
Shake Box Project

Connecting Shake Box to a Linux Computer

Presentation

ShakeBox in Action

Presented from:

Rashid Siddiqui

Glen Hockett

Bin Tang

Dated: 7-2-2014

Project Description:

Currently Shake Box is working with Windows XP and
Windows 7 professional

Project: Writing Device Drivers for shake Box to Work with
Linux

Collecting Sample data with a Shake Box

REF-TEK 155-01

An external view of Shake Box, showing GPS,POWER, Radio Com Port etc.

An Interior View of Shake Box showing the wires and the internals like Interconnect
Board, ADC Boards, and Sensor Control boards

Sample data to compare data with and without
an earthquake
Creating An Artificial Earthquake

1. Sample data without an earthquake!
This data has been converted from hexadecimal
to decimal with a java application called Data
Processing

1284.3515908203126 3.6710010326830003 0.637544760717
0.55223784912
1284.3565908203125 3.6708449555120004 0.6375045316919999
0.5522298043999999
1284.3615908203126 3.6707580671900004 0.637416027837
0.552199234464
1284.3665908203125 3.670828865082 0.637370971329
0.552175100304
1284.3715908203126 3.670867482114 0.637375798812
0.552171882416
1284.3765908203125 3.670614862363 0.637435337769
0.552200843408
1284.3815908203126 3.6705424554280004 0.6375495882
0.5522475027839999
1284.3865908203124 3.670830474125 0.637544760717
0.552263592224
1284.3915908203126 3.6707484129320003 0.637483612599
0.552273245888
1284.3965908203124 3.6705633729870004 0.637428901125
0.55227807272
1284.4015908203125 3.670849782641 0.637354879719
0.552200843408
BUILD SUCCESSFUL (total time: 12 seconds)
Total Pages = 4106

2. Sample data collected during an artificial earthquake!

This data has been converted from hexadecimal to decimal
with a java application called Data Processing

1742.2965908203125 3.675406592417 0.638415316818 0.5464102539519999

1742.3015908203124 3.6681610717880004 0.637837628019 0.551825959456

1742.3065908203125 3.676545794861 0.645889869663 0.5531098967679999

1742.3115908203124 3.690480107241 0.632397054678 0.5484503949439999

1742.3165908203125 3.6509250031720004 0.634286209692 0.551557265808

1742.3215908203124 3.6661722946400004 0.646620428757 0.552992443856

1742.3265908203125 3.6964223030400003 0.63355886892 0.54904409528

1742.3315908203126 3.6583201648 0.643408543401 0.5488236699519999

1742.3365908203125 3.662569647363 0.645925271205 0.555872453616

1742.3415908203126 3.690100373093 0.632562798261 0.547037742112

Earthquake Staistics

DBG: statistics: totCnt = 213960, discardCnt = 835, blockCnt = 42625

BUILD SUCCESSFUL (total time: 4 seconds) 2940 pages

The Slides in the forthcoming pages:

Show the Steps Taken

to Connect a Shake Box to

Windows XP and Windows 7 Professional

Collecting data using Windows XP professional
ls shows the list of Commands available

The USB device number is not encrypted in windows XP:
USB 10210250

Shake box is collecting data

USB device number is encrypted in
windows 7

List of Commands at the Bluish
Prompt

Starting of Data Collection with StartCollection
200 120000

Starting of data Collection collecting 120000 samples
at 200 sps

StopCollection is used to terminate the
collection

Data has been collected into a file AD-data-raw in the
Shakebox-files folder

The file is opened with Notepad

ShakeBox Collected 2230

pages of sample data in

approximately 5 minutes hexadecimal format:

Hexadecimal data is converted into Decimal
Format through a Java program Called
Data-Processing

Page 1 of pages 2230 of Data Collected in 5 minutes

Page 223o of pages 2230 of Data Collected in 5
minutes

FEATURES of REF-TEK Model 130S-1
Similar to REF-TEK 155-01

The 130S Broadband Seismic Recorder

It has been designed to be easier to use more compact, lighter in weight, lower power, and requires less

maintenance than other recorders.

Not only is the hardware optimized for field deployments, software tools have been specially

developed to support both field and base station operation.

The 130S case is a clamshell design, inherently waterproof, with easy access to all user features on

the top of the unit.

1.The 130S has 3 or 6 input channels for connection to any sensor available in the seismology market.

2.The network Command / Control and Data Telemetry is either Ethernet 10BaseT or serial PPP.

5.The disk compartment contains two CF-II slots, backup battery and status LEDs for easy servicing.

6.The LCD display allows the 130S Recorder to be serviced without connecting a set-up controller by

displaying the 130S State-Of-Health.

7.User set-up, control, status, and data monitoring are carried out either with the iFSC Controller or with a

PC or Workstation running RTI application software set.

8.The 130S uses a high-precision TCXO disciplined by an external GPS Receiver / Clock, which maintains

time accuracy to better than 10 μsec.

Key Features

State-of-the-Art ADC

Small Size and lightweight Modular Hardware IP
communications over Ethernet and Asynchronous Serial
Embedded/Removable

Applications

1. Local and regional Broadband

2. After shock Active Source

3. Micro Zonation-Survey

4. Site Noise Survey

5. Earthquake Early Warning

6. Rapid Transportation

Communications: NET Connector

Connector: Ethernet: 10 Base T, TCP/IP, UDP/IP, FTP, RTP

Serial Asynchronous, RS 232, PPP, TCP/IP, UDP/IP, FTP, RTP

Serial Connector:

Terminal: Asynchronous, RS 232 130

Hardware Modularity

REF TEK 130S is constructed with up to five internal boards stacked together –

an arrangement that is more reliable and less costly than a traditional

backplane arrangement. The 130S comes with a Lid Interconnect Board, a

Microcomputer Board, one or two ADC Boards and a Sensor Control Board .

One or two removable disks reside in a sealed compartment that is accessed

by opening a lid located on the top of the 130S case. The main electronics section

is sealed with the lid open or closed.

The GPS Receiver is separate from the main unit in order to allow the GPS

antenna to be located some distance away.

Noise Performance

The 130S series recorder incorporates the 3rd generation
24-bit delta sigma type analog-to-digital converter
with state-of-the-art design. The combination produces
the highest performance low power 24-bit seismic
recorder. Below is the power spectral density of the ADC
with the full scale sine wave input.

Data Retrieval

The 130S series recorder may be equipped with one or two Compact Flash

Type I or Type II storage media (disks). CF flash storage is available up to 16 GB

capacity. For example, 4 GB is enough storage to hold more than 100 days of

three channel, 100 sps data recorded with Steim 2 compression.

Files are written in FAT32 format allowing high capacity disks to be used.

To swap a disk during acquisition, simply open the cap that seals the disk

compartment. A red LED indicates the disk is busy.

When inactive a green LED signals to remove the disk and insert

another one in its place. Replace the cap resealing the compartment.

Data from the disk may be read on any PC / Workstation using a CF-II

reader. Data can also be remotely downloaded from the 130S disk using FTP

over LAN/WAN.

Module Description Contents

1 Lid Interconnect Board
(RT520) ()

Power Supply Lightning Protection Physical Interface
DC-DC Converter

2 Microcomputer Board (RT506)
()

CPU Battery Backed SRAM (up to 16 MBytes)
Serial Ports Real-time Clock Ethernet Controller,
full stack
Enhanced Integrated Drive Electronics (EIDE)

3 ADC (RT649) () 24-Bit ADC Channels (3 each) Input Pre-Amplifi
Digital Anti-Alias Filters 1M SRAM
Direct Memory Access (DMA) Controller DC-DC
Converter

4 Sensor Control Board (RT527)
()

Monitoring of Mass Position
Re-Centering Command; Mass Lock/Unlock
Calibration Commands
Calibration Signals DC-DC Converter

5 Removable Mass Storage
(External)

Compact Flash (two slots available)
2 to 32 Gbytes total capacity
RT526 Interface Board

6 GPS Receiver (External) Garmin GPS Receiver

run:

Date and Time AD_ch_1 AD_ch_2 AD_ch_3.

155.4515908203125 3.6690959257710003 0.6312577686899999 0.519545715984

155.4565908203125 3.6693356731780002 0.63112903581 0.51947974928

155.4615908203125 3.6693276279630003 0.6310646693699999 0.519582721696

155.4665908203125 3.669176377921 0.6311129442 0.51976131448

155.4715908203125 3.6692777476300003 0.631172483157 0.51996243248

155.4765908203125 3.6695528939830004 0.631238458758 0.520113673216

155.4815908203125 3.66934210935 0.631190183928 0.5201217179359999

155.4865908203125 3.6691409789750002 0.631074324336 0.5199431251519999

155.4915908203125 3.6695191040800004 0.630997084608 0.519692129888

155.4965908203125 3.6696011652730003 0.6309520281 0.51951997288

155.5015908203125 3.669160287491 0.630998693769 0.519534453376

155.5065908203125 3.6693823354250004 0.631154782386 0.5196277721279999

155.5115908203125 3.6695899019720004 0.63128995191 0.5197371803199999

date, time, AD_ch_1, AD_ch_2, AD_ch_3.

tel:6309520281

Source code written from Shuai Hao: iMoteConsole.cpp

// iMoteConsole.cpp : Defines the class behaviors for the application.
//
#include "stdafx.h"
#include "iMoteConsole.h"
#include "iMoteConsoleDlg.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CIMoteConsoleApp

BEGIN_MESSAGE_MAP(CIMoteConsoleApp, CWinApp)
//{{AFX_MSG_MAP(CIMoteConsoleApp)

// NOTE - the ClassWizard will add and remove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code!

//}}AFX_MSG
ON_COMMAND(ID_HELP, CWinApp::OnHelp)

END_MESSAGE_MAP()

///
// CIMoteConsoleApp construction

CIMoteConsoleApp::CIMoteConsoleApp()
{

// TODO: add construction code here,
// Place all significant initialization in InitInstance

}

///
// The one and only CIMoteConsoleApp object

CIMoteConsoleApp theApp;
///
// CIMoteConsoleApp initialization

BOOL CIMoteConsoleApp::InitInstance(){
InitCommonControls();
CWinApp::InitInstance();
AfxEnableControlContainer();

// Standard initialization
// If you are not using these features and wish to reduce the size
// of your final executable, you should remove from the following
// the specific initialization routines you do not need.

AfxInitRichEdit2();
CIMoteConsoleDlg *dlg =new CIMoteConsoleDlg;
m_pMainWnd = dlg;
dlg->LoadProfileInfo();
int nResponse = dlg->DoModal();
if (nResponse == IDOK) {

// TODO: Place code here to handle when the dialog is
// dismissed with OK

}
else if (nResponse == IDCANCEL)
{

// TODO: Place code here to handle when the dialog is
// dismissed with Cancel

}
dlg->SaveProfileInfo();
delete dlg;
// Since the dialog has been closed, return FALSE so that we exit the
// application, rather than start the application's message pump.
return FALSE;

}

CIMoteConsoleApp::CIMoteConsoleApp()
{

// TODO: add construction code here,
// Place all significant initialization in InitInstance

}

///
// The one and only CIMoteConsoleApp object

CIMoteConsoleApp theApp;

///
// CIMoteConsoleApp initialization

BOOL CIMoteConsoleApp::InitInstance()
{

InitCommonControls();
CWinApp::InitInstance();
AfxEnableControlContainer();

// Standard initialization
// If you are not using these features and wish to reduce the size
// of your final executable, you should remove from the following
// the specific initialization routines you do not need.

AfxInitRichEdit2();
CIMoteConsoleDlg *dlg =new CIMoteConsoleDlg;
m_pMainWnd = dlg;
dlg->LoadProfileInfo();
int nResponse = dlg->DoModal();
if (nResponse == IDOK)
{

// TODO: Place code here to handle when the dialog is
// dismissed with OK

}
else if (nResponse == IDCANCEL)
{

// TODO: Place code here to handle when the dialog is
// dismissed with Cancel

}
dlg->SaveProfileInfo();
delete dlg;
// Since the dialog has been closed, return FALSE so that we exit the
// application, rather than start the application's message pump.
return FALSE;

}

Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

