EnaCloud: An Energysaving Application Live Placement Approach for Cloud Computing Environments

Shayan Mehrazarin, Yasir Alyoubi, and Abdulmajeed Alyoubi May 6, 2015

Outline

- Recap on EnaCloud
- Our Analysis of EnaCloud
- Our Observations
- Our Interpretation

Recap on EnaCloud

- EnaCloud was originally designed to address issues regarding high energy consumption for cloud computing services
- It ensures workloads are calculated in a way that reduces the amount of *open boxes* (active server nodes using a Virtual Machine)
- Workloads in cloud services will always arrive or depart dynamically
- EnaCloud ensures higher energy savings as more time elapses

Recap on EnaCloud (cont.)

• EnaCloud defines the *over-precision ratio* as $0 \le a \le 1$

- It is mainly used to determine the percentage of additional resources that a workload requires to be allocated
- Also used to verify if size'(x) is between (1 a) * size(x) and (1 + a) * size(x)
- Over-precision can result in wasting some resources, but also help achieve energy efficiency at the same time

Our Analysis of EnaCloud

- The algorithm associated with EnaCloud utilizes a live migration exploit that further concentrates workloads
- This exploit will ensure that there is always a tightly concentrated state available at any time
- EnaCloud can guarantee a 10 to 13 percent savings in energy compared to the *first fit* and *best fit* algorithms

Our Observations

 We observed a trend in the energy consumption of application migration using the following data:

Memory (MB)	128	256	512	1024
Energy (J)	202	399	783	1524

 202 J ÷ 128 MB
 =
 1.578 J / MB

 399 J ÷ 256 MB
 =
 1.559 J / MB

 783 J ÷ 512 MB
 =
 1.529 J / MB

 1524 J ÷ 1024 MB
 =
 1.488 J / MB

Our Observations (cont.)

• From this observation, we can see that the rate of energy consumption decreases slightly as the amount of data being dealt with increases

Our Interpretation

• The *migration* times with respect to *over-provision* ratios were given as follows:

Over-provision ratio	a = 0.1	a = 0.2	a = 0.25	a = 0.3
Migration Times				
per event	1.7	1.0	0.6	0.5
per minute	5.8	3.3	1.9	1.7

• From this data, we can see an initial steep decline in migration times, with differences ranging from 0.2 to 2.5 per *minute* and 0.1 to 0.7 per *event*

Our Interpretation (cont.)

- With this chart, we interpret a decrease in migration time as the over-provision ratio increases
- With this, we have reason to conclude that EnaCloud does indeed result in time and energy savings, especially for larger sets of data and information

