentioned above,
some requests will be split into many pieces, and we use Ki

to indicate the number of pieces. Though the volume of inter-
PM traffic is always unaware, we can achieve the number of
inter-PM traffic links from the final placement. Hence, we use
Ki to define the N-cost. Here, the intra-PM traffic is ignored
if the VMs are placed on the same PM. Specifically, we define
the following three cost functions.

Centralized Model Cost Function (CCF): φ
(1)
i = Ki.

For each request, N-cost equals the number of pieces. It is
motivated by the centralized communication model, as shown
in Fig. 2(a). It seems that each team member communicates

with some central node, which could be the project manager,

central data node, etc.. In fact, the function should be φ
(1)
i =

Ki − 1, but the two expressions have the same result. We

employ φ
(1)
i = Ki to simplify the description.

Distributed Model Cost Function (DCF): φ
(2)
i = K2

i .
This function corresponds to the distributed communication
model, as shown in Fig. 2(b). There exists a traffic link between
every two pieces, which means that every two team members
communicate with each other. In fact, the number of inter-PM

traffic links should be Ki(Ki − 1)/2; we use φ
(2)
i = K2

i for
simplification.

Enhanced Distributed Model Cost Function (E-DCF):
φ
(3)
i = 1

2

∑Ki

κ=1 r
(κ)
i · (r − r

(κ)
i ), where r

(κ)
i is the κth piece

of ri. This function shares the same communication model
with DCF, but the size of each piece is taken into account.
In this function, the granularity of inter-PM link is VM-to-
VM communication, while the previous two can be treated
as “piece”-to-“piece” communication. For consistency, we let

φ
(3)
i = 1, when Ki = 1.

III. HOMOGENEOUS CASE

According to the problem description, the objective cost
consists of two parts: N-cost and PM-cost. Here, we assume
that unit PM-cost is extremely large, which forces us to use
as fewer PMs as possible. Hence, the number of PMs is fixed
as the lower bound of m, which can be easily obtained via
the input requests. Also, we assume that ∀i, ri ≤ c. In fact, if
ri > c, we can allocate some PM(s) to the tenant Γi, and let
ri = ri mod c. Therefore, the problem reduces to minimize
the N-cost for given number of PMs. This problem can be
reduced from the subset-sum problem, which is also NP-hard.

Based on the value of ri, the problem can be classified into
homogeneous case and heterogeneous case. In homogeneous
case, ∀i, j, ri = rj = r (r ≤ c); while in heterogeneous case,
the value of ri can be different. In this section, we study the
homogeneous case under different cost functions.

A. Centralized Model Cost Function

To minimize the objective cost φ(1) =
∑n−1

i=0 Ki, where
n is the number of requests, we should split the requests as
less as possible. We present a recursive algorithm, as shown
in Algorithm 1. The basic idea is to achieve as many perfect
placements as possible, then to split the unplaced requests into
pieces. The process can be executed recursively. Obviously,
if the number of requests is sufficiently small, say n ≤ α ·
m (α = c/r), then there exists some perfect placement of
VMs achieving zero additional N-cost.

In the algorithm, the first α·m requests are placed perfectly,
and lead to zero additional N-cost. For the other requests,
it is impossible to achieve perfect placement. We split the
requests into pieces, and let the size of each piece be equal to
u (u = c mod r); it should be noticed that u is the currently
available resource size for each PM. The partition will lead
to β (β = r/u) regular pieces, and one smaller piece with
the size equaling v (v = r mod u), which is less than u.
Then, we place the β regular pieces on β PMs. For now, α ·m
requests are placed perfectly, other requests are split into β+1

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1844



Algorithm 1 Recursive-based Placement RBP (m, c, n, r)

Input: m: number of PMs; c: capacity of PMs; n: number of
requests; r: number of required VMs.

1: α ← c/r, u ← c mod r;
2: if α ·m ≥ n then
3: perfect placement;
4: else
5: the first α ·m requests are placed perfectly;
6: β ← r/u, v ← r mod u;
7: for j = 0 → β · (n− α ·m)− 1 do
8: rij = u, (i = α ·m+ (j mod β));
9: RBP (m− β · (n− α ·m), u, n− α ·m, v);

pieces, and β regular pieces are placed on different PMs. So,
the current problem is to place n − α · m smaller pieces to
m− β · (n−α ·m) PMs, where the available number of slots
is equal to u for the PMs. It is the same problem as the original
one, but with smaller size. This is the reason why the recursive
algorithm works.

To gain a better understanding of the algorithm, we illus-
trate the solution structure in Fig. 3. According to Euclidean
Algorithm, the recursion will be terminated in limited steps.
For each recursive execution, we name it a layer. In Fig. 3,
each column of the left part indicates one PM. Layer 0 is
shown in the left part, excluding the blue dashed rectangle. The
upper red dashed rectangle is the last layer of the recursion,
also the terminal case. What remains are middle layers of the
whole recursion process.

To analyze the performance of the recursive algorithm,
we introduce some notations to describe the pieces. Let rij
represent the piece placed on PM j of ri. We classify the
pieces into two types: terminal-piece (TPC) and continue-piece
(CPC). TPC means that one piece is placed completely without
split at some layer; the others are CPCs. For example, in layer
0, the pieces with the size equal to r are TPCs, others are
CPCs; in layer 1, the pieces with the size equal to v are
TPCs, others are CPCs; in the last layer, all pieces are TPCs.
Learning from the algorithm and solution structure, we have
the following facts. (1) There is exactly one TPC for each
request. (2) There is at most one CPC on each PM.

To simplify the description of performance analysis, we
define an operation here. Assuming sj is a set of pieces placed
on PM j, it also represents the sum of the sizes of the pieces.
We define the operation swap(si, sj) as follows. If si = sj ,
then swap si and sj . If si > sj , split si into two parts, s∗i
and s�i , such that s∗i = sj . Then, swap s∗i and sj . It is easy to
get s∗i , because we can partition one piece into two parts. It is
similar for the case si < sj . In addition, if si and sj are just
single piece, we still use the definition for simplification.

Theorem 2: Algorithm 1 gives the optimal solution, when

∀i, ri = r ≤ c, and φi = φ
(1)
i .

Proof: It is obvious that the theorem is true if α ·m ≥ n.
We just discuss the case when n > α ·m. We will prove the
theorem by construction. Assume F opt is the optimal place-
ment, and F rbp is the solution given by our algorithm. We use
cost(·) to indicate the objective cost caused the by placement.
So we have cost(F opt) ≤ cost(F ∗), where F ∗ is any feasible
placement. We will prove cost(F opt) = cost(F rbp).

Fig. 3. Solution Structure. For each PM, the capacity is c, and each user
requires r VMs. Layer 0 is shown in the left part, excluding the blue dashed
rectangle. The upper red dashed rectangle is the last layer of the recursion,
also the terminal case.

We define the piece with the size less than r as fragment,
and blank space is also fragment. Then we define a special
case Ω: for any PM, the sum of the sizes of the fragments is
more than r. Obviously, there is no case Ω in our solution. We
can construct an equivalent optimal solution without case Ω if
there exists case Ω in F opt.

Without loss of generality, we assume that PM j contains
case Ω. Let rij be one of the fragments, and sj be the union of
the other fragments of PM j. For request ri, there must exist
another piece rij′ on PM j′. We always have sj > rij′ , since
sj +rij > r. Then, we do swap(sj , rij′). We should be aware
that the swap operation will not change the fact whether PM j′
contains case Ω. For the other pieces of ri, we can repeat this
swap operation until there is only one piece for ri. Hence, the
sum of sizes of fragments on PM j can be reduced by r, which
implies that the case Ω on PM j can be eliminated through
limited swap operations.

Accordingly, we can eliminate case Ω for all PMs. Hence,
we state that we can construct an optimal solution without
case Ω, or just say that F opt does not contain case Ω. There
are α pieces with size equal to r on each PM. Therefore, we
have cost(F opt) = α · m + cost(Hopt), where Hopt is the
optimal solution for the following subproblem (H): placing
the remaining n− α ·m requests on m PMs with capacity u.
Then, we prove that our solution can be reduced from Hopt.
Let r = β · u + v, 0 ≤ v < u. Similar to the above method,
we define the piece with the size less than u as fragment in
Hopt. Without loss of generally, assume that rij and rij′ are
two fragments of ri on PM j and j′, and sj is the union of
fragments on PM j, excluding rij . Then, we do swap(sj , rij′).
Obviously, the swap operation will not introduce extra cost.
Through the swap operations, there will be at most 1 fragment
for ri, and the other pieces of ri have the size equal to u. This
means that we should split ri into β pieces with size equal to
u, and place the pieces on β PMs, which is just the solution
given by our algorithm.

Therefore, the remaining subproblem (G) is to place n −
α ·m requests on m−β · (n−α ·m) PMs, where the required
size is v, and the PM capacity is u. We have cost(F opt) =
α ·m + cost(Hopt) = α ·m + β · (n − α ·m) + cost(Gopt),
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Algorithm 2 construction(m, c, n, r)

Input: m: number of PMs; c: capacity of PMs; n: number of
requests; r: number of required VMs.

1: RBP (m, c, n, r);
2: for i = 0 → n− 1 do
3: if Ki > 2 then
4: for κ = Ki → 2 do
5: swap(rijκ , sjκ−1);

cost(F rbp) = α · m + cost(Hrbp) = α · m + β · (n − α ·
m) + cost(Grbp). The subproblem (G) is the same problem
as the original one, but with a smaller size. We can solve it
recursively. Combined with the terminal case of recursion, we
have ost(F rbp) = cost(F opt). Hence, we conclude that our
algorithm gives the optimal solution.

B. Distributed Model Cost Function

In this part, we study the case when the DCF is employed.
It is obvious that the solution which minimizes cost under DCF,
also makes the cost under CCF minimized. This motivates
us to construct the optimal solution based on the solution
given by Algorithm 1. For the fixed minimal φ(1), it should
be partitioned into m parts with the equal amount in order to
achieve minimized φ(2) =

∑n−1
i=0 K2

i . However, the amount of
each part should be an integer, since Ki ∈ N

+. This motivates
us to construct the new placement to balance values of Ki as
much as possible.

We present Algorithm 2 based on the previous algorithm.
For each request that has more than 2 pieces, we first find
its TPC rijKi

, where we use jκ (1 ≤ κ ≤ Ki) to indicate

the index of the PM that contains the κth piece of ri. To
decrease the number of pieces of ri, we do swap(rijκ , sjκ−1),
where sjκ−1 is the piece with size equal to r on PM jκ−1. To
understand the algorithm better, we show an example in Fig.
4. In the example, we have 8 requests, from r1 to r8. (To show
the example clearly, the index begins from 1, but not 0 used
in the algorithm.) Let c = 8, r = 5, m = 5. The first subfigure
shows the placement given by Algorithm 1, where K8 = 3 >
2. Then we construct the new placement based on the basic
solution. r85 is the TPC of request r8, then we start the swap
operation. The red dashed rectangle in Fig. 4(b) corresponds
the piece s4 (sjκ−1) in the algorithm. We do swap(r85, s4),
as a result, K4 becomes 2 and K8 is decreased by 1. Then, do
the same operation on the blue rectangle. Finally, we achieve
the placement that minimizes the objective function φ(2). Next,
we will prove the optimality of Algorithm 2.

Theorem 3: Algorithm 2 gives the optimal solution, when

∀i, ri = r ≤ c, and φi = φ
(2)
i .

Proof: First of all, we prove the feasibility of the swap
operations in Algorithm 2. Without loss of generality, we
assume Ki > 2. From the algorithm description, we know that
one condition is necessary to execute the all swap operations
legally. The necessary condition is that there must be at least
1 perfectly placed request on the PMs that contains CPC of ri.
The perfectly placed piece will provide its part to be swapped
out of the PM. The swap starts from the TPC of ri, so it
is unnecessary for the PM that contains TPC of ri to have
a perfectly placed request. According to the features of TPC
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(a) Placement given by Algorithm
1. There are 2 layers, and K8 = 3.
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(b) The TPC of r8 is located (red
rectangle), and s4 (red dashed rect-
angle) is selected.
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(c) Do swap(r85, s4), then we
have K3 = 2,K8 = 2. s3 (blue
dashed rectangle) is selected.
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(d) Do swap(r84, s3). We achieve
the final optimal placement.

Fig. 4. An example of homogeneous case, where m = 5, c = 8, n = 8, r =
5. Placement in (a) is optimal for the CCF, but not for DCF, since K8 = 3.
After two swap operations, we achieve the final optimal placement for DCF.

and CPC, there is at most one CPC on each PM, so only one
perfectly placed piece on each PM is enough. In fact, there
are α (α ≥ 1) perfectly placed pieces on each PM, since we
assume r ≤ c. Hence, we state that Algorithm 2 is feasible.

After the swap operations for all requests that have more
than 2 pieces, their piece number becomes 1, and for the other
requests that participate swap, their piece number becomes 2.
For the other requests, their piece number remains unchanged.
So, in the final placement, the value of Ki is 1 or 2. And the
total number of pieces

∑n−1
i=0 Ki remains the same, still the

minimal value. Motivated by the inequality x2 + y2 ≥ 2xy,
we know that the new Ki distribution gives the minimal cost
for objective function φ(2) =

∑n−1
i=0 K2

i .

C. Enhanced Distributed Model Cost Function

Here, we study the case when E-DCF is employed. To
have a basic knowledge of the optimal placement, we list
some observations about the optimal solution. We assume that
riu, riv , rju, and rjv are four pieces, then we have: (1) The
four pieces will not coexist in the optimal placement, because
we can do swap(riu, rjv) or swap(riv, rju), which will lead
to better placement. (2) If riu ≥ riv and riu + riv > rjv ,
then riu, riv , and rju will not coexist. This is because we
can do swap(rju, riv) to achieve better placement. These two

statements are easy to prove according to the definition of φ
(3)
i .

Theorem 4: Algorithm 1 gives the optimal solution, when

∀i, ri = r ≤ c, and φi = φ
(3)
i .

Proof: From the observation 2, we can construct the
optimal solution from any given placement. The construction
process is shown as: (1) Mark the pieces that have the size
equal to r as red; otherwise, black. (2) Select the piece with
largest size among the black pieces, and assume riu is selected.
(3) Do the operation swap(rju, riv), as shown in the above
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Algorithm 3 Sorting-based Placement SBP (m, c, n,R)

Input: m: number of PMs; c: capacity of PMs; n: number of
requests; R: the set of requests

1: sort(R);
2: while R is not empty do
3: if the first item (r0) in R can be placed perfectly then
4: place r0 in first fit manner;
5: else
6: split r0 to two pieces, such that one piece can be

placed the PM with the most available slots com-
pletely; then, insert another piece to the remaining
set R, while preserving the order;

7: remove r0 from R;

observation 2, until no rju or riv can be selected. Then mark
the new riu red. (4) Repeat step 2 and 3, until all of the pieces
are marked as red.

In step 3, the swap operation is feasible because riu has
the largest size among the black pieces. The swap operations
will be terminated until Ki = 1 or the other pieces on PM u
are all marked as red. The former case is easy to understand.
For the latter case, if there is a black piece on PM u, the
swap operation can continue because riu is the largest one,
and its size increases as the swap operations progress. We
also should notice that, the red pieces will not participant in
the swap operations any more. This is because the red piece
has the size equal to r, or there are no black pieces on the
PM it located. From the construction process, we know that
there will be α perfect placements on each PM, and other
requests will occupy as fewer PMs as possible. Compared to
the solution structure in Fig. 3, we conclude that Algorithm 1
gives the optimal placement.

IV. HETEROGENEOUS CASE

We have discussed the homogeneous case above, and have
presented optimal algorithms under various cost functions. In
this section, we further investigate a more complex case: the
number of required VMs of tenants are different. It is an NP-
hard problem, as we proved at the beginning. We present
an approximation algorithm (SBP) here, motivated by the
previous two algorithms, as shown in Algorithm 3. The basic
idea is to place the requests with more required VMs first,
since the requests with more VMs may lead to higher costs if
they are split. Hence, we first order the requests in descending
order of the number of required VMs.

The process is that placing each request in first-fit manner
if there exist PMs with sufficient slots to host the required
VMs. Otherwise, selecting the PM with the most available
slots to host as many required VMs as possible, the part
(piece) that cannot be placed on the current PM is reinserted
to the remaining unplaced requests set, while preserving the
descending order. The complexity of sorting is O(n log n),
and there are O(m) operations for each request. So the
complexity of Algorithm 3 is O(n log n+nm). To gain better
understanding of this algorithm, we give an example in Fig.
5. There are 7 requests, indicated with different colors. For
each notation in the blank, the upper symbol rij refers the
piece place on PM j of request ri, the lower number in the
parenthesis is the size of rij . The requests are sorted first, and
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Fig. 5. An example of SBP algorithm. The input is: r1 = 3, r2 = 6, r3 =
4, r4 = 5, r5 = 7, r6 = 2, r7 = 5. Each request is indicated with different
colors. For each notation in the blank, the upper symbol rij refers to the piece
placed on PM j of request ri, the lower number in the rectangle is the value
of rij , i.e. the size of this piece.

then the first 4 requests are placed on 4 PMs, respectively. r3
is split into two pieces, since the available slots of PM 3 is
insufficient. In the final placement, the objective cost is 8, 10,
and 9 under CCF, DCF, and E-DCF, respectively.

We continue to analyze the performance of the SBP algo-
rithm. From the placement process, we know that there are
at most m + n placement operations. Because there are two
cases for each placement: as one request is placed perfectly,
the number of unplaced requests is decreased by 1; as one
request is split into two pieces, the number of available PMs
is decreased by 1, but the number of requests remains. Hence,
we have

n−1∑

i=0

φ
(1)
i =

n−1∑

i=0

Ki < m+ n ≤ 2 · n ≤ 2 ·OPT,

which means the SBP algorithm can achieve 2-approximation
ratio under CCF.

For DCF, since the function f(x) = x2+y2 is a monotoni-
cally increasing function when x+ y = z, x ∈ (z/2, z), where
z is a fixed constant value. Also, Ki should be an integer. So
we have

n−1∑

i=0

φ
(2)
i =

n−1∑

i=0

K2
i ≤

n−2∑

i=0

12 + (m+ n− 1− (n− 1))2

≤ n− 1 +m2 < (n+ 1) · n ≤ (n+ 1) ·OPT.

For E-DCF, we consider the function f(x) = x(r − x) +
y(r − y), when x + y = z, z < r is a fixed constant value.
It is easy to know that f(x) reaches the maximal value when
x = y = z/2. So, we conclude that

φ
(3)
i ≤ 1

2
·Ki · ri

Ki
· (ri − ri

Ki
) =

r2i
2
(1− 1

Ki
).

For the function f(x) = 1
x+

1
y , where x+y = z, z is a fixed

constant value. It reaches the minimal value when x = y = z
2 .

Since
∑n−1

i=0 Ki < m+ n, we have

n−1∑

i=0

φ
(3)
i ≤

n−1∑

i=0

r2i
2
(1− 1

Ki
) ≤ n ·m · c2

2(m+ n)
.
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Fig. 6. An example shows how the cost changes as the increase of the
number of PMs. Here, c = 12, n = 200, ri ∈ [6, 12], uniform distribution.
The three lines show the case when λ = 2, λ = 3, and λ = 4, respectively.

V. GENERAL CASE

In the previous sections, we have investigated the place-
ment problem in order to minimize the N-cost. Here, we
study the general case, in which both N-cost and PM-cost
are taken into account. For the PM-cost, it is proportional
to the number of running PMs. Here, we assume that the
requests are heterogeneous. We first consider the number of
opening PMs (m). For given user requests, we can easily give
the lower bound and the upper bound of m. The available
resource should be sufficient to host all the required VMs, and
at most one PM is enough to host a single request. So we have
�∑n−1

i=0 ri/c� ≤ m ≤ n. Hence, in the optimal solution, the
number of PMs should be one value between the lower bound
m1 and the upper bound m2. Actually, the optimal number of
PMs mo will be determined by the relationship of PM-cost
and N-cost.

Let δ indicate the unit cost caused by one inter-PM traffic
link, and ρ refer to the unit cost of opening a new PM. If
ρ is extremely larger than δ, the problem is the same as
the cases discussed above, and mo = m1 = �∑n−1

i=0 ri/c�.
This is because we are forced to use fewer PMs to minimize
the PM-cost. On the other hand, if ρ < δ, there will be no
traffic between PMs in the optimal placement solution. This
is because we can open a new PM to host the request that is
split into many pieces. Hence, without loss of generality, we
let ρ = λ · δ (λ > 1).

To investigate how the cost varies as the number of PMs
changes, we conduct extensive simulations. Fig. 6 shows an
example of how the cost changes as the number of PMs in-
creases. In this example, the inputs are set as: c = 12, n = 200,
∀i, ri ∈ [6, 12], and follow the uniform distribution. In Fig.
6, the x-coordinate is the number of used PMs (m), while
the y-coordinate is a ratio value, which equals π(m)/π(m2).
The results show the case for CCF, and the SBP algorithm is
invoked as the function π(·). We show the results when λ = 2,
λ = 3, and λ = 4. Because the number of inter-PM traffic
links is no more than m in the placement given by the SBP
algorithm. Hence, the value of λ will be small. If we consider
the E-DCF, λ will be large, since the number of inter-VM links
is much more than inter-piece links. They are two cases with

Algorithm 4 Binary Search Based Solution bs(m1,m2)

Input: m1: lower bound of the number of PMs; m2: upper
bound of the number of PMs.

Output: the optimal number of PMs mo and minimal cost
1: m ← (m1 +m2)/2;
2: if m1 = m2 then
3: return m and π(m);
4: else if π(m) < π(m+ 1) ∧ π(m) < π(m− 1) then
5: return m and π(m);
6: else if π(m) > π(m+ 1) ∧ π(m) < π(m− 1) then
7: return bs(m+ 1,m2);
8: else if π(m) < π(m+ 1) ∧ π(m) > π(m− 1) then
9: return bs(m1,m);

10: else
11: return min{bs(m1,m), bs(m+ 1,m2)}

different granularity. According to the simulation results, we
have the following conjecture.

Conjecture 5: ∀u ∈ (m1,mo), v ∈ (m0,m2), π(u) ≤
π(u + 1), π(v) ≥ π(v − 1), where π(x) indicates the cost
when the number of PMs is x.

On the basis of Conjecture 5, we present a binary search
based algorithm to find the optimal solution, as shown in Al-
gorithm 4. Since the total cost is monotone between (m1,mo)
and (mo,m2), we can employ the binary search idea to locate
the value of mo. At each round, we judge the location of
the selected value through comparison with the two neighbor
points. There may be five cases, according to the comparison,
we can achieve the optimal mo recursively. According to
the master theorem [5], the complexity of Algorithm 4 is
O(n(n log n+ nm)), when the SBP algorithm is invoked.

VI. EVALUATION

In this section, we evaluate the performance of the al-
gorithms under different cost functions. For the algorithms
that have been proven to be optimal, we will not make
verification again. We implement a greedy based placement
(GBP) algorithm, and take it as the expected baseline of the
algorithm performance.

A. Greedy Algorithm

The basic idea of GBP is that, for each request, place the
required VMs on the current PM as much as possible; when the
current PM is fully loaded, then place the part that exceeds the
PM capacity on the next PM. Hence, there are at most 2 pieces
for each request, and we have the following conclusions:

n−1∑

i=0

φ
(1)
i < m+ n ≤ 2 · n ≤ 2 ·OPT

n−1∑

i=0

φ
(2)
i ≤ 4 · n ≤ 4 ·OPT

n−1∑

i=0

φ
(3)
i ≤

n−1∑

i=0

r2i
4

≤ c2

4
· n ≤ c2

4
·OPT
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(a) CCF (b) DCF

(c) E-DCF (d) Increase m

Fig. 7. The simulation results of heterogeneous case, only N-cost is
considered. The first three sub-figures correspond to the three cost functions,
and the last sub-figure shows the trend of the average cost as m increases.

B. Simulation Settings

In our simulations, motivated by the Amazon EC2 In-
stances [1], we take the number of ECUs (Elastic Compute
Units) as the measurement of VM size and PM capacity. For
example, HP ProLiant SL390s G7/BL460c G6 servers [8] have
the following parameters: (42:96), (40:96), (32:96), (26:72),
(20:8), (12:16); each pair is an instance of the 2-tuple of
the number of ECUs and memory size. Based on these real
instances, we make the following settings. We consider 4 kinds
of PMs with various capacities: 40, 32, 20, and 12. For the
requests, we assume that there are 7 types of instances: 5, 8,
13, 16, 20, 26, and 35. We will evaluate the algorithms on
these 4 kinds of PMs respectively. The requests are generated
randomly as the inputs of the algorithms. The instances that
do not exceed the capacity are considered for different cases.

We conducted various experiments where the number of
requests (n) is fixed as 1, 000. This is because the perfor-
mance is similar even if n increases significantly, since the
inputs with various sizes follow the same distribution. In our
simulations, each run of the experiments was done 100 times,
under different random inputs; we present the average of these
experiments. (1) For the heterogeneous case when only N-cost
is considered, the number of PMs (m) is fixed as the lower
bound. We evaluate the cases for the three cost functions. To
show the results clearly, and make it comparable for different
settings, the objective cost is represented by the average cost
of all requests, i.e. the value of objective cost divided by n.
We also take simulations to show how the N-cost changes if
more PMs can be used. (2) For the general case when both
N-cost and PM-cost are taken into account, we test how the
average cost changes as the number of PM increases, as shown
in Fig. 6. We evaluate the efficiency of our binary search based
algorithm, by comparing it to the greedy algorithm. We show
how the PM capacity and coefficient λ affect the performance

(a) CCF (b) DCF

(c) E-DCF (d) E-DCF (large λ)

Fig. 8. The simulation results of the general case, both PM-cost and N-cost
are taken into account.

of the algorithms.

C. Simulation Results

Fig. 7 shows the simulation results of the heterogeneous
case from the two algorithms (SBP and GBP), under three
cost functions. Fig. 7(a) shows the results of CCF. The x-
coordinate is the PM capacity, while the y-coordinate indicates
the average cost. The value 1.0 implies that ∀i,Ki = 1, which
is the perfect placement. According to the results, we have
the following observations. (1) SBP performs better than GBP,
although GBP has a better approximation ratio. (2) As the
capacity of PM increases, SBP has a better performance. This
is because a request is more likely to be placed perfectly on the
PM with larger capacity. (3) The average cost will not exceed
2.0, according to the features of GBP and SBP.

Figs. 7(b) and 7(c) have the same format as Fig. 7(a). In
the case DCF, the results are similar to case CCF, since Ki

is the only variable in both CCF and DCF. For the case E-
DCF, SBP has a significantly better performance than GBP. In
the GBP algorithm, some request is split into two pieces; the
product of these two pieces will be a large value, especially
when the two pieces have the same size. In the SBP algorithm,
though some requests are split into more than two pieces, each
piece is not very large. The product will also be controlled as
a limited value.

We show how the average cost changes when we increase
the number of PMs in Fig. 7(d). It should be aware that
only N-cost is considered here. Here, we set c = 40. For
GBP algorithm, we only show the result of case CCF. The
results correspond to three cost functions are shown for SBP
algorithm. From Fig. 7(d), we know that more PMs will lead to
less N-cost, which confirms our theoretical analysis. Therefore,
the average cost tends to 1.0 as m increases.

Fig. 8 shows the results of general case, where both PM-
cost and N-cost are taken into account. In each sub-figure, the
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x-coordinate is the value of λ, while the y-coordinate refers to
the ratio of the cost, given by Algorithm 4, to the cost given
by GBP algorithm. Each line corresponds to one setting of PM
capacity. As the increase of λ, the unit PM-cost becomes large,
which forces fewer PMs are used in the optimal placement. The
first three sub-figures, the results under the three cost functions
are given. For the same setting, case DCF has less ratio than
CCF. That is because there are more inter-PM traffic links
under DCF than CCF for the same placement. The enlargement
of the number of PMs has a more significant effect on DCF
than CCF. The case E-DCF in Fig. 8(c) verifies the above
conclusion more clearly. This is because of the divergence of
the link granularity between E-DCF and DCF. The ratio is
less than 0.5 if c ≥ 20, even when λ = 30. For this reason,
we shown another result in Fig. 8(d), where the value of λ is
large. However, the value of ratio is still under 7.0. This shows
we have more opportunity to achieve a better tradeoff between
PM-cost and N-cost.

VII. RELATED WORK

Virtual machine placement is one of the key issues as
the employment of server virtualization in cloud system. [9]
provides a high level overview of the virtual machine place-
ment problem. Typically, simple virtual machine placement is
similar to the classical vector bin packing problem, which
is a well-known NP-complete problem [6]. Lots of works
have been conducted under various constraints and goals,
for example, availability [4] [16], scalability [13], and cost
efficiency [11]. Among these, network is the most attractive
issue. Many literatures [8] [10] [13] [14] [15] [18] have studied
this from various aspects.

Assigning networked VMs to a set of PMs, which is
different from placing single independent VM, falls under the
graph partition problem, another NP-hard problem [6]. The
problem is modeled in [13], the basic resource unit is regarded
as a slot, and one VM occupies one or more slots. The authors
investigate the problem with the target to minimize the total
communication cost, while assuming the traffic between VMs
are known. The authors in [8] proposed shadow scheme to
place VMs in order to minimize the maximum of appropriately
defined DC utilization. There are two layers in the solution.
The VM is routed to some data center first, and then assigned
to some PM. The target of this work is to minimize the network
utilization. Similar topics are studies in [10]. In [17], the
authors studies the VM placement problem with product traffic
pattern in data centers. However, the traffic model discussed in
their work is somewhat unrealistic. In [3], the authors also took
the popular MapReduce/Hadoop architecture into consider, and
investigate the data intensive cloud applications. The objective
is to optimize the data access latencies under various cases.

VIII. CONCLUSION

In this paper, we study the VM placement problem for
cost minimization. The problem is investigated by two phases,
under three different cost functions, respectively. We first put
emphasis on minimizing the N-cost for given PMs. The prob-
lem is further classified into homogeneous case and heteroge-
neous case in the first phase. For the homogeneous case, we
present optimal algorithms and prove their optimality. For the
heterogeneous, we propose an approximation algorithm, which

achieves 2-approximation ratio for the basic cost function CCF.
We then discuss the general case in the second phase, where
both the PM-cost and N-cost are taken into account. We present
a binary search based heuristic algorithm to achieve a better
tradeoff between PM-cost and N-cost, which leads to less
cost. To evaluate the performance of our algorithms, theoretical
analysis and extensive simulations are conducted.
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