Energy Aware
Consolidation in Cloud
Computing

April 8th, 2015

Adrian J. Mirabel and Rashid Siddiqui

Overview

Introduction

Def. of Consolidation
Challenges in Consolidation
Experimental measure
Method Description

Method Example

Analysis of Method
References

Questions

Introduction

What is Cloud Computing?

m Focuses on maximizing the effectiveness of the shared resources.

m Cloud resources are usually not only shared by multiple users but are also
dynamically reallocated per demand.

m With cloud computing, multiple users can access a single server to retrieve
and update their data

m No need for purchasing licenses for different applications.

m Based on advances in virtualization and distributed computing
m Supports cost-efficient usage of computing resources

m Emphasizes on resource scalability and on demand services.

m Energy Aware Consolidation is consolidating while minimizing energy
consumption.

Problem Domain for Cloud Computing

Energy Inefficiency in Data Centers are caused by:

m idle power wasted when servers run at low utilization.

o ex) 10% CPU utilization can consume more than 50% of peak power (100%
CPU utilization)

m Disk, network, or any such resource contention causes performance bottlenecks.

o causes idle power wastage in other resources.

Consolidation in Cloud Computing

What is Consolidation?

m Running many dissimilar client applications on the same server cluster.
m In other words running multiple data center applications on a common set of
servers.

m This allows for the consolidation of application workloads on a smaller number of
servers that may be kept better utilized.

Challenges in Consolidation

Analysis of Problems of Consolidation

m Effective consolidation is not as trivial as packing the maximum workload in the
smallest number of servers.

m Keeping resources at 100% utilization is not energy efficient.

m Goal is to minimize the energy used per unit service.

m Use coefficient of performance to measure efficiency COP = Q/W
o where Q is energy supplied to the system.

o where W is the work consumed by the system.

Consolidation Impact Experiment

m Experiment to verify:
o Power consumption vs. resource utilization relationship.
o Performance vs. resource utilization relationship.

m Setup:

o m =4, servers. With k clients running many client applications with varying
CPU and disk utilizations.

o Client applications are mock apps, with a uniform resource footprint and
execution time (60s).

o CPU utilization is sampled at a rate of Hz.

Controlled OS Event tracing Utilization,
(Xperf) Performance

Client 1

Controlled Server m Power Meter Energy
Client k (Watts Up) Usage

Figure 1: Experimental setup.

Performance vs. Resource Result

WO-10 10-20 W20-30 30-40 WM40-50 150-60 M60-70 ©70-80 MW80-90

% degradation in throughput

A "'--].,__ N , -n"l'- p
_,0 40 50 ' T ’--'..__.f‘.,.-q"' SO 60

The figure shows the performance (throughput) degradation with varying CPU and
disk utilizations.

Energy vs. Resource Resulit

Energy (J) per transaction

Figure shows the energy consumption for varying combined CPU and disk
utilization

Analysis of Results

Degradation is more sensitive to disk usage, than CPU usage.

o implies that increasing disk utilization is the limiting consolidation factor on
these server.

Energy per transaction vs resources relationship is paraboloid
o in general for any resource it is a shifted quadratic relationship.
Energy per transaction is more sensitive to CPU utilization.

Optimal combination of CPU and disk utilization that minimizes energy per
transaction occurs at approx. 70% CPU utilization and 50% disk utilization for
these servers

Adding constraints shifts the optimal resource point.

Method Requirements for Optimization

Firstly, consolidation methods must carefully decide which workloads should be
combined on a common physical server.

Workload resource usage, performance, and energy usages are not additive.

Understanding the nature of their composition is thus critical to decide which
workloads can be packed together.

There exists an optimal performance and energy point.

Consolidation leads to performance degradation that causes the execution time to
increase, eating into the energy savings from reduced idle energy.

Optimal point changes with acceptable degradation in performance and
application mix.

Determining the optimal point and tracking it as workloads change, thus becomes
important for energy efficient consolidation.

Performance Degradation: Generally as many client applications are run in the
same cluster, they will cause a performance degradation.

A reduced performance means applications take longer to run and increase their
energy per unit work.

Method Description

m Generally the method proposed is an algorithm that allocates incoming client
applications to specific servers in an optimal manner.

m Prior to using the method, the energy vs. resource relationships needs to be
empirically determined for each server type.

o Used to determine the optimal energy points R(CPU%,HD%,...)

m T[he method proposed is meant only as a proof of concept and needs additional
work before being utilized in a production environment.

General Method Steps
1. Determine optimal resource points from profiling data for each server type used.

2. Allocate incoming client applications according to the Allocation Algorithm.

Allocation Algorithm - Bin Packing

System Model - Multidimensional Bin Packing

m The method, describes the systems servers as bins, with each resource being
one dimension of the bin.

o The bin size along each dimension is given by the energy optimal utilization
points.

m Each client application is modelled as an object that occupies a given size in each
dimension.

m After this modelling the goal is to then place all the objects (client apps) into the
bins (servers), while using the minimum number of bins.

m In order to find the sequence of object placements, the problems state space is
searched using a heuristic search algorithm.

App 2

> App 2

Server 1 Server 2

Server 1 Server 2

Allocation Algorithm - Greedy Search

Search Methods - Greedy

m The search algorithm used is a Greedy First-Fit, where the client application is
assigned to the best available server from the available pool.

m The authors also specify an Exhaustive Search algorithm, that finds the optimal
sequence of client application to server placements.

o This algorithm is only used to validate the greedy algorithm.

Client Application Allocation Algorithm

o leto = \/(x12 + x22 + ..+ xn2) be the euclidean distance between two resource
points.
o ex)0o,([20,30]-[40,40])= V((-20)? + (-10)?) = 22.361
e Each server has a optimal resource point given by s* = [CPU*, HD*]
o ex)s*=[20,30], which means that s, has optimal point at 20% CPU and 30%
hard disk utilization.
e Each workload has a resource footprint w = [CPU, HD]
o ex)w =[10,10], so workload w, uses 10% CPU and 10% of hard disk.

Allocation Algorithm

If w is a workload that needs to be allocated:
1. Let score[i] be the sum of distances for allocating the workload to the i" server.
2. For every server available, s, do the following:
a. Let si’ =W +s;
b. IFs’ >s*
i. THEN we try next server, or wake up a new server.
c. ELSE
i. score[i] = d (s, -s%)+ ZJ. " 6e(sj - s%)
3. Allocate w to s, where i is the index of the largest sum in score.

Consider two active servers, server A running at [30,30] (30% CPU, 30% HD) and
sever B running at [40,10].

Assuming each server has an optimal resource point s* of [80,50].

We have a workload w = [10,10] that needs to be allocated

First we try adding the workload to server A:

s’'=w+s
a a

Then we compute the score for this allocation

score[a] = O (s, -s¥) + ZJ. ‘o Be(s.j -s¥)= 0 (s, -s") + 0 (s -s")=97.38

Next we try adding workload to server B:

Sb =W'|'Sb

score[b] = d (s, - s*) + > 5e(S,- -s%) = 0(s,-s") + O_(s,-s")=96.2

i#b

Now we allocated the workload to the server with maximum score, which is server A.

CPU | Disk || Opt.CPU | OptDisk || J. | » b
Aorig [30 30 80 50 538 | 978
Aafter | 40 40 80 50 412
B_orig | 40 10 80 50 56.6 | 96.2
B_after 50 20 80 50 42.4

Analysis of Bin Packing approach

Algorithm Validation Experiment

m In order to validate the proposed method, the authors ran the proposed algorithm
against an Exhaustive algorithm that found the optimal sequence of allocations,
using 4 different client application mixtures.

m The exhaustive algorithm finds the optimal sequence of object (client app) to bin
(server) placements.

m The proposed method uses the allocation algorithm.

Apps | Total CPU utilization | Total disk utilization
Mix1 6 84.87 85.86
Mix2 6 93.72 53.87
Mix3 6 78.79 150.58
Mix4 6 91.37 108.92

Analysis of Bin Packing approach (cont’d)

Algorithm Validation Results
e The tolerance, is the allowed performance degradation constraint.
e The optimal method is less efficient than the proposed.

o This odd results is due to inaccuracies in how effective bin packing is at
modeling the problem.

Optimal ®m Proposed Optimal ™ Proposed

c c

o6 o 6

g S

3 > 3 °

© 4 e 4

-~ +

o 3 o 3

a a

= 2 = 2

B 1 &1 I

£0 £0

Mix-1 Mix-2 Mix-3 Mix-4 Mix-1 Mix-2 Mix-3 Mix-4

(a) tolerance = 20%. (b) tolerance = oo.

Limitations of the Approach

This approach makes many idealizations and approximations, such as using
mock client applications with constant resource utilizations and execution time.

Multi-tiered Applications: realistic applications consist of many smaller apps that
run on different servers in coordination and have different resource footprints.

Dynamic Resource Footprint: realistic applications do not have uniform resource
footprints.

Composability Profile: Determining the optimal resource points for server(s), is
difficult since it is hard to obtain accurate CPU utilization data from servers
running realistic applications.

Migration Costs: real world applications can run persistently on a set of servers for
long periods of time, incurring additional costs when they need to be migrated.

Server Heterogeneity and Application Affinities: Not all client applications can be
hosted on any server, some servers and apps have special requirements.

Application Feedback: some applications tailor the resource utilizations in
accordance with available resources.

References

m Srikantaiah S et al. (2008). Energy aware consolidation for cloud
computing. In: Proc of HotPower

Questions?

