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Abstract—Virtual machine migration (VMM) is one of
the most commonly used technologies in cloud platforms.
However, the existing VMM methods did not try to optimize
VM performance for cloud users when migrating VMs,
so as to affect the users’ experiences. In this paper, a
VM Performance Optimization Virtual Machine Migration
method (POVMM) is proposed, which can bring benefits to
both cloud users and cloud service providers. It first takes
the workload of PM into account to establish an improved
workload-based VM performance model, and then uses the
trained model to predict VM performance after migration.
Then it formulates VMM as a multi-objective optimization
problem, whose optimization objectives include maximizing
VM performance, minimizing migration costs of all migrat-
ed VMs and reducing the number of working PMs in cloud.
Lastly, an ACO-based (ant colony optimization) algorithm,
POVMM, is proposed to obtain the approximate optimal
solution of the VMM problem. The simulation experiment
is completed on the cloud simulation software, CloudSim.
Through comparing with the other VMM algorithms, the
POVMM algorithm has better results, which proves the
effectiveness of the POVMM algorithm.

Index Terms—Virtual machine migration, VM perfor-
mance model, ant colony optimization, cloud computing

I. INTRODUCTION

Virtual machine migration (VMM) technology is an

effective approach to minimize energy and cost [1]–[7],

optimize the network traffic [8], [9], make load balance

among PMs [10]–[12], ensure service security [13], [14],

and optimize multi-objectives [4], [8], [15]–[17] for cloud

service providers. However, the existing VMM techniques

did not consider how to optimize VM performance for

cloud users when migrating VMs, which may affect the

user’s experience. As a result, optimize VM performance

for cloud users remains an issue to be considered in

migrating VMs in cloud.

In our previous works, we have proposed performance-

aware static VM placement methods [18], [19]. How-

ever, the previous VM performance model was trained

depending on the number of used vCPU kernels of PM.

It did not consider the workload of the physical machine,

so its predicted VM performance may not be accurate

in some cases. Generally, the VM performance may be

different with different PM workloads. In addition, they

are just static placement of VMs, not dynamic migration

of VMs. Therefore, they did not consider the migration

cost optimization either.

In this paper, a VM Performance Optimization Vir-

tual Machine Migration method (POVMM) is proposed,

which can bring benefits to both cloud users and cloud

service providers, i.e., it tries to optimize VM perfor-

mance for cloud users, minimize the migration cost and

reduce the number of working PMs for cloud service

providers.

Firstly, we all known that heavy workload of PM

may drop the performance of VMs which are running

on the PM. We considered the above factor that PM

workload will affect VM performance, and then re-trained

the improved workload-based VM performance model in

this paper. The new model is more consistent with the

VM performance trend in the cloud platform, so it can

estimate the VM performance more correctly.

Secondly, we consider the following three aspects when

building the VMM model. First of all, green computing is

one of the research hotspots in cloud computing. Timely

shutting down unnecessary servers can effectively reduce

energy consumption. Therefore, reducing the number of

working PMs becomes one optimization goal. In addition,

to reduce the impact on cloud users, minimize down-

time and migration traffic should be considered when

migrating VMs. Therefore, minimizing migration costs is

another optimization goal. Finally, VM performance is the

most direct concern of cloud users, so minimizing virtual

machine performance degradation is also one of the goals.

By determining the above optimization objectives, we

then formulate the VM migration as a multi-objective

optimization problem.

Thirdly, as we all know, VMM is an NP-hard problem

[20]. Some intelligent algorithms, such as ACO (ant

colony optimization), have been used to solve the NP-

hard VMM problem. In this paper, a VM performance

optimization VMM algorithm (POVMM) based on ACO
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TABLE I
SOME IMPORTANT SYMBOLS USED IN THIS PAPER

Symbols Meaning
Mj The PM j, 1 ≤ j ≤ M
Vi The VM i, 1 ≤ i ≤ N

mpjc The performance of VMs placed on Mj

mpjc(n) The previous VM performance model

mpjc(u) The workload-based VM performance model
uj The current CPU utilization of Mj

u′
j The new CPU utilization of Mj

vui The CPU utilization of Vi

vpic The performance of Vi

mgi The migration cost of Vi

yj The state of Mj

X = {xij} The current VM placement
X′ = {x′

ij} The new VM placement

is proposed to obtain the approximate optimal solution of

the VMM problem. Of course, we also verified POVMM

method and other VMM methods through some experi-

ments. The experimental results show that the POVMM

method is effective.

The rest of this article is organized as follows. We

describe the workload-based virtual machine performance

model in Section II. Section III gives the VM migration

problem formulation. Section IV proposes POVMM algo-

rithm, which is also confirmed experimentally in Section

V. Finally, this paper is concluded in Section VI.

II. PM WORKLOAD-BASED VM PERFORMANCE

MODEL

In this section, we will present how to build the

workload-based VM performance model.

A. The previous VM performance model

The previous VM performance model was trained

depending on the total number of used vCPU kernels in

PM [18], [19].

Given a PM Mj is equipped with a limited amount

of resources. We use M j
c , M j

m, and M j
n to denote its

processors (CPUs), memory, and bandwidth. Given a VM

Vi running on PM Mj . vic, vim and vin are its required

processors (CPUs), memory, and bandwidth resource.

Although there are different resources of VMs and PMs,

for simplicity, we only focuses on the CPU performance

of VMs in this paper. mpjc is denoted as the VM per-

formance of VMs running on Mj . According to [18],

[19], the previous VM performance model is formulated

as formula (1).

mpjc(n) =

{
0.9982− 0.0082 · n n ≤ M j

c −M j
c,r

6.93/n+ 0.1507 otherwise
(1)

where n =
∑

i v
i
c, M j

c,r is CPU used by PM itself.

B. The PM workload-based VM performance modeling

As previously analyzed, the state of the VMs and the

workload of the PMs were not considered when training

the VM performance model, so the VM performance may

not be predicted accurately. Therefore, we should take the

VM working states and PM workload into consideration

to build the workload-based VM performance model. We

run some applications (Hyper PI [21], transcode videos

and compress files) in VMs running on a PM with 16

kernels CPU and 32GB memory under different PM

workloads respectively. The running times are recorded

as the VM performances under various PM workloads.

We then calculate its relative performances, which are

drawn in Fig. 1. We can observe the VM performance

drops fast when the workload of PM is heavy (more than

80%).
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Fig. 1. The relative performance under various PM workloads.

Finally, the workload-based VM performance model

can be denoted as:

mpjc(u) =

{
1.0489− 0.3288 · u 0 ≤ u ≤ 80%

1.7459− 1.2074 · u 80% < u ≤ 100%
(2)

where u is the CPU utilization (workload) of the PM.

III. VMM PROBLEM FORMULATION

In this section, we formulate the VM migration as a

multi-objection optimization problem.

There are M PMs Mj(j ∈ J = {1, 2, ...,M}) and N
VMs Vi(i ∈ I = {1, 2, ..., N}) in cloud, where N >=
M . Of course, the resources of any VM cannot exceed

the resources of a PM can offer. If Vi is running on Mj ,

its workload is denoted as vui. As a result, the workload

of Mj is:

uj =

∑
i(v

i
c · vui) +M j

c,r

M j
c

(3)

As mentioned above, mpjc is the relative performance

of VMs which are placed on Mj . If Vi is running on
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Mj , then we assume vpic = mpjc, i.e., the relative VM

performance is the same as that of its host PM. So the

performance of Vi could be calculated by Eq. (3) with

VM performance model of Eq. (2).

X = {xij} denotes the current VM placement. If Vi

is placed on Mj , then xij = 1; otherwise, xij = 0.

After VM migration, we set X ′ = {x′
ij} be the new VM

placement result. If xij �= x′
ij , which means Vi is moved

from Mj to Mj′ . This will bring some VM migration

cost (network traffic). In this paper, the migration cost of

migrating Vi can be calculated based on pre-copy VMM

technique [22].

mgi = (

M∑
j=1

(|x′
ij − xij |)) · (NTmig

i ) (4)

where NTmig
i is the total network traffic for migrating

Vi, which is calculated according to [22].

NTmig
i =

vim · (1− λr+1)

(1− λ)
(5)

Here, λ = D
R . R and D are the memory transmission

rate and dirtying rate during VM migration. In general,

D is less than R, i.e., D < R. r = �logλδ� is the number

of iterations of the pre-copying algorithm. δ(0 < δ < 1)

is the ratio of the set threshold to the memory.

After VM migration, the workload of Mj will be u′
j .

u′
j =

yj · (M j
c,r +

∑
x′
ij · vic · vui)

M j
c

(6)

where yj is the state of PM Mj . If Mj is still working,

then yj = 1; otherwise, yj = 0 and u′
j = 0. After

calculating u′
j of Mj , we can also calculate its VM

performance with u′
j and the VM performance model of

Eq. (2).

After VM migration, we use F , Q and H to denote

the sum of all VM performances, the total migration cost

(network traffic) of migrated VMs and the number of

working PMs separately. They are calculated by:

F =

N∑
i=1

(vpic) (7)

Q =
N∑
i=1

(mgi) (8)

H =
M∑
j=1

(yj) (9)

As analyzed above, the formulated VMM optimization

problem has three objectives, that is, maximizing VM

performance, minimizing migration costs of all migrated

VMs and reducing the number of working PMs in cloud.

As a result, we define the VM migration problem as

follows.

max(F ) = max(

N∑
i=1

(vpic))

and min(Q) = min(
N∑
i=1

(mgi))

and min(H) = min(

M∑
j=1

(yj))

(10)

Subject to:

yj = {0, 1}, ∀j ∈ J (11)

x′
ij = {0, 1}, ∀j ∈ J, ∀i ∈ I (12)

M∑
j=1

x′
ij = 1, ∀i ∈ I (13)

0 <=
N∑
i=1

x′
ij <= N, ∀j ∈ J (14)

N∑
i=1

x′
ij · vi ≤ M j , ∀j ∈ J (15)

The formula (10) gives the optimization objectives of

the VMM optimization problem. The formulas (11-15)

are the constraint conditions of the VMM optimization

problem.

IV. POVMM ALGORITHM

In this paper, we proposed an ACO-based algorithm

(POVMM) to solve VMM problem. The problem (10)

could be converted to (denoted as Π):

Π : min(W ) = min(Q/F ) = min(

N∑
i=1

(
mgi
vpic

))

and min(H) = min(
M∑
j=1

(yj))

(16)

The pseudo-code for the ACO-based algorithm is list in

Algorithm 1. Its main algorithmic procedure is described

as follows.

Firstly, we initialize all parameters in the initialization

phase. The trails of W and H are set to τ0w and τ0h , and

they are:

τ0ij,w =
1

W (S0)
(17)

τ0ij,h =
1

H(S0)
(18)

where S0 is an initial solution which could be obtained

by first fit decreasing algorithm.
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Secondly, when the iteration starts, each ant selects a

specific host PM for the unplaced virtual machine. The

selected host PM need to meet the following condition:

j =

⎧⎨
⎩

max
u∈Ωk(i)

{(τiu)α · (ηiu)β}, q ≤ q0

l, otherwise
(19)

where Ωk(i) represents the collection of PMs that can

run the virtual machine Vi; q0 is a fixed parameter, and

0 ≤ q0 ≤ 1.

τiu = σ · τiu,w + (1− σ) · τiu,h (20)

ηiu =
1

W (S) · F (S)
(21)

where σ is a random value between 0 and 1; α and β are

parameters to control the influence of τiu and ηiu.

Thirdly, ant will update the pheromone trail level

using the following local updating rules when it have

constructed a replacement of Vi on Mj .

τij,w(t) = (1− ρl) · τij,w(t− 1) + ρl · τ0ij,w (22)

τij,h(t) = (1− ρl) · τij,h(t− 1) + ρl · τ0ij,h (23)

where ρl(0 < ρl < 1) is the local pheromone evaporating

parameter.

Fourth, when obtaining all ants’ solutions, the non-

nominated solutions will be removed, and the remaining

solutions will form a solution set, the Pareto set. Then the

global pheromone should be updated in the Pareto set.

τij,w(t) = (1− ρg) · τij,w(t− 1) +
ρg · γ
W (S)

(24)

τij,h(t) = (1− ρg) · τij,h(t− 1) +
ρg · γ
H(S)

(25)

γ =
Nant

t−Niter,s + 1
(26)

where Nant is the number of ants. Niter,s is the iterations

that the current solution s has resided in the external set.

Lastly, add the number of iteration by 1, and repeat

the above procedure until the maximum iterations is

exceeded. Choose one of the Pareto set as the solution

X ′, and compare the X with X ′ to calculate F , Q, and

H of the VMM solution.

V. EVALUATION

A. Simulation settings

We use CloudSim framework [23], a well-known cloud

simulation framework, to evaluate POVMM. In our sim-

ulations, we simulate a cloud platform of 200 homo-

geneous physics machines with 16 kernels CPU, 32GB

memory and 1TB hard disk. The bandwidth among PMs

Algorithm 1 The ACO-based POVMM algorithm

Input: VMs V = {Vi}, PMs M = {Mj}, X
Output: X ′, F , Q, H

1: Initialize parameters: Nant, N
max
iter , ρl, ρg , q0, Pareto

set Sopt and set Niter = 0;

2: Get original solution S0 generated by the first fit

decreasing algorithm;

3: Initialize all pheromone values τ0w and τ0h ;

4: while Niter < Nmax
iter do

5: for each ant k do
6: Get ant k’s current solution and insert it into

Sopt;

7: Update the local pheromone with Eqs. (22) and

(23);

8: end for
9: Remove non-dominated solutions in Sopt;

10: for each solution in Sopt do
11: Update the global pheromone with Eqs. (24) and

(25);

12: end for
13: Niter ++;

14: end while
15: Get an optimal solution X ′ from Sopt;

16: Calculate F , Q, and H by comparing X ′ with X;

17: return X ′, F , Q, H

is set to 100 Mbps. At the same time, we also simulate

400-1200 VMs with different configurations.

As for the ACO-based algorithm, we select 10 ants, i.e.,

Nant = 10. The maximum number of iterations is 200,

Nmax
iter = 200. Meanwhile, we set α = 1, β ∈ {1, 2}, q0 ∈

{0.1, 0.4, 0.6, 0.9}, ρl, ρg ∈ {0.1, 0.3, 0.5, 0.8}. We first

performed the experiments with different combinations of

parameters separately. According to experiments results,

the final ACO parameters are set as α = β = 1, q0 = 0.9,

ρl = ρg = 0.1.

We compare POVMM with CMBFD-OM [4] and QoS-

MMP [17] in term of three metrics, which are the average

VM performance reduction, the total migration cost of

migrated VMs and the number of working PMs.

B. Simulation results analysis

1) Results on the average VM performance reduction:
This experiment is used to test the average VM perfor-

mance reduction of different VMM algorithms by ranging

the number of VMs from 400 to 1000. The simulation

results are drawn in Fig. 2.

We can see that POVMM has the lowest average

VM performance reduction compared with CMBFD-

OM and QoS-MMP, which means POVMM can provide

cloud users with better-performing VMs. This is because

POVMM migrates VMs considering the performance
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degradation of VMs and it migrates VMs based on PM

workload.

However, CMBFD-OM and QoS-MMP did not try

to minimize the VM performance reduction during VM

migration, therefore the VM performance decline signif-

icantly through the two VMM algorithms. Furthermore,

the CPU utilization of CMBFD-OM is higher than that

of QoS-MMP, which results in that it has more VM

performance reduction than QoS-MMP.
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Fig. 2. Comparison results of different VMM methods on the average
VM performance reduction.

2) Results on the total migration cost of migrated VMs:
The second experiment is used to test the total migration

cost of different VMM algorithms. We also set the number

of VMs from 400 to 1000, increasing by 200 each time.

Figure 3 draws the different results.

From the Fig. 3, we can know that compared to the

other algorithms, POVMM has the smallest VM migration

cost no matter how many VMs there are. In all cases,

POVMM generates the least additional network traffic for

migrating VMs. That is because POVMM preferentially

choose and move VMs with smaller memory when there

are VMs need to be migrated.

3) Results on the number of working PMs: In the last

experiment, we compare POVMM with CMBFD-OM and

QoS-MMP in terms of the number of working PMs. We

set the number of VMs as 400 and 1000, and then we

migrate VMs 10 times in each case. In each experiment,

we count and record the number of working PMs for the

different algorithms.

We use the boxplots to show the results of different

VMM algorithms when the number of VMs is 400 and

1200 respectively. The results of statistical distribution of

the number of working PMs are shown in Fig. 4(a) and

4(b).

As shown in the above figures, the number of working

PMs of POVMM is slightly more than that of CMBFD-

OM. POVMM tries to minimize VM performance degra-

dation, resulting in a little more working PMs being need-
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Fig. 3. Comparison results of different VMM methods on the total VM
migration cost.
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(b)

Fig. 4. Boxplots based on 10 independent runs when there are 400
VMs and 1200 VMs. (a) 400 VMs; and (b) 1200 VMs.

ed. However, POVMM could optimize VM performance

for cloud users, therefore, we consider it acceptable to

need a little more additional working PMs.

VI. CONCLUSIONS

This paper first analyzes the problem of VM perfor-

mance reduction when migrating VMs in cloud comput-

ing. Based on the above analysis, a VM Performance Op-
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timization Virtual Machine Migration method (POVMM)

is proposed in this paper. It trains an improved workload-

based VM performance model to predict VM performance

after migrating VMs. Then it takes three objectives to

formulate VM migration as a multi-objective optimization

problem, and proposed an ACO-based algorithm to solve

the NP-hard VMM problem. Finally, some experiment

are conducted to investigate POVMM and other VMM

methods. The results also prove the effectiveness of the

POVMM algorithm.

As a future research direction, we plan to formulate our

VMM strategy with other common optimization objec-

tives, such as minimizing energy consumption of cloud,

load balancing among PMs, etc.
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