How to develop Device Drivers for Linux OS?
Presented from:
Rashid Siddiqui

For: Bin Tang

Linux 1!

What is a device driver?
Software that handles or mana
hardware controller for a partic
device!

What is a Controller?
Is a piece of hardware that acts as thé
iInterface between the motherboard a
the other comg

Data Sheet:

technical details including its operation, perfor
amming etc. Understanding and decoding require
e-specific portion of a device driver is the same ac

O/Ss.

Micro-contraller User App1) (User App2) (User App3 User App4

stem calls Interface

0S/Kernel Space

0S-specific
. : Verticals
Device Drivers ¢ |---——c-2--) [] f--i

Device-specific

Hardware
Protocol-specific
0S/Kernel Space Horizontals

Hardware Space

Device Controller / Bus Driver

} Hardware Protocol

ctions of a device driver!

Implement device-specific functions
generic input/output operations.

Communication interface O/S and h
Defines and processes device comm

Application
Windows Operating System
-+(eree)

/dev/root
1,40

/dev/tty1a
6,1

Minor Device Numbers
mber is same for devices controlled by the same Device Driver.

evice Number distinguish between different devices and their controllers.

Device Driver

Table
(major number)
0 + minor
number i

| physical
! 40 hard disk
2
3
4
5 + migor

| number physical
6 1 terminal
7
L

Each physical device has its own hardware controller.

1.

Character devices simplest, are accessed as files, applications us
system calls to open them, read from them, write to them and clos
as if the device were a file.

This is true even if the device is a modem being used by the PPP da
connect a Linux system onto a network.

As a character device is initialized its device driver registers itself wi
kernel by adding an entry into the chrdevs vector of device_struct da
The device's major device identifier (for example 4 for the tty device)
index into this vector. The major device identifier for a device is fixed.

The System Call Interface

[EREREREREEES x——r——t———

e e e e e e e e T e e e e e e e e e et

Frocess Memory Filesystems Dewvice Metworking
mamgumn:rll mamgumn:rll conirol Harma)
SubsEEienTs

Concurrency FIlB:'-E anl:l -Iin: Connectivity Feartures

muﬂll:ulul-n. imolanrenta
T r—— ,. Ehammm ,. Hzl_wnrl:
Arch- : Menary i Types i devices i subsystem
: dependent i manage : : :
: %ﬂﬂﬂ ger S E i Soffware
E g ' grTmTmoeoeseme Supoort
E ! Block dewvices ; IF drivers
1 o
| 1 l ! Hardware
CP Memory Disks & CDs Consoles, MNetwork
etc. interfaces

|:i fearures imolemaniad as modwies

erent Types of Device Controlle

superio chip: keyboard, mouse
erial ports

IDE controller: Controls IDE disks
SCSI controller: SCSI disks

- MMomtor/Screen

Computer case

d Status Registers
of CSRS:

d to start and stop the device, initialize it and to diagnose problems with it.
code to manage is kept in the Linux kernel and not in every application.
trol and Status Register (CSR) is a register in many central processing units that ar
ices for information about instructions received from machines.

e device is generally placed in the register address 0 or 1 in CPUs and works on the ¢
mparison of flags (carry, overflow and zero, usually) to decide on various If-then instruc
ectronic decision flows

Data Registers General Registers General Registers
M) AX |Accumulator EAX AX
1 BX Base EBX BX
D2 CxX Coumt ECX CX
D3 DX Data EDX DX
D4
Ds Pointer & Index ESP sP
(015 SP ([Stack Pointer| EBFP BP
D7 BFP |Base Pointer ESI1 e |
S1 (Source Index EDI 1

Address Registers D1 | Dest Index
Al Program Status
Al Segment FLAGS Register
A2 Cs Code Instruction Pointer
A3 DS Data
Ad 55 Stack
AS ES Exira () 80386 - Pentlium 11
Ab
AT Program Status
AT Instr Pir

Flags
Program Status
Program Counler (b) 8086
| Status Register

(a) MCaS000

ce Drivers: Properties

shared library of privileged, memory resi
level hardware handling routines!

Handle the peculiarities of the devices they
managing.

Abstract the handling of devices.

Devices look like reqgular files: opened, closed
and written

Use same, standard, system calls that are use
manipulate files.

* A special file exists for every device, first |
has /dev/hda.

k) and character devices created by (struct{mknod-command})

minor numbers are used to describe the device.

devices are also represented by device special files but they are created by Linu
s the network controllers in the system.

Il devices controlled by the same device driver have a common major device numb

he minor device numbers are used to distinguish between different devices and thei
example each partition on the primary IDE disk has a different minor device number.
second partition of the primary IDE disk has a major number of 3 and a minor number

Linux maps the device special file passed in system calls (say to mount a file system on
the device's device driver using the major device number and a number of system table
character device table, chrdevs .

Application programs

FProcess hlermiory " Drenwrice
managemeant managerment File systems conmtrol
Fil= systems
d::::it:?"mt Wirtual thmc‘ter
mddeE g T=Jg g T=lg¥) Block drivers
drivers
Serial ports,
CPU RAM Disks special

supports three types of hardware devices:
and network.

racter devices:
ead and write without buffering
ystem's serial ports /dev/cua0 and/dev/cual.

ck devices: written to and read from in multiple
ck size, typically 512 or 1024 bytes.

cessed:

Randomly via the buffer cache
) Via their device special file

) Via file system.

f) Support a mounted file system.
Network devices are accessed:

g) BSD socket interface

h) Networking subsytems.

k Devices (represented by a device data structure)
are: like Ethernet card sends and receives packets of da
are only: Loopback device which is used for sending datat
ized registered at kernel boot time.
ce data Structure contains:

rmation about the device and the addresses of functions that ¢
ous supported network protocols to use the device's services.

se functions are mostly concerned with transmitting data using
ice.

e device uses standard networking support mechanisms to pass
ta up to the appropriate protocol layer.

Il network data (packets) transmitted and received are represented
y sk_buff data structures,

Flexible data structures that allow network protocol headers to be eas
and removed.

How the network protocol layers use the network devices, how the
back and forth using sk_buff data structures.

Under BSD sockets,
Include <Header Files>

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

For Winsock you need winsock.h.
(Or, If you need Winsock 2-specific
functionality, winsock2.h.)

Interface Flags

These describe the characteristics
abilities of the network device:

IFF_UP Interface is up and running,

IFF_BROADCAST Broadcast address in device is valid
IFF_DEBUG Device debugging turned on

IFF_LOOPBACK This is a loopback device

IFF_POINTTOPOINT This is point to point link (SLIP and PPP)
IFF_NOTRAILERS No network trailers

IFF_RUNNING Resources allocated

IFF_NOARP Does not support ARP protocol

IFF_PROMISC Device in promiscuous receive mode, it will receive

all packets no matter who they are addressed to
IFF_ALLMULTI Receive all IP multicast frames
IFF_MULTICAST Can receive IP multicast frames

on Interfaces for Character, Block and Network Device

ernel can treat often very different devices and their device
bsolutely the same.

iInux maintains tables of registered device drivers as part of
ith them

These tables include pointers to routines and information that
interface with that class of devices.

Linux kernel Uses the same interface for SCSI and IDE
Linux is dynamic, needs different device drivers for different de
Its configuration scripts enable device drivers to be included at k
When initialized they may not discover any hardware

Drivers can be loaded as kernel modules when needed
> When initialized register themselves with the kernel

Common Attributes of Linux Drivers

» Kernel Code: Without errors
» Standard Interfaces : A terminal driver and SCSI de
file /0O and buffer cache interfaces to the kernel
» Kernel Mechanisms and Services: Device drivers us
allocation, interrupt delivery and wait gueues to opera
» Loadable: loaded on demand as kernel modules, make
kernel very adaptable and efficient with the system's
» Configurable: built into the kernel and are configurable
the kernel is compiled
» Dynamic: As the system boots and each device driver
Initialized it looks for the hardware devices that it is con
All the device drivers are initialized, even if the device doe
exist

evices
evices also support being accessed like files. \

echanisms used to provide the correct set of file operations f
special file are very much the same as for character devices.

ux maintains the set of registered block devices as the blkde
, like the chrdevs vector, is indexed using the device's major de
S entries are also device_struct data structures.

nlike character devices, there are classes of block devices. SCSI ©
one such class and IDE devices are another.

It is the class that registers itself with the Linux kernel and provides
operations to the kernel. The device drivers for a class of block devic
class specific interfaces to the class.

. S0, for example, a SCSI device driver has to provide interfaces to the
subsystem which the SCSI subsystem uses to provide file operations
device to the kernel.

Isks

ermanent method for storing data, keeping it on spinning
ite data, a tiny head magnetizes minute particles on the pla

ata is read by a head, which can detect whether a particula
cle is magnetized.

Spindls Head

Aclualar Arm
Aciuator Axis

",

Power Conneclor

! Jumper Elock
Actualar |

IDE Conneclar

Isks (Integrated Disk Electronic) uses an interfa

he master and slave functions by jumpers

Primary IDE controller, the next the Secondary IDE
and so on.

IDE can manage about 3.3 Mbytes per second of dat
to or from the disk and the maximum IDE disk size is
538Mbytes.

Extended IDE, or EIDE, has raised the disk size to a
maximum of 8.6 Gbytes and the data transfer rate up
Mbytes per second.

IDE and EIDE disks are cheaper than SCSI disks and i
modern PCs contain one or more on board IDE contrg

.: is reading data while A,B and D are writing dat

Program Program
A B

o

PipeLine

Printer File System
Device Device

U.- y
]

i i]
.

W L

Video Printer

Figure 1. Device driver and file access. There are four programs (A, B, C, and I)) rcading data (C), writing data (A, B, I}
or both (C). The arrows specify the data flow direction.

| Disks use a bus up to 8 devices

nigue identifier set by jumpers on the dis

Transferred synchronous or asynchronous
any two devices on the 32 bit wide bus, tran
to 40 mbytes /s

Transfers both data and state information bet
devices

Single transaction between an initiator and
a target can involve up to eight distinct phases.

5. You can tell the current phase of a SCSI bus fr
five signals from the bus.

| Bus Information

rmation needed by device driver
The irg number Is the interrupt

The base address is the address of an
device's control and status registers in
memory.

* DMA channel number
< Set at boot time as the device is initialize

k Protocol Information

ch device describes how it may be used by the network pr

AXIMUM TRANSMISSION UNIT MTU: The size of the large
IS network can transmit not including any link layer headers t
dd. This maximum is used by the protocol layers, for example
uitable packet sizes to send.

Family: The family indicates the protocol family that the device ca
The family for all Linux network devices is AF_INET, the Internet a
family.

Type: The hardware interface type describes the media that this ne
device is attached to.

Media: These include Ethernet, X.25, Token Ring, Slip, PPP and
Localtalk.

Addresses: Device Data Structure holds a number of addresses t
relevant to this network device, including its IP addresses.

Network Devices Packet Queue

This is the queue of sk_buff packets queued waiting to be transmitted on this n

Support Functions

1.

Each device provides a standard set of routines that protocol layers call as

Interface to this device's link layer.

These include setup and frame transmit routines as well as routines to add st

headers and collect statistics.

These statistics can be seen using the ifconfig command.

Sending
Frocess

i

Apoplication

|

Fres=ntation

Sesgan

Transport

Fetwark

Cata Links

W W OHH H

Ftnesical

e o e e L _ Feceming
Lo = F'r-:u:esaL
Application protocal - -
S S - - - - [AH[Data} - - -w| Application
. | I
Presertation protocol e LT Pressntation
. | I
_Session protocol oy errrema] - - oe] | Session
| I
_Tﬁ"?g'fﬁ?:l:'dﬂ . THEH[FHEHC=E]---w| Transport
| I
—Eﬂ%ﬂﬁf - MHTHEH[FHEHCEa}---»= Mebaork
. | I
Lata Lok gy FATAEAFAEACRa DT = Cata Link
protocal .:
--Bits__ OORHATH[SHFPFHAHADASR[OT | Physical

I Actual data transmission path I

Plw=sical rmediam

river drives, manages, controls, directs and mo
tity under its command. What a bus driver does
evice driver does with a computer device (any pi
rdware connected to a computer) like a mouse, ke
onitor, hard disk, Web-camera, clock, and more.

'ubsystem In Linux: It shows a top-to-bottom vn

-

User Applications
PP ~ User Mode > User Space

Drivers

-~ ™~

USB Host Controller
USB Device

> Kernel Space

/

> Hardware Space

tocol specifications used to detect USB devices

rdware-space detection is done by the USB host controller.

| is a register-level interface that enables a host controller for USB
C driver would translate the low-level into higher-level USB protocol-speci
he USB protocol formatted information about the USB device is then popul
eneric USB core layer (the usb core driver) in kernel-space, thus enabling t
SB device in kernel-space, even without having its specific driver.

After this, it is up to various drivers, interfaces, and applications (which are de
various Linux distributions), to have the user-space view of the detected device

Applhcahon S ofhar ae
LabWIERWAT

Dnwver S ofbarars
MI-DA e

T2 E Devioe

T5E Drvwer and Host o Nex

_ oxtroller

7| 573
E

- UO5BE HC EasE U=E 1K

-t ESE —ahle j‘

Decoding a USB device section

VVVVYYVY

\4

one or more configurations.

A configuration is a profile, where the default one is the commonly used one
Linux supports only one configuration per device — the default one.

Every configuration may have one or more interfaces.

An interface corresponds to a function provided by the device.

There would be as many interfaces as the number of functions provided by
the device.

MFD (multi-function device) USB printer can do printing, scanning and faxing
uses at least three interfaces, one for each of the functions.

So, unlike other device drivers, a USB device driver associated/written per
Interface,

rather than the device as a whole — meaning that one USB device may havi
multiple device drivers, and different device interfaces may have the same
driver — though, of course, one interface can have a maximum of one driver
only.

It is okay and fairly common to have a single USB device driver for all the
interfaces of a USB device. \

USB end-points
A pipe for transferring information either into or from the interfa
depending on the functionality.

An interface has one or more endpoints
Types: control, interrupt, bulk and isochronous.
Usb protocol specification: usb devices have an implicit special co
end-point zero, the only bi-directional end-point.
Pictorial representation of a valid usb device, based on the above e

USB

E i

USB
Driver

I

nces.

ice Drivers, Part 1: Linux Device Drivers for Your Girl F

umar Pugalia on November 1, 2010
cepts, Developers, Overview - 2 Comments

vid A Rusling 3 Foxglove Close, Wokingham, Berkshire RG
dom

evice Drivers, Part 11: USB Drivers in Linux

nil Kumar Pugalia on October 1, 2011 in Coding, Developers
ments

NIl CompactDAQ under the Hood - Technologies That Drive US
rformance

blish Date: Apr 24, 2014 | 18 Ratings | 3.67 out of 5 |

Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

