
Let’s Stay Together: Towards Traffic Aware Virtual
Machine Placement in Data Centers

Manar Alqarni
Proff. Tang

1

Topics covered

◇ INTRODUCTION
◇ HOMOGENEOUS CASE
 -Algorithm 1 Recursive-based Placement RBP (m, c, n, r)
 -Algorithm 2 construction(m, c, n, r)
!
◇ HETEROGENEOUS CASE
-Algorithm 3 Sorting-based Placement SBP (m, c, n, R)

◇ Host-Network Joint Optimization.
◇ Future works.

2

INTRODUCTION

3

◇A good placement will lead to better resource utilization and less cost.!

◇A slot is used to represent one basic resource unit, each slot can host

one VM. This process is well known as virtual machine placement

(VMP).!

◇The result shows that servers/physical machines (PMs) consume near

45% overall cost, and network occupies about 15%.

PM-cost and N-cost

◇ PM-cost: is proportional to the number of running PMs
◇ N-cost: is mainly determined by inter- PM traffic.

4

◇ They used a slot to represent one resource unit (CPU/
memory/disk), and each slot can host one VM.

◇ They also considered the scenario where a cloud data
center consists of uniform PMs, and tenants submit their
resource demands, in terms of the number of slots (VMs),
to the cloud.

◇ The cloud allocates the required resource units to
tenants.

5

!
 Problem Description

◇ For each request, it is preferable to place all the required

VMs on the same PM (perfect placement), since there

may be communication between VMs.

6

!
 Problem Description

 Cost Function

◇ Centralized Model Cost Function (CCF):
For each request, N-cost equals the number of pieces.

7

 Cost Function

◇ Distributed Model Cost Function (DCF):
There exists a traffic link between every two pieces, which
means that every two team members communicate with
each other

8

 Cost Function

◇ Enhanced Distributed Model Cost Function (E-DCF):
!
This function shares the same communication model with
DCF, but the size of each piece is taken into account. In this
function, the granularity of inter-PM link is VM-to- VM
communication, while the previous two can be treated as
“piece”-to-“piece” communication. For consistency, we let

9

 Homogeneous case and Heterogeneous case

◇ In homogeneous case, the tenants request the same
amount of VMs,

◇ While the required number of VMs is different in the
Heterogeneous case.

◇ Homogeneous case:
-Algorithm 1 Recursive-based Placement RBP (m, c, n, r)
-Algorithm 2 construction(m, c, n, r)

◇ Heterogeneous case:
-Algorithm 3 Sorting-based Placement SBP (m, c, n, R)

!

10

11

 Algorithm 1 Recursive-based Placement RBP

◇ The basic idea is to achieve as many perfect placements
as possible, then to split the unplaced requests into
pieces.

◇ The process can be executed recursively. Obviously, if
the number of requests is sufficiently small, say n ≤ α · m
(α = c/r), then there exists some perfect placement of
VMs achieving zero additional N-cost.

12

 Algorithm 1 Recursive-based Placement RBP

13

 Algorithm 1 Recursive-based Placement RBP

Algorithm 2 construction

14

!
◇ Algorithm 2 is based on the previous algorithm.
!
!

◇ For each request that has more than 2 pieces, we first
find its TPC rijKi, where we use jκ (1 ≤ κ ≤ Ki) to indicate the
index of the PM that contains the κth piece of ri. To
decrease the number of pieces of ri, we do swap(rijκ , sjκ−1),

wheres is the piece with size equal to r on PMj k-1

Algorithm 2 construction

15

16

Algorithm 2 construction

17

◇ The number of required VMs of tenants are different.
◇ The basic idea is to place the requests with more required VMs

first, since the requests with more VMs may lead to higher costs
if they are split.

◇ We first order the requests in descending order of the number of
required VMs.

◇ The process is that placing each request in first-fit manner if
there exist PMs with sufficient slots to host the required VMs.

◇ Otherwise, selecting the PM with the most available slots to host
as many required VMs as possible, the part (piece) that cannot
be placed on the current PM is reinserted to the remaining
unplaced requests set, while preserving the descending order.

Algorithm 3 Sorting-based Placement SBP

Algorithm 3 Sorting-based Placement SBP

18

Algorithm 3 Sorting-based Placement SBP

19

Chapter 17 Software reuse
20

Host-Network Joint Optimization.

Chapter 17 Software reuse

Host-Network Joint Optimization

!
◇ Optimization for energy efficiency can be:
1. A host-side optimization aims to move VMs to a smaller

set of servers,.
2. a network-side optimization tries to identify a smaller set

of devices that are sufficient to handle current traffic flow.

21

Chapter 17 Software reuse

◇ The key idea of the host-network joint optimization is
based on the observation that the way a VM chooses
which server to migrate to is similar to the way a server
chooses which switch to send traffic to.

◇ When planning the routing paths, we can extract VMs
from their current hosts and add to those VMs links to the
servers that they may migrate to.

◇ Later, if a server is on an optimized path that connects a
VM, the VM can migrate to that server.

22

Host-Network Joint Optimization

Host-Network Joint Optimization

Summary

◇ INTRODUCTION
◇ HOMOGENEOUS CASE
 -Algorithm 1 Recursive-based Placement RBP (m, c, n, r)
 -Algorithm 2 construction(m, c, n, r)
 -Algorithm 3 Sorting-based Placement SBP (m, c, n, R)

◇ Host-Network Joint Optimization.
◇ Future works.

24

