MATLAB-ROS-Gazebo Simulation Platform

Lili Ma

Assistant Professor

Dept. of Computer Engineering Technology (CET) CUNY-New York City College of Technology LMa@citytech.cuny.edu

> EdgeRobot Research Seminar April 4th, 2023

ROS and Gazebo

- **ROS**: Robot Operating System
- https://www.ros.org/

ROS - Robot Operating System

The Robot Operating System (ROS) is a set of software libraries and tools that help you build robot applications. From drivers to state-of-the-art algorithms, and with powerful developer tools, ROS has what you need for your next robotics project. And it's all open source.

- Open source
- State-of-art algorithms
- Compatible to simulators & physical robots

- Gazebo Simulator:
- <u>https://gazebosim.org/home</u>

- Complete toolbox of development libraries
- Realistic Environments
- Sensors of high fidelity

MATLAB-ROS-Gazebo

Control of a simulated robot in the Gazebo simulator on MATLAB utilizing MATLAB's ROS toolbox

MATLAB

Virtual Machine (Gazebo Simulator)

Setting Up the Platform

- <u>https://www.mathworks.com/help/ros/ug/get-started-with-gazebo-and-a-simulated-turtlebot.html</u>
- <u>https://www.mathworks.com/support/product/robotics/</u> <u>ros2-vm-installation-instructions-v8.html</u>
- Requires:
 - MATLAB with ROS toolbox
 - WMware Player that plays a virtual machine

Setting Up the Platform

- So far, I have setup on Windows
 - Both MATLAB and Gazebo on one computer running Windows
 - Both MATLAB and Gazebo on one Mac (Windows is installed via Bootcamp)

Gazebo on one computer with two other computers running MATLAB

#1: Receiving Laser Scan Data

The **Office** environment:

- 1. The robot is commanded to move around.
- 2. The collected laser scan data are cumulated together, yielding a better representation of the robot's environment.

#1: Receiving Laser Scan Data

Allowing data clustering and model-based fitting

#2: Path Planning

The Gazebo Sign Follower ROS environment:

- 1. The robot moves around, collecting laser scans.
- 2. Implementation of home-made path planning algorithm
- 3. Command the robot to reach the goal location.

(b) Wavefront Propagation

#2: Path Planning

File File	Edit Viev	/ In:	sert	Tools	De	sktop	W	indov	<i>i</i>	lelp	~					لا		>□○國日 <
Save 📇 🛄 🧯		G]											Dec 6 20:34	A 🗣 🕚
FILE	_																Gazebo	- 0
iser_scan_2.m	5 13	12	11	10	9	10	11	12	11	10	9	8	9	10	11			
% [clien	14	1	•1	9	8	1-	1	1	1	1	1	7	8	9	10			
% waitFo	4 - 13	1	9	8	7	6	5	4	3	4	1	6	7	8	9 -		<u>^</u> /	🕘 📕 🛠 🦻 🕢 🗋 📄 👘
getOdom;	12	1	10	1	1	1	4	3	2	3	4	5	6	7	8			XXXXX
Initial_	2 11	10	9	8	7	6	5	4	4	4	5	6	7	8	9			
count =	3 12	1	10	1	8	7	6	1	*	5	6	7	8	9	10			
for k =	13	1	11	1	9	8	7	1	-	6	1	1	1	1	11			
star	2 - 14	1	12	1	10	9	8	1	4	7	8	9	10	1	12-			
endi	15	1	13	1	11	10	9	1	4	1	1	10	11	1	13			
dist	16	5 1	14	13	12	-	Þ	Þ	-	1	1	11	12	13	14			
fina	1 17	1	1	1	13	12	1	10	9	1	1	12	13	14	15			
AOR	11	3 1	1	1	14	15	1	11	10	11	1	13	14	15	16			
	0 - 1	9 1	17	16	15	16	1	12	11	12	13	14	15	1	17-			
% ro	2	D 1	1	1	1	1.	1	13	1	1	1	1	1	1	18			
goal	2	1 20) 19	18	17	16	15	1,4	15	16	17	18	19	20	19			
	-1 -1		Q			1		2		:	3		4		5			
CR																IN NOT		
TurnDista	ance :	0.	6303	9076	3282	7759	9											
ForwardD:	istance :	0																
Goal active	e a encceed	ਵਰ ਘ	ith	resu	11:													00.00:26:53.046 Real Time: 00.00:0
FINAL DUGO	c Succes																PERCENT: U.S.I SILI III	In UUUULUUUUUU

#3: Vision-Based Control

The Gazebo Sign Follower ROS environment:

1. The robot captures images using its onboard camera.

2. The robot is controlled to turn left/right according to the sign

Physical Robots

- We have several VEX robots and one TurtleBot3.
- We are now working on controlling these physical robots via ROS.

