
Improving Packing
Algorithms for Server
Consolidation
YASUHIRO AJ IRO, ATSUHIRO TANAKA

SYSTEM PLATFORMS RESEARCH LABORATORIES, NEC CORPORATION

PRESENTED BY : BASIL ALHAKAMI

Content
Introduction.

Background and Motivations.

Server Packing Problem.

Algorithms.

Improved Algorithms.

Comparison.

Conclusion.

Introduction
Server Consolidation : An approach to the efficient usage of computer server resources in
order to reduce the total number of servers or servers locations required

The growth of server consolidation is due to virtualization which enables multiple virtual
machines to share the physical resources of a computer. However, it should meet the following:

1. Sufficient resources are needed to avoid degradation the performance : the utilization of the virtual machine must not exceed
the threshold of that server.

2. The numbers of destinations servers is required to be as small as possible.

Background and Motivations
Engineers repeatedly make server consolidation plans while grouping existing servers based on
corporate organization and network topology.

A better heuristic algorithm is needed to find a near-optimal solution to the server packing
problem.

First Fit Decreasing (FFD) is one of the best. However, FFD unbalances the load between bins
that are added early and late.

Least Loaded (LL) Algorithm is a Load balancing algorithm is more favorable for performance
but not yet been considered within the context of packing problem.

This paper introduce a new technique of improving both FFD and LL Algorithms.

Server Packing Problem (NP-hard)
A variant of the bin packing problem (well known in the field of operation research) :

We are given a items of different sizes current servers of different resource utilizations (CPU and
disk utilization are considered in this research).

We are asked to pack them into a minimum number of bins with a given capacity destination
servers and their utilization threshold.

Problem Formulation
Dimension in server packing problem are resource utilization. In this research the focus is on CPU
utilization and disk utilization :

Let and be the CPU and disk utilization of an existing server be a set
of existing server consolidation into a destination server be the
thresholds of CPU and disk utilization prescribed for the destination servers.

Thus n existing servers are all consolidated into m destination servers. The problem is then to minimize n
under the constraint that .

Problem Formulation
These items are packed into a bin with a
capacity of (1.0,1.0).

The sum of the utilization in the left bin is
(1.9,1.3) which cannot be packed in a server
with utilization of (1.0,1.0).

Algorithms
First Fit Decreasing (FFD).

Least Loaded (LL).

First Fit Decreasing (FFD)
FFD receives n existing servers and sort them in descending order of utilization of a certain
recourse. The sorting is carried out for the largest utilization within a time period.

After the algorithm is executed we obtain server accommodations where
m is the number of destination servers.

The function packable return true if packing existing server into destination server
satisfies the utilization of and does not exceed a threshold of any resource. Otherwise it
return false.

First Fit Decreasing (FFD)

Least Loaded (LL)
The LL algorithm attempts to balance the load between servers by assigning incoming jobs to
the least loaded servers.

We pack an existing server with high utilization into a destination server with a low utilization.

Authors devised LL algorithm to address the server packing problem.

The function LB({s1…..sn)} returns the theoretical lower bound for the number of destination
server that accommodate existing server {s1…..sn}.

The lower bound is the smallest integer of numbers larger than the sum of the utilization
divided by a threshold:

The function LB({s1…..sn)} returns the larger integer of the two lower bounds.

Least Loaded (LL)

Differences between FFD and LL
LL starts repacking after new destination server is added to balance the load between newly
added destination and the others.

FFD packs the existing servers into a new destination and continues to pack the remaining
existing servers.

LL sort destination server in ascending order of utilization each time before packing an existing
server to pack into a less loaded destination server.

Improved Algorithm
Both FFD and LL sort existing server according to the utilization of certain resource.

Other resources may interfere with efficient packing and increase the number of destination
servers.

The improved algorithms address that issue.

When a server fails to be packed it consider it as one with high utilization of resource not
considered and pack such servers early.

Improved Algorithm
The algorithm has two sets of existing servers T’ and T :

T’ is packed prior to T.

The function pack (T) packs set T of existing servers into m destination servers.

The difference is that the improved algorithm removes existing servers from T into T’.

After packing all the severs in T the algorithm retries packing T’and T from the beginning.

MAXR are the number of time the algorithm should retries at most unless T and T’ are all
packed.

The number of destination servers incremented if the retries foes beyond MAXR or if packing
T’ fails.

Improved Algorithm

Comparison
The authors compared FFD and LL algorithms and then evaluated the improved algorithm for
randomly generated instance of the two dimensional packing problem.

The instances were a set of CPU and disk utilization for 200 servers.

The linear correlation of CPU and disk utilization introduced into the instance.

With strong negative correlation a resource not considered in the sorting can strongly interfere
with the packing done by FFD and LL. The improved technique contribute to improvement in
these cases.

With strong positive correlation (CPU and disk utilization are equal) FFD is assumed to work as
intended.

Comparison
FDD VS LL :

With stronger negative correlation the number
of destination servers are larger without respect
to the average utilization.

When the average utilization is low LL offers
better efficiencies that FFD.

When the average utilization is high FFD offers
a much better efficiencies than LL.

Improved Algorithms Comparison (20%
average utilization)
In this comparison the better MAXR can be
also figured out.

10 % of the number of servers would be
sufficient as MAXR for improved LL.

10-30% for improved FFD.

If utilization were not uniformly distributed a
larger MAXR might be necessary.

Improved Algorithms Comparison (40%
average utilization)

The average execution time for the improved
LL is at most 25.6s when (Corr= -0.751).

The average execution time for the improved
FFD 100s (Corr= -0.751).

Conclusion
A Load balancing algorithm were applied to the server packing problem in this research.

LL were compared to FFD and revealed that LL was suitable only for packing servers that had
low utilization.

 The improved LL outperformed the other algorithms and offered sufficient performance for
packing 200 servers.

Thank You

