omprehenswe
survey of multi-agent

R\ e

§\ By: L. Busoniu, R. Babuska, and B. De Schutter

Cmpt A& Cer rtment
\ Califo a State Un sity Dominguez Hills

§\ Slides by Christopher Gonzalez

Outline

* Introduction

» Single-agent RL
* Multi-agent RL

* Our own effort

* Prize-Collecting Traveling Salesman Problem
* Virtual Network Function Placement in Cloud/Edge

* Data Preservation in Basestation-less Sensor
Networks

« A multi-agent system can be defined as a group of autonomous, interacting entities
sharing a common environment, which they perceive with sensors and upon which
they act with actuators.

 Applications in: robotic teams, distributed control, resource management, collaborative
decision support systems, data mining, etc

 Although the agents in a multi-agent system can be programmed with behaviors
designed in advance, it is often necessary that they learn new behaviors online, such
that the performance of the agent or of the whole multi-agent system gradually
improves

* In an environment that changes over time, a hardwired behavior may become
unappropriate.

- Many different goals, but two focal points: of the agents’ learning dynamics,
and to the changing behavior of the other agents.

- The MARL algorithms aim at one of these two goals or at a combination of both, in a
fully cooperative, fully competitive, or more general setting

Challenges for RL in multi-agent Sys

A reinforcement learning (RL) agent learns by trial-and error interaction with its
dynamic environment.

At each time step, the agent perceives the complete state of the environment and
takes an action, which causes the environment to transit into a new state.

* The agent receives a scalar reward signal that evaluates the quality of this transition.
 The difficulty of defining a good learning goal for the multiple RL agents.

* Furthermore, most of the times each learning agent must keep track of the other
learning (and therefore, nonstationary) agents.

* Only then will it be able to coordinate its behavior with theirs, such that a coherent
joint behavior results.

- How autonomous multiple agents learn to solve dynamic tasks online, using learning
techniques with roots in and

Single-agent Reinforcement Learning

* The environment of the agent is described by a , @
tuple {X, U, f, p} where

« X is the finite set of environment ,

* U is the finite set of agent :

« f: X xUxX— [0, 1] is the ,and
e p: XxUxX—> Risthe

* The behavior of the agent is described by its h, which specifies how the
agent chooses its actions given the state.

* The policy may be either or

* A policy is called if it does not change over time

Markov Decision Process (MDP) \\

Single-agent Reinforcement Lear&

 The state signal TSN describes the environment at each discrete time step
K. The agent can alter the state at each time step by taking action [PERY .

 As a result of action u,, the environment changes state from x to some x,,4 € X
according to the state transition probabilities given by

- f: the probability of ending up in x,., given that u, is executed in x, is:

- The agent receives a scalar reward [ITSRSBR according to the reward function
o}

k1 = P(Tk, Uk, Tht1

* This reward evaluates the immediate effect of action u,, i.e., the transition from
Xi 10 Xp1q.

Single-agent Reinforcement Lear&

* The agent’s goal is to maximize, at each time step k, the expected
discounted return:

* R,: the In the long run
*y € [0, 1) is the
* The expectation is taken over the probabillistic state transitions

Action-Value Function (Q functioN

* The N

, is the expected return of a

z'eX

 This equation states that the optimal value of taking u in x is the expected
immediate reward plus the expected (discounted) optimal value attainable from
the next state (the expectation is explicitly written as a sum since X is finite).

* The is deterministic and picks for every state the action with the highest
QRVEISEWN /() = arg max Q(x,u)

Q-learning RL Algorithm \\

 Single-agent RL algorithms:

. methods based on dynamic programming
. methods based on online estimation of value functions
. methods that estimate a model, and then learn using model-

based techniques.
* Most MARL algorithms are derived from a model-free algorithm called
* Q-learning turns (1) into an Qi1 (Th ur) = Qr(r, ux)+

O g [l'k, 1 + 7y max Qir(zrsq.u") — Qrlxg, uk')-‘ (4)

iterative approximation procedure:
* Model-free
 Current estimate of Q* is updated using estimated samples of the r.h.s of (1)

+ These samples are computed using actual experience with the task, in the form of
rewards r,,, and pairs of subsequent states x;, Xy.1:

* The expression inside the square brackets is the , l.e., the
difference between estimates of Q(x,, u,) at two successive time steps, k + 1 and k

Definition of MARL - Stochastic Gam

. . generalization of the MDP to the multi-agent case, tuple {X, U1, . ..
,uUn, f, p1,..., pn}
* nis the number of agents
« X s the discrete set of environment states

. U=U1x---xUn
. f: XxUxX-—][0, 1] is the, and
. pi: XxUxX->R,i=1,..., n
* In the multi-agent case, the state transitions are the result of the joint action of all the
agents

« Consequently, the rewards r; .1 and the returns R also depend on the joint action
* The policies hi : X x Ui — [0, 1] form together the

» The Q-function of each agent depends on the joint action and is conditioned on the joint
policy

B. The multi-agent case \

joint state Sy

reward r_t

joint action Et

—HZmMmZZ0ID—-<2Z2m

Source: Nowe, Vrancx & De Hauwere 2012

The multi-agent case

* If p1 =- - - = pn, all the agents have the same goal (to maximize the same
expected return), and the SG is

* Ifn=2and p1 =-p2, the two agents have opposite goals, and the SG is

. are stochastic games that are neither fully cooperative nor
fully competitive.

Game theory

. — the study of multiple interacting agents trying to maximize
their rewards and especially the theory of learning in games, make an
essential contribution to MARL.

* The authors focus on algorithms for dynamic multiagent tasks, whereas
most game-theoretic results deal with static (stateless) one-shot or
repeated tasks.

Static, repeated, and stage games

* Many MARL algorithms are designed for * When there are only two agents, the game is
static (stateless) games, or work in a stage- often called a bimatrix game, because the
wise fashion, looking at the static games that reward function of each of the two agents can
arise in each state of the stochastic game. be represented as a |U1| x |U2| matrix with the

rows corresponding to the actions of agent 1,
and the columns to the actions of agent 2,
where || denotes set cardinality.

» Some game-theoretic definitions and
concepts regarding static games are
therefore necessary to understand these
algorithms * Fully competitive static games are also called

zero-sum games, because the sum of the

* Astatic (stateless) game is a stochastic agents’ reward matrices is a zero matrix.

game with X = @. (empty state set)

* Mixed static games are also called general-
sum games, because there is no constraint on
the sum of the agents’ rewards.

 Since there is no state signal, the rewards
depend only on the joint actions pi: U - R

15

Static, repeated, and stage games

When played repeatedly by the same agents,
the static game is called a repeated game.

The main difference from a one-shot game is
that the agents can use some of the game
iterations to gather information about the
other agents or the reward functions, and
make more informed decisions thereafter.

A stage game is the static game that arises
when the state of an SG is fixed to some
value.

The reward functions of the stage game are
the expected returns of the SG when starting
from that particular state.

Since in general the agents visit the same
state of an SG multiple times, the stage game
is a repeated game.

In a static or repeated game, the policy loses
the state argument and transforms into a
strategy oi : Ui — [0, 1].

An agent’s strategy for the stage game arising
in some state of the SG is its policy
conditioned on that state value.

MARL algorithms relying on the stage-wise
approach learn strategies separately for every
stage game.

The agent’s overall policy is then the
aggregate of these strategies.

. o)

Static, repeated, and stage games

» Stochastic strategies (and consequently, * First, define the best response of agent i to a
stochastic policies) are of a more immediate vector of opponent strategies as the strategy o
importance in MARL than in single-agent RL, * | that achieves the maximum expected

because in certain cases, like for the Nash reward given these opponent strategies:
equilibrium, the solutions can only be ‘
expressed in terms of stochastic strategies

* An important solution concept for static
games, is the Nash equilibrium.

Static, repeated, and stage games- "= LalEs e

* A Nash equilibrium is a joint strategy [0*1, . .
., 0xn] T such that each individual strategy
o+i is a best-response to the others

« The Nash equilibrium describes a status quo,
where no agent can benefit by changing its
strategy as long as all other agents keep
their strategies constant.

» Any static game has at least one (possibly
stochastic) Nash equilibrium; some static
games have multiple Nash equilibria.

* Nash equilibria are used by many MARL

algorithms reviewed in the sequel, either as
learning goal, or both as learning goal and
directly in the update rules.

Service Function Chain Placement em in Cloud Data
Centers

SFC Placement in Fat-tree Data Centers

* One pair of communicating VMs (v, V"), v is at host s(v) and v at s(v)
* SFC with n VNFs: f3, f,, ..., and f,,
* Place the n VNFs to minimize communication cost:

SFC Placement is Equivalent to k-Stroll
Problem

* k-Stroll Problem
* Given
* a weighted undirected graph
* source s and destination t,

n—1

Cup) = Z e(p(i).p(i +1)) + (l'(.\‘[l‘,-).p(1)) + e(p(n), s(v] |))

J=1

Optimal SFC Placement and VM Communication

== = Non-optimal SFC Placement and VM Comununication

* aninteger k
* Goal: find an s-t path or walk
(i.e., a stroll) of minimum length
that visits at least k distinct
nodes excluding s and t.

Core Switches

Agegregation Switches

Optimal 2-stroll between s and t:
s,D,t,C,t with cost 6

4 J; Edge Swiches
=i VNF
- VM
: Host

* kk-stroll is NP-hard

9.
ZZ

Prize-Collecting Traveling Salesman

Travelling Salesman Problem

BRUOTE-FORCE DYNAMIC |
SOL.UTTON: PROGRAMMING SELUNG ON ERAY:

ALGORITHMS: 0(1)

STILL WORKING

ON YOUR ROUTE?

Click to edit Master title style \\

Nesl

lllllllllllllllll

Data Preservation in Basestation-les sor Networks

@ Data generator @ Sensornode o Contentious sensor node

Data Generators Sensql_r Nodes

SEKS
R
V ?‘\v(’l‘

DG
EAE

Fig. 3. Data redistribution problem with unit data sizes is equivalent to minimum cost flow

Fig. 1. Data redistribution problem with three data generators DG1, DG2, and DG3. Each problem.
shaded circle represents each data generator’s offloading area (the set of sensor nodes that are

likely to store the offloaded data from data generators). Redistribution contention arises when

data generators have overlapping offloading areas — the sensor nodes in those areas are referred to

as contentious sensor nodes.

anks!

btang@csudh.edu

