
Omega: flexible, scalable 
schedulers for large compute 
clusters

A 2013 paper by Malte Schwarzkopf, Andy Konwinski, 
Michael Abd-El-Malek, and John Wilkes

Presented by Matt Levan



Outline

● Abstract
● Background

○ Problem
○ Scheduler definitions

● Designing Omega
○ Workloads
○ Requirements
○ Taxonomy
○ Omega design choices

● Evaluation
○ Simulation setup
○ Results

● Conclusion 



Abstract



Abstract

Monolithic and two-level schedulers are vulnerable to problems.

A new scheduler architecture (Omega, heir of Borg) utilizes these concepts to 
enable implementation extensibility and performance scalability:

● Shared-state
● Parallelism
● Optimistic concurrency control

 



Background



Problem

Data centers are expensive. We need to 
utilize their resources more efficiently! 

Issues with prevalent scheduler 
architectures:

● Monolithic schedulers risk becoming 
scalability bottlenecks.

● Two-level schedulers limit resource 
visibility and parallelism.



Scheduler definitions 

Monolithic scheduler: a single process responsible for accepting workloads, 
ordering them, and sending them to appropriate machines for processing, all 
according to internal and user-defined policies. Single resource manager and 
single scheduler.

Two-level scheduler: Single resource manager serves multiple, parallel, 
independent schedulers using conservative resource allocation (pessimistic 
concurrency) and locking algorithms.



[1:1]



Designing Omega



Workloads 

● Different types of jobs have different requirements [1:2]:
○ Batch: >80% in Google data centers
○ Service: majority of resources (55-80%)

● “Head of line blocking” problem [1:3]:
○ Placing service jobs for best availability and performance is NP-hard.
○ Can be solved with parallelism

● New scheduler must be flexible, handling:
○ Job-specific policies
○ Ever-growing resources and workloads



Requirements

New scheduler architecture must meet these requirements simultaneously:

1. High resource utilization (despite increasing infrastructure and workloads)
2. Job-specific placement and policy constraints
3. Fast decision making
4. Varying degrees of fairness (based on business importance)
5. Highly available and robust



Taxonomy

Cluster schedulers must address these design issues, including how to:

● Partition incoming jobs
● Choose resources
● Interfere when schedulers compete for resources
● Allocate jobs (atomically or incrementally as resources for tasks are found)
● Moderate cluster-wide behavior



Omega design choices

● Partition incoming jobs: Schedulers are omniscient; compete in free-for-all.
● Choose resources: Schedulers have complete freedom; use cell state.
● Interfere when schedulers compete for resources: Only one update to global 

cell state accepted at a time. If denied resources, try again.
● Allocate jobs: Schedulers can choose incremental or all-or-nothing 

transactions.
● Moderate cluster-wide behavior: Schedulers must agree on common 

definitions of resource status (such as machine fullness) as well as job 
precedence. There is no central policy-enforcement engine.

The performance of this approach is “determined by the frequency at which 
transactions fail and the costs of such failures [1:5].”



[1:1]



Omega design choices

[1:4]



Evaluation



Simulation setup

Trade-offs between the three scheduling architectures (monolithic, two-level, and 
shared-state) are measured via two simulators:

1. Lightweight simulator uses synthetic, but simplified, workloads (inspired by 
Google workloads).

2. High-fidelity simulator replays actual Google production cluster workloads.

[1:5]



Lightweight simulation setup

Parameters:

● Scheduler decision time: tdecision = tjob + ttask * tasks per job
○ tjob is a per-job overhead cost.
○ ttask is cost to place each task.

Metrics:

● job wait time is time from submission to first scheduling attempt.
● scheduler busyness is time during which scheduler is busy making decisions.
● conflict fraction is average number of conflicts per successful transaction. 

Lightweight simulator is simplified for better accuracy as shown in Table 2.



Lightweight simulation: Monolithic

Monolithic schedulers (baseline for comparison):

● Single and multi-path simulations are performed.
● Scheduler decision time varies on x-axis by changing tjob.
● Workload split by batch or service types.
● Scheduler busyness is low as long as scheduling is quick, scales linearly with 

increased tjob.
○ Job wait time increases at a similar rate until scheduler is saturated and can’t keep up.

● Head-of-line blocking occurs when batch jobs get stuck in queue behind slow-
to-schedule service jobs.
○ Scalability is limited.



Lightweight simulation: Two-level

Two-level scheduling (inspired by Apache Mesos):

● Single resource manager; two scheduler frameworks (batch, service).
○ Schedulers only see resources available to it when it begins a scheduling attempt.

● Decision time for batch scheduler constant, variable for service scheduler.
● Batch scheduler busyness is much higher than multi-path monolithic scheduler.

○ Mesos alternately offers all available cluster resources to different schedulers. 
○ Thus, if scheduler takes a long time to decide, nearly all cluster resources are locked!

○ Additionally, batch jobs sit in limbo as their scheduler tries (up to 1000x) again and again to 

allocate resources for them.

Due to assumption that service jobs won’t consume most of the cluster’s resources, 
two-level is hindered by pessimistic locking and can’t handle Google’s workloads.



Lightweight simulation: Shared-state

Shared-state scheduling (Omega):

● Again, two schedulers (one batch, one service). Each refreshes cell state every 
time it looks for resources to allocate a job.

● Entire transaction accepted OR only tasks that will not result in an 
overcommitted machine.

● Conflicts and interference occur rarely.
● No head-of-line blocking! Lines for batch and service jobs are independent.
● Batch scheduler becomes scalability bottleneck:

○ Solved easily by adding more batch schedulers, load-balanced by simple hashing function.

Omega can scale to high batch workload while still providing good performance 
and availability for service jobs.



[1:6]

Scheduler busyness: Monolithic vs. shared-state



[1:8]

All metrics: Two-level scheduling



Conclusion



Conclusion

● Monolithic scheduler is not scalable.
● Two-level model “is hampered by pessimistic locking” and can’t schedule 

heterogeneous workload offered by Google [1:8].
● Omega shared-state model scales, supports custom schedulers, and can 

handle a variety of workloads.

Future work: 

● Take a look at the high-fidelity simulation in this paper.
● Explore Kubernetes scheduler as it is the heir of Omega and is open-source.
● Implement batch/service job types in Mishael’s existing simulation.



References

[1] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes. 
2013. Omega: flexible, scalable schedulers for large compute clusters. In 
Proceedings of the 8th ACM European Conference on Computer Systems (EuroSys 
'13). ACM, New York, NY, USA, 351-364. DOI=http://0-dx.doi.org.torofind.csudh.
edu/10.1145/2465351.2465386

[2] Google’s Lightweight Cluster Simulator can be found here: https://github.
com/google/cluster-scheduler-simulator 

http://0-dx.doi.org.torofind.csudh.edu/10.1145/2465351.2465386
http://0-dx.doi.org.torofind.csudh.edu/10.1145/2465351.2465386
http://0-dx.doi.org.torofind.csudh.edu/10.1145/2465351.2465386
https://github.com/google/cluster-scheduler-simulator
https://github.com/google/cluster-scheduler-simulator
https://github.com/google/cluster-scheduler-simulator
https://github.com/google/cluster-scheduler-simulator

