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Abstract—Data clustering is an important data mining technol-
ogy that plays a crucial role in numerous scientific applications.
However, it is challenging due to the size of datasets has
been growing rapidly to extra-large scale in the real world.
Meanwhile, MapReduce is a desirable parallel programming
platform that is widely applied in kinds of data process fields.
In this paper, we propose an efficient parallel density-based
clustering algorithm and implement it by a 4-stages MapReduce
paradigm. Furthermore, we adopt a quick partitioning strategy
for large scale non-indexed data. We study the metric of merge
among bordering partitions and make optimizations on it. At
last, we evaluate our work on real large scale datasets using
Hadoop platform. Results reveal that the speedup and scaleup
of our work are very efficient.
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I. INTRODUCTION

Clustering is a process of grouping data into different class-

es such that intra-class similarity is maximized and the inter-

class similarity is minimized. Clustering has played a crucial

role in numerous applications such as pattern recognition,

information retrieval, social networks, and image processing.

So far, a number of clustering algorithms have been pro-

posed [1] [2] [3] [4] [5], among which one of the most impor-

tant approach is DBSCAN (Density-Based Spatial Clustering

of Applications with Noise) [2].

DBSCAN is an effective density-based clustering method

which was first proposed in 1996. Compared with other

clustering methods, DBSCAN possesses several attractive

properties. First, it can divide data into clusters with arbitrary

shapes. For example, it can find clusters totally surrounded by

another cluster. Second, DBSCAN does not require the number

of the clusters a priori. Third, it is insensitive to the order of

the points in the dataset. As a result, DBSCAN has achieved

great success and become the most cited clustering method in

the scientific literature.

However, performing DBSCAN efficiently in real-world

applications is challenging due to two reasons. First, the sizes

of the datasets are growing rapidly so that they can not be

held on a single machine any more; Second, the advantages

of DBSCAN come at a cost, i.e., at a much higher computation

complexity compared with other clustering methods such as

K-means [1]. A recommended way to solve these problems is

to perform DBSCAN algorithm in parallel on a shared-nothing

cluster.

For large-scale dataset analysis, MapReduce [6] is a desir-

able parallel programming platform based on shared-nothing

architectures. Ever since it was first introduced in 2003,

MapReduce received great success due to its simplicity, scal-

ability, and fault tolerance. Specifically, MapReduce provides

users with readily usable programming interfaces while hid-

ing the messy details for parallelism. Moreover, MapReduce

divides a job into small tasks and materialize the intermediate

results locally. As such, upon a node failure, only the failed

task needs to be re-executed. Consequently, MapReduce can

scale up to thousands of commodity nodes where node failure

is normal. In this paper, we adopt MapReduce as the platform

to perform our parallel DBSCAN algorithm.

Designing an efficient DBSCAN algorithm in MapReduce

has three main challenges. First, due to the simplicity of

MapReduce, the data interchanging mechanism is limited.

Specifically, data transferring between map nodes or reduce

nodes is not encouraged, making the parallelism of DBSCAN

nontrivial. Second, although MapReduce can process text-

based data queries efficiently, it becomes quite clumsy when

dealing with spatio-temporal data. The main reason is that

spatio-temporal data are multi-dimensional, yet MapReduce

does not provide any mechanisms, such as R-tree [14] or KD-

tree [9], to improve the efficiency of multi-dimensional search.

Third, maximum parallelism can only be achieved when the

data is well balanced. However, in real applications, data are

often highly skewed and thus cares should be taken during the

process of data partitioning. In this paper, we address these

challenges by proposing MR-DBSCAN, an efficient parallel

DBSCAN algorithm using MapReduce. The contributions of

this paper is as follows:

• To the best of our knowledge, it is the first paper

to implement an efficient DBSCAN algorithm in a 4-

stage MapReduce paradigm. We analysis the concurrent

parallel DBSCAN algorithm and make an optimization

on our algorithm to reduce the frequency of large data
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I/O as well as the spatial complexity and computation

complexity.

• We analysis and propose a practical data partition strategy

for large scale non-indexed spatial data.

• We evaluate the performance in a lab-size 13-nodes

cluster using a real world spatial dataset, which contains

over 1.9 billion GPS raw records from Shanghai taxi GPS

reports for one month. We reveal that it could be clustered

in acceptable time limits and offers efficient scaleup and

speedup.

The structure of this paper is organized as follows. Section

2 briefly introduces the Map-Reduce paradigm and surveys

previous effort to do the DBSCAN clustering and its parallel-

ing. In Section 3, we present our design and implementation

of MR-DBSCAN. A performance evaluation is presented in

Section 4. Finally, we conclude this paper and discuss the

future works in Section 5.

II. BACKGROUND AND RELATED WORK

A. MapReduce Overview

MapReduce [6] is a programming paradigm for data-

intensive applications. Due to its simplicity, MapReduce can

effectively handle failures and thereby can be scaled to thou-

sands of nodes. The input data are usually partitioned and

stored on a distributed file system that is shared among all

nodes.

In MapReduce paradigm, data are represented as (key,
value) pairs. As is shown in Figure 1, a job in MapReduce

contains three phases: Map, Shuffle, and Reduce. In most

cases, the user only need to write the map function and the

reduce function. In map phase, for each input pair (k1,
v1), the map function generates one or more output pairs list

(k2, v2). In shuffle phase, the output pairs are partitioned

and then transferred to reducers. In reduce phase, pairs with

the same key are grouped together as (k2, list(v2)).

Then the reduce function generates the final output pairs

list(k3, v3) for each group. The whole process can be

summarized as follows:

Map (k1, v1) −→ list(k2, v2)
Reduce (k2, list(v2)) −→ list(k3, v3)

It is worth pointing out that the framework also allows the

user to provide initialization and tear-down function for map

and reduce phase. Output pairs can be also generated in these

functions. More details of MapReduce and Hadoop, its open-

source implementation, can be found in [7].

We noted that the utilization of MapReduce on clustering

has emerged recently. dFoF [8] is an attempt to porting Friends

of Friends algorithm to MapReduce framework. To deal with

data skew problem, [8] leverages the k-d tree [9] and

Recursive Coordinate Bisection (RCB) [10] with sampling to

perform the non-uniform partition. This solution is not a silver-

bullet in any scenarios that we will discuss in Section 3.

Fig. 1. Data flow in MapReduce

B. Density-based Clustering Algorithms

The aim of clustering algorithm is to divide mass raw data

into separate groups (clusters) which are meaningful, useful,

and faster accessible. DBSCAN [2] and K-means [1] are two

main techniques to deal with clustering problem. DBSCAN

is a density-based clustering algorithm that could produce

arbitrary number of clusters in despite of the distribution of

spatial data, while the K-means is a prototype based algorithm

that could find approximate clusters of a defined number.

The main idea of DBSCAN is developing a cluster from

each point which contains at least a minimum number of

other points (MinPts) within a given radius (Eps). Eps
and MinPts are two preferences of this algorithm. Tuning

a suitable set of Eps and MinPts is a key problem for data

model and knowledge discovery.

Some key definitions of DBSCAN list as follows:

• Card(A): cardinality of set A.

• Directly density-reachable (DDR): o is DDR p if p ∈
NEps(o) and Card(NEps(o)) ≤MinPts.

• Density-reachable (DR): if there is a chain of points

{pi|i = 0, .., n} that each pi is DDR pi+1, then pi is

DR t, where t ∈ {pj |j = i+ 1, ..., n}.
• Density-connected (DC): if o is DR p and o is DR q, then

p is DC q.

• Core Point: o is a Core Ponit if Card(NEps(o)) >=
MinPts.

• Border Point: p is a Border Point if Card(NEps(p)) <
MinPts and p is DDR from a Core Point.

• Noise: q is a Noise if Card(NEps(p)) < MinPts and q
is not DDR from any Core Points.

For paralleling DBSCAN, PDBSCAN [11] is a good refer-

ence for our work. It is a master-slave-mode parallel imple-

mentation of DBSCAN based on traditional supercomputers

or computer cluster architecture. However, it is not fully

paralleled while it still needs a single node to aggregate

intermediate results. Meanwhile, this is one of the key points

which we optimize in this paper. [12] is an experiment paper

that it runs local DBSCAN in slave nodes under the monitor of

higher level parallel programming environments (PPE) without

considering the boundary conditions. Those parallel algorithms

can not directly port to MapReduce framework.

Lots of efforts are dedicated to the road map of DBSCAN.

OPTICS is a variation of DBSCAN that the density (Eps
and MinPts) could be variable in different subspaces and
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Fig. 2. The process and dataflow of MR-DBSCAN

conditions [3]. [13] is for another case that it choose to perform

approximate clustering on local where data are randomly,

rather than by spatial domains, distributed in different physical

place.

III. DESIGN AND IMPLEMENTATION

In this section, we focus on the solution of finding density-

based clusters from raw data on Map-Reduce platform. We

formulate the problem as follows:

Problem statement: Given a set of d-dimensional points

DB = {p1, p2, ..., pn}, a minimal density of clusters de-

fined by Eps and MinPts, and a set of computer CP =
{C1, C2, ..., Cn} managed by Map-Reduce platform; find the

density-based clusters with respect to the given Eps and

MinPts values.

A. Overall Framework

As shown in Figure 2, the main process of our parallel

DBSCAN algorithm can be divided into four stages:

Stage 1: We will get the general profile of raw data through

Stage 1. Stage 1 will firstly summary the size of total records,

and its general spatial distribution. Then it will generate

a list of dimensional index indicated an approximate grid

partitioning for Stage 2.

Stage 2: Stage 2 is a main DBSCAN process for each

subspace divided by the partition profile. A PDBSCAN [11]

algorithm with some amendments is adapted to implement the

reduce side of this stage.

Stage 3: Stage 3 is responsible for dealing with cross border

issues when merging the subspaces in the last stage. It will

find out a list of pairs of two clusters from bordering subspaces

to be merged for each boundary. The topology information of

the partitioning from Stage 1 is required as one of its profiles.

Stage 4: Stage 4 consists of two steps. The first step is to

build a cluster id mapping, from local one to global one, for

the entire set of data based on pairs lists collected from Stage

3. The second step is replacing the local id by the global one

for points from all partitions and generating a united output.

Note that in this case we do not output ‘Noise’ points due to

the application demand, though it is designed to be an option

in our algorithm that we could tune it at the Stage 2 and 4.

Fig. 3. An illustration example of Stage 1

B. Stage 1: Preprocessing

The main challenges for a partitioning strategy are: 1) Load

balancing. It is an important issue for large scale non-indexed

raw data. When data are highly skew, efforts on parallelization

will be greatly weakened. 2). Minimized communication or

shuffling cost: All related records, including the data within

space Si and its halo replication from bordering spaces, should

easily map to a same key and be shuffled to target reducer.

Meanwhile, the replication cost must be minimized.

One of the possible solutions is to build an efficient spatial

index for raw data. It works well in traditional single server

when data size is relative small. However, there are three

facts preventing us. Firstly, building a spatial index, such as

R-tree [14], R*-tree [15], or KD-tree [9], is considered very

difficult for large scale spatial data. Most of them are required

to do iterating recursion to get a hierarchical structure, while

it is not practical in MapReduce paradigm. Secondly, for a

large scale source data, its hierarchical index could reach one

tenth of its original data size, which is also very huge and hard

to handle. Furthermore, one may argued that an approximate

index could be built by leveraging the sampling from small

amount of source data. In this case, the fact is that source data

increase as time goes by, while the preferences are frequently

tuned to get a result with practical meaning. As a result, it will

lead to remarkable amounts of computation time of sampling

for each change as well.

Our partition algorithm is adjusted from the grid file [16].

It is a fast adaptive method that only requires running one

phase of MapReduce. As is shown in Figure 3, we divide the

data domain in dimension i into mi portions, each of which is

considered as a mini bucket. Spatial data will have an index idi
of dimension i when it falls in the bucket idi. By this way,

real value of each dimension will be transferred to discrete

index, while the partitioning of this dimension will become

choosing continuous buckets for each portion with an average

size. When choosing a larger mi, the granularity of partition

will become more accurate and approximate to average.

We consider two strategies in this paper for different sce-

narios. The first one is given the number of computing slots

N and its grid decomposition (N = a ∗ b), it could find an

approximate division in raw spatial data. In this scenario, we
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Fig. 4. Mapping of Stage 2. For space Si, positions of a point could be
C (centre), E (east), W (west), N (north), S (south), IE (inner east), IW
(inner west), IN (inner north) and IS (inner south). Points of E, W , N and
S, marked as set Ri, are the replication from other partitions. The inner halo,
including points from IE, IN , IW and IS, are the replication for other
partitions.

Fig. 5. The status transition diagram of records. Status: U(Unclassified),
C(Core Point), B(Border Point), N(Noise), O(On Queue, to be determined).
Transitions 1–6 may occur during the process of local DBSCAN. Transition
7 may happen during the merge stage.

assume that the size of each partition data could fit in the

memory of a single computer node. We use a map-reduce

phase to gather statistics of each bucket in each dimension

and the size of whole data set. After that we could get avg ,
the average size of each partition. Then the division in one

dimension could be determined by counting the size of each

partition approximate to avg.

The second scenario is: when the raw data is too large,

each data partition may be larger than the memory size of

each computing node. We leverage m, the maximum size of

data that a single computer node could handle, instead of

parameter avg to find out the number of partitions and its grid

decomposition. The 1-D partition algorithm is similar to that

of the first scenario except using m instead of avg. For higher

dimension partitioning, the block size of each dimension has

to be well configured by the decomposition of m.

C. Stage 2: Local DBSCAN

In the scenario of PDBSCAN [11], every parallel process

shared a data pool which stores all the raw data. Each thread

could access not just its partition data but global data during

the processing of local DBSCAN algorithm. It is, however,

not the case for the MapReduce framework. The data scope

of each mapper and reducer is only its input data. As a result,

Fig. 6. Analysis of bordering subspaces: 1) d1 is a Core Point ∈ C1 w.r.t.
the space constrain Si, d2 is a Core Point ∈ C2 w.r.t. the space constrain
Si+1, then cluster C1 should merge with cluster C2 w.r.t the space constrain
Si ∪ Si+1. 2) p is a Core Point ∈ C1 w.r.t. the space constrain Si, q is a
Border Point ∈ C2 w.r.t. the space constrain Si+1, then cluster C1 should
NOT merge with cluster C2 w.r.t the space constrain Si ∪ Si+1.

we have to prepare all related data for every single reducer,

where the local DBSCAN function executes.

For partition Si, the related data includes data within Si

and its Eps-width extended replication Ri from bordering

spaces. In the case of a 2d-grid, those bordering spaces are

Si+1(East), Si−1(West), Si+a(North) and Si−a(South),
where a is the number of grids in each row.

Our local DBSCAN algorithm is a modified version from

the PDBSCAN. First, we distinguish points with ‘Border’

attribute to extend its usage. Second, we make a prune that all

core and border points are visited and expanded only once.

The algorithm starts with an arbitrary ‘Unclassified’ point

p within a given space constraint S. If the number of Eps−
Neighbors of p is less than parameter MinPts, it would mark

p as a ‘Noise’ and turn to another point. Otherwise, p is a core

point. The algorithm will spread over all its Eps−Neighbors
points to do the same detection and expansion. The spread

searching may be depth-first or breadth-first strategy. When

the expansion ends, a cluster C based on p would be build at

the same time. The computing complexity of local DBSCAN

is O(|S|∗time of getEpsNeighbors()) [11], which depends

on the index situation and data distribution.

The local DBSCAN algorithm will only scan data and

extend core points within space Si. When the cluster scan

extends outside Si, assumed that a record q outside Si is

directly-density-reachable from a core point p in Si, we will

not detect whether q is a core point anymore. q will be marked

as ‘Onqueue’ status and put into Merge Candidates set (MC

set) with core point p as well.

D. Stage 3: Find Merging Mapping

After the partial DBSCAN, MC sets are generated by

each local computing node. To merge clusters from different

subspaces, PDBSCAN’s idea [11] is as follows: 1) Collect the

entire MC sets to a big list LL. 2) Among all points in list LL,

executing a nested loop to find out whether two items with a

same point id are from different clusters. 3) If found, merging

the cluster with higher cluster id to the lower one. Its compu-

tational complexity is strictly T (m ∗ (m − 1)/2) → O(m2),
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Fig. 7. Mapping of Stage 3.

where m is the number of total points in MC sets. We also

need to check whether a single computer could handle those

computation completely, while it will lead to a significant

bottleneck in an era of data explosion. In this section we will

analysis the character of MC set for figuring out an optimized

parallel algorithm to overcome this bottleneck and suit for the

MapReduce framework.

From the algorithm of Stage 2, we learn that each MC set

is consisted of two type of points, the core point rested in the

inner halo of space S and its Eps − Neighbors outside S.

Following results are conduced according to the analysis of

[11]:

1) The composition of MC set:

MC(C, S) = {o ∈ {q} ∪ (NEps(q)\S)|q ∈ C ∩ S

∧ Card(NEps(q)) ≥MinPts ∧NEps(q)\S 
= ∅} (1)

2) The completeness of MC set:

MC(C1, S1) ⊇ {o ∈ C1 ∩ C2 ∈ (S1 ∪ S2)

|Card(NEps(o)) ≥MinPts} (2)

Let MC1(C, S1) = {AP1 ∪ BP1}, where AP1 is the set

of core points and BP1 is the set of border points. Assumed

q ∈ AP1, p ∈ BP1, where p is directly-density-reachable

from q with respect to (w.r.t.) the space constraint S1. In the

meanwhile, p also is a point in the bordering space S2.

Considering the type of point p w.r.t. space constraint S2, if

p is a noise, p will become a border point of cluster Cq after

the union of S1 and S2 and no merging would happen; if p is

a border point, there is still no merging under the condition of

S1 ∪ S2; if only p is a core point of cluster Cp within space

S2, cluster Cq (q ∈ Cq , w.r.t. the space constraint S1) will

merge with Cp when space S1 joining space S2. From the

aspect of space S2, if p is a core point and q is within the

Eps-radius of p, p should be put into MC2’s core point set

AP2 and q is within MC2’s border point set BP2 meanwhile.

Furthermore, we could infer that if only p ∈ (AP2 ∩ BP1),
Cp and Cq would be merged together when S1 ∪ S2.

From the discussion above, we can conclude the following

theorem:

Theorem 1: Let MC1(C1, S1) = {AP1∪BP1}, where AP1 is

the set of core points and BP1 is the set of border points w.r.t.

space constraint S1. MC2(C2, S2) = AP2 ∪BP2, where AP2

is the set of core points and BP2 is the set of border points

w.r.t. space constraint S2. If S1 and S2 are bordering, then:

(AP1∩BP2)∪ (AP2∩BP1) == {o ∈ C1∩C2∩ (S1∪S2)

|Card(NEps(o)) ≥MinPts} (3)

Based on Theorem 1, we can infer that the whole MC sets

are decomposable by the unit of two MC sets with intersection.

The original merge algorithm, therefore, could be decomposed

and paralleled by two map-reduce phases (Stage 3 and Stage

4.2) and a lightweight single-thread program (Stage 4.1). We

extract a local-global mapping table for each local cluster id

through the effort of Stage 3 and Stage 4.1. After streaming

and replacing its cluster id through all the clustered data by

once in Stage 4.2, we could get the final result. It significantly

reduces no mater the cost of I/O or its computation complexity

than those of PDBSCAN.

The purpose of Stage 3 is to find out clusters to be merged

from each MC sets with intersection. MC sets are the main

input data of this stage’s map-reduce process. The mapper

would map MC sets with intersection to a reducer based on

its point’s partition id, position, and the partition topology

profile from Stage 1. For example, in a fine grained 2D-

decomposition, points from MCi with position IE and E,

will share a same key with points from MCi+1 with position

IW and W . They will be shuffled to one reducer. On the

reducer side, points with grid ID i and position E are collected

to be BPi, as well as points with (i, IE) compose APi,

points with (i + 1,W ) form BPi+1, and APi+1 consist of

points with (i + 1, IW ). The reducer will figure out the set

MP = (APi+1 ∩ BPi) ∪ (APi ∩ BPi+1). Each point in the

set MP indicates that a merging will happen when space

Si joining Si+1. In details, if p ∈ (APi+1 ∩ BPi), c1 is

p’s cluster ID when p ∈ BPi, c2 is p’s cluster ID when

p ∈ APi+1, then c1 of space Si should merge with c2 of

space Si+1 w.r.t. Si ∪ Si+1. We could formalize this stage’s

output to reflect these kinds of mappings by text lines like

“(i, c1)<->(i+1, c2)”.

Algorithm 1 Find Merging Mapping (Reduce Side)

for each apt in AP2 do
for each bpt in BP1 do

if apt.pid == bpt.pid then
Output(apt.(gridID, cid)<->bpt.(gridID, cid))

BP1.delete(bpt)

end if
end for

end for
Execute the same process on AP1 and BP2.

Output points left in BP1 and BP2.

Furthermore, Stage 3 has another responsibility for the

entire paradigm. Considering a point p ∈ (BP1 − AP2), as
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Fig. 8. Stage 4 details

the discussion above, p is at least a border point of a cluster

from space S1, In the case that p is only a noise within space

S2, it needs to be promoted to a ‘Border’ after uniting S1

with S2. For the sake of completeness, we will deliver points

from (BP1 −AP2) and (BP2 −AP1) to Stage 4.2 to fix the

merge result.

E. Stage 4: Merge

1) Stage 4.1: Build Global Mapping: After Stage 3, we

get several id lists of clusters to be merged for each two

bordering space. It satisfies the demand of uniting those two

spaces only. The id of local cluster would be changed after

merging more space. As a result, we need to build a global

view of clusters mapping in this stage. Although we could

apply a MapReduce processing for this stage, its I/O size

and computation time is small enough so that a single-thread

computer could handle it. The output of this section is the

mapping ((gridID, localclusterID), globalclusterID) for

each local cluster in each partition. Its algorithm is sketched

in Algorithm 2.

Algorithm 2 Build Global Mapping

Input:{(gridID1, cid1)<->(gridID2, cid2), ...}, the number

of local clusters in each grid.

Output: List L : ((gridID, localclusterID), globalclusterID).

for each merge group pair from Phase 3 do
Put all the groups (gridID, cid) which should merge

together to a slot of L. (If one of them is in L, it will put

all the groups to that slot of L. If none of them exists in

L, it will find a new slot of L for those groups.)

if (gridID1, cid1) from L[i] should merge with

(gridID2, cid2) from L[j], where i < j then
link all the groups from L[j] to L[i] and clean slot

L[j].
end if

end for
Find a new slot of L for each (gridID, cid) group not in

merge candidates.

Output each group in L, and set its index in L as its global

cluster ID.

2) Stage 4.2: Merge and Relabel: The final stage of our

algorithm is streaming all the local clustered records over the

map-reduce process and replacing their local cluster id with a

new global cluster id (gid) based on the mapping profile from

Stage 4.1.

The algorithm may be terminated here if the purpose of the

application is just to find out all the clusters and their core

points. The following efforts, furthermore, are to deal with

the case that a noise point could be promoted to be a border

point after space merging as we reveal in Stage 3. On the map

sites, we will shuffle points to reducers by spatial relation.

The clustered points within space Si (marked as set Wi) from

Stage 2 will share a same key with their boundary ‘Border’

candidates (a.k.a. the second output of Stage 3, marked as

set Ti) w.r.t space constraint Si. The reduce site, thus, will

set a filter for points located in the inner halo of space Si to

figure out the subset (Ti−Wi). Reducer will directly print out

points form Wi with a new gid in order, and then for those

in (Ti −Wi).

Furthermore, if we choose to turn on the option to distin-

guish ‘Noise’ points in the final result as well, the algorithm

will output (T i ∩Ni) rather than (Ti −Wi), where Ni is the

noise set located in the inner halo within space Si.

IV. EVALUATION

We conduct all the experiments on a 13-node cluster. Each

node has a single 3.0GHz Intel Core i7 950 CPU (4 cores

with Hyperthreading), 8GB DRAM memory, and two SATA2

7200RPM disks. The operating system we use is Ubuntu Linux

10.10. All nodes are hosted in a single rack and interconnected

with a gigabit Ethernet switch. One of the nodes is config-

ured as both jobtracker and namenode. The other nodes are

configured as computing nodes. For MapReduce platform, we

use the Cloudera distribuion of Hadoop 0.20.2. Both map and

reduce slots of each slave node are set to 4 in accordance to

the number of cores. Therefore, at most 48 map tasks along

with 48 reduce tasks can run concurrently in our cluster. The

block size of HDFS is 64MB and each block is replicated 3

times for fault-tolerance.

We use a real data source for evaluation. It contains 1.9 bil-

lion GPS location records collected over two years from about

6,000 taxies in Shanghai. The original records are represented

by coordinates of longitude and latitude. For generality, we

normalize all coordinates into range [0, 1). We generate four

datasets from the data source and store them in uncompressed

key-value text format that can be easily processed by Hadoop.

The number of points and the data size of each dataset is

summarized in Table I.

Figure 9 shows all GPS points from one day. It is a good

indicator of overall data distribution. We can see that data

are heavily skewed. Particularly, as the GPS records are from

vehicles, all points should be on or close to roads. DBSCAN

can help us achieve two main objectives. First, we can conduct

data cleaning by distinguishing erroneous GPS records. For
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Fig. 9. Spatial distribution of sample data Fig. 10. Varying number of strips per dimension Fig. 11. Varying values of Eps

Fig. 12. Execution time of all datasets Fig. 13. Speedup Fig. 14. Scaleup

example, there are a few points located at the sea which

should be considered as outliers. To this end, we use a large

Eps value (0.002) and a large MinPts value (1000) to avoid

false negatives, i.e., normal records being identified as outliers.

Second, we can identify hot regions of the city. Due to the

high density of the points, we need to set a small Eps value

(0.0002) and a small MinPts value (100) to result in a

meaningful number of clusters. The above objectives lead

to two different DBSCAN workloads. We refer to them as

WL-1 and WL-2 respectively in the following discussion.

To be precise, we define execution time as the total time

of all stages of our DBSCAN algorithm. Figure 10 shows

the performance of our partitioning strategy as the number

of strips per dimension (SPD) changes. The dataset used in

TABLE I
SUMMARY OF DATASETS

Dataset Points Size Pct. of All
DS-1 1.92 billion 50.4GB 100.0%

DS-2 1.28 billion 33.6GB 66.67%

DS-3 0.64 billion 16.8GB 33.33%

DS-4 0.32 billion 8.4GB 16.67%

this experiment is DS-4. For both workloads, the execution

time decreases first and then gradually increases. This result

essentially reflects the tradeoff between load balancing and

duplicate points. Specifically, when the number of partitions is

small, it is likely that some partitions contain a large portion

of points due to data skew. Reduce tasks corresponding to

these large partitions need more time to finish than others.

Finer-grained partitioning mitigates this problem at the cost

of duplicating more points at partition boundaries. We can see

that the optimal SPD value is 80 for WL-1 and 160 for WL-

2. This is because WL-1 has a relatively larger Eps value, it

suffers more severely from the extra cost of duplicating points.

Figure 11 shows the trend of execution time when the Eps
value varies. In this experiment, the value of MinPts is fixed

to 1000 and the value of SPD is fixed to 120. Generally, the

execution time increases as Eps goes up. The reasons are two-

fold. First, larger Eps value leads to more duplicate points,

which adds cost to both shuffle and reduce phase. Second, it

is more likely to generate uneven partitions with larger Eps
value, leading to imbalanced computing load among reduce

tasks.

Figure 12 compares the execution time of WL-1 and WL-2

479



over all datasets. We use the optimal SPD values indicated

by Figure 10 to reflect the best cases. To reveal more details,

we list the average running time of map, shuffle, and reduce

phase of Stage 2 in Table II.

TABLE II
AVERAGE TIME OF MAP, SHUFFLE AND REDUCE PHASES (SECONDS)

Dataset map phase shuffle phase reduce phase
WL-1 WL-2 WL-1 WL-2 WL-1 WL-2

DS-1 55 49 1620 1430 2141 2008

DS-2 32 27 548 410 924 889

DS-3 23 19 167 130 297 203

DS-4 18 13 53 40 132 144

Figure 13 shows the speedup of our algorithm. We only

use DS-4, the smallest dataset, because in case of larger

datasets the experiments take too much time to finish. It can be

seen that our algorithm achieves near-linear speedup for both

workloads. On one hand, because both the number of partitions

and reduce tasks remain unchanged, the overall computation

and local I/O cost is irrelevant to the number of nodes and

thereby can be perfectly parallelized. On the other hand, the

shuffle cost may change when varying the number of nodes.

However, it is not a critical issue because the shuffle cost

accounts for a relative small part of the whole job, not to

mention that the shuffle phase executes synchronously with

the map and reduce phase. Additionally, the small gap between

the results and the ideal case (shown by the dotted line) may

attribute to imbalanced computing load.

To evaluate the scaleup of our algorithm, we use 2, 4, 8, and

12 computing nodes to perform clustering over DS-4, DS-3,

DS-2, and DS-1, respectively. Thus the size of the dataset

scales proportionally to the number of nodes. The results

are illustrated in Figure 14. It is shown that the execution

time increases at a slow rate as the data size grows. Most

importantly, the scaleup is insensitive to the settings of Eps
and MinPts. Therefore, our algorithm can be applied to

very large datasets in a wide range of DBSCAN clustering

scenarios.

V. CONCLUSION

In this paper, we analyze the concurrent parallel DBScan

algorithm and further implement an efficient parallel DBScan

algorithm in a 4-stages MapReduce paradigm. We make an

optimization on our algorithm to reduce the frequency of large

data I/O as well as the spatial complexity and computation

complexity. We analyze and propose a practical data partition

strategy for large scale non-indexed spatial data. We apply our

work on a real world spatial dataset, which contains over 1.9

billion GPS raw records, and run our experiment on a lab-size

13-nodes cluster. Result from experiment shows the speedup

and scale-up performance are very efficient.

We observe that roadmap based spatial data will highly

skew in the road network. If a main road happens lying

in the replication area after partitioning, computation and

data replication will increase dramatically. One of the future

works is to improve the partitioning strategy to aware of this

observation and minimize the size of MC sets. The challenge is

that its performance is still highly restricted by the distribution

of raw spatial data.
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