TRAFFIC PRIORITY MAXIMIZATION IN POLICY ENABLED TREE BASED DATA CENTERS

Alexander Ing California State University Dominguez Hills Department of Computer Science

Overview

- Introduction
- Related Works
- Problem model
- Problem statement
- Proposed solutions
- Results
- Conclusion / Future work

Increase of internet activities

27% compound annual growth rate

Datacenter traffic estimated to increase by 10 zettabytes in 2018

SDN and NFV introduced to datacenters

Total Data Center Traffic Growth 27% CAGR Traditional Data Center (9% CAGR) 18 2015-2020 Cloud Data Center (30% CAGR) 16 14 8% 12 10 Zettabytes 8 per Year 92% 6 4 18% 2 82% 2015 2016 2017 2018 2019 2020 Source: Cisco Global Cloud Index, 2015-2020.

Cisco Global Cloud Index: Forecast and Methodology, 2015-2020 White Paper

Centralized controller with global view of whole network

• Global view of network allows for optimization

Network function virtualization

- Functions provided by hardware can now be virtualized
- Virtual machines rented to customers
- Infrastructure as a service (laaS)

44% of traffic will be supported by SDNs and NFV technology by 2020

Global Data Center Traffic by Destination in 2020

Cisco Global Cloud Index: Forecast and Methodology, 2015-2020 White Paper 6

Middleboxes

- Middlebox: Firewall, Web cache, Load Balancer, etc.
- Packets or data flow pass through middleboxes before reaching their destination

Policy Chain

- Ordered sequence of Middleboxes that packets must follow before reaching their destination
- Increased security, performance, etc.
- Creates longer communication paths

Why is this a problem?

Related Work

Multi-commodity flow with in-network processing by Charikar et al.

- Traffic optimization in data center networks
- General graph topology
- Policy enforcement
- Virtual middleboxes placed on compute nodes

Multicut and Integer Multicommodity Flow in Trees by Vazirani

- Maximizing flows in tree graphs
- Proposed a 2 approximation algorithm
- Does not consider middleboxes or policy chain

Related Work

SIMPLE-fying middlebox policy enforcement using SDN By Qazi et al.

- Propose a SDN based traffic steering model
- Ensures enforcement of policy chains
- Does not consider flow optimization

Flowtags: Enforcing network-wide policies By Fayazbakhsh et al.

- Flows are tagged upon processing completion
- Ensure policy enforcement
- Does not take into consideration flow maximization

Problem Models

Datacenter Model

The data center is modeled as an undirected graph G (V, E)

Where $V = V_P \cup V_S$

Physical machines V_{P} and the network switches V_{S}

E is the set of edges

VM pairs placed on V_P which are the leaf nodes in tree data centers.

VM communication pair model

VM communication pair P(V_i, V_i`) consist of a source VM V_i and destination VM V_i`

Each pair has three properties: communication frequency, priority, and demand

Each pair (V_i, V_i`) has the following:

- frequency F_i is a random number from [1, F]
- priority T_i is a random number from [1, T]
- demand D_i is a random number from [1, D]

Each edge connects at most two vertices V

Each edge E in graph G has a capacity K to its available bandwidth

Edge (u,v) has capacity K(u,v), indicating the bandwidth available at (u,v)

The total communication demand D across an edge must not exceed capacity, thus $D \le K$

Middlebox Model

The set of middleboxes M are placed within the datacenter $M = \{m_1 \dots m_i\}$ i = Total number of middleboxes placed, where i ≥ 2

The policy to be followed is {m1 ... m_i}

The path needed to traverse the policy chain make up what we call the 'spine'

Network Spine

Tree topologies have one path to a vertex The spine S is $S \subseteq E$ $S_i = E(v_i, v_{i+1})$ Where i is the middlebox in set M

Ingress switch – first MB in chain Egress switch – last MB in chain

Example: E(MB1, MB2) and E(MB2, MB3)

Problem Statement

Given a graph G (V, E) with placed set of middleboxes M and VM pairs P

Each pair in the set of commination pairs P sends traffic with demand D that needs to traverse m1 ... $m_{\rm i}$

Goal:

- 1. Is it possible to satisfy all the VM communication pairs with the given resources
- 2. choose VM pairs to satisfy in order to maximize priority while ensuring policy is enforced and demand does not exceed edge capacity

Proposed solutions

VM communications satisfiable

If all VMs are satisfiable, no decisions needed

All VM pairs' demand is subtracted from link cap. along its path

If any link cap. < 0, not feasible

Feasibility Check Example

Link Cap. = 5	Priority	Demand
VM 1	2	1
VM 2	2	2
VM 3	5	3
VM 4	6	4

Feasibility Check Example

Link Cap. = 5	Priority	Demand
VM 1	2	1
VM 2	2	2
VM 3	5	3
VM 4	6	4

Lowest Demand First

VM communication pairs are ordered in non-decreasing order by demand

Edges from source to spine

Edges through the spine

Edges from spine egress to destination

Time complexity is O(V² * n)

```
Algorithm 1 Lowest Demand First
Input: data center G(V, E) with placed VM pairs and MBs
Output: communication priority serviced
Notation:
P = unsorted list of VM pairs
pair.Demand = VM pair's demand
pair.tPriority = VM pair's priority * frequency
edge.capacity = edge's capacity
 1: Priority = 0
 2: for i in length(P) do
     for j in range(0, length(P) - i - 1) do
 3:
        if P[j]. Demand > P[j+1]. Demand then
 4 \cdot
          swap P[j] with P[j + 1]
 5:
        end if
 6:
     end for
 7
 8: end for
 9: for pair in P do
     vm1, vm2 \leftarrow VMs in pair
10:
     fullFlag = 0
11:
     ES \leftarrow edge set from vm1 to vm2 following policy
12:
     for edge in ES do
13:
        if pair.Demand > edge.capacity then
14:
          fullFlag = 1
15:
          break
16:
        end if
17:
     end for
18:
     if fullFlag == 0 then
19:
        establish pair connection
20:
        update edges capacity ES
21:
        Priority += pair.tPriority
22
     end if
23:
24: end for
25: Return Priority
```

Link Cap. = 5	Priority	Demand
VM 1	2	1
VM 2	2	2
VM 3	5	3
VM 4	6	4

VM1 Selected, Check path to ingress

Link Cap. = 5	Priority	Demand
VM 1	2	1
VM 2	2	2
VM 3	5	3
VM 4	6	4

Check path in spine

Link Cap. = 5	Priority	Demand
VM 1	2	1
VM 2	2	2
VM 3	5	3
VM 4	6	4

Check path from egress to destination

Link Cap. = 5	Priority	Demand
VM 1	2	1
VM 2	2	2
VM 3	5	3
VM 4	6	4

VM2 is selected Same path check is performed

Link Cap. = 5	Priority	Demand
VM 1	2	1
VM 2	2	2
VM 3	5	3
VM 4	6	4

VM3 is selected, not enough capacity Total priority = 4

Link Cap. = 5	Priority	Demand
VM 1	2	1
VM 2	2	2
VM 3	5	3
VM 4	6	4

Highest Priority First

VM are ordered in non-increasing order by their priority

The path for the communication pair is checked

Time complexity is $O(V^2 * n)$

Algo	rithm 2 Highest Priority First
Inpu	t: data center G(V, E) with placed VM pairs and MBs
Outp	out: communication priority serviced
Nota	ation:
P = 1	unsorted list of VM pairs
pair.l	Demand = VM pair's demand
- pair.t	Priority = VM pair's priority * frequency
edge.	capacity = edge's capacity
1: P	Priority = 0
2: fc	or i in length(P) do
3:	for j in range(0, length(P) - i - 1) do
4:	if $P[j].tPriority < [j+1].tPriority$ then
5:	swap $P[j]$ with $P[j + 1]$
6:	end if
7:	end for
8: e i	nd for
9: .	
10: R	Return Priority
	T C C C C C C C C C C C C C C C C C C C

Highest Average Priority

VM priority with respect to its demand

VMs ordered in non-decreasing order by their average priority

The path for the communication pair is checked

Time complexity is O(V² * n)

Algorithm 3 Highest Average Priority First
Input: data center G(V, E) with placed VM pairs and MBs
Output: communication priority serviced
Notation:
P = unsorted list of VM pairs
pair.Demand = VM pair's demand
pair.tPriority = VM pair's priority * frequency
edge.capacity = edge's capacity
1: $Priority = 0$
2: for i in length(P) do
 for j in range(0, length(P) - i - 1) do
4: if $P[j]$.tPriority / $P[j]$.Demand < $P[j + 1]$.tPriority / $P[j + 1]$
1].Demand then
5: swap $P[j]$ with $P[j + 1]$
6: end if
7: end for
8: end for
9:
10: Return Priority

Special Case

Source VMs hosted in PMs located in subtree of ingress switch

Destination VMs hosted in PMs in subtree of egress switch

1:0 Knapsack Problem

Optimization problem:

- Given a knapsack with capacity C
- Set of items with attributes weight W and value V
- Items can not be split

Which items to choose in order to maximize V such that $W \le C$

Solution: Dynamic programming

Dynamic Programming

The total capacity restricted by spine

Items are the VM pairs:

Item weight is VM demand

Item value is VM priority

Time complexity is O(V * C + n)

All links in spine traversed once

Max Capacity = 5/1 = 5

Link Cap. = 5	Priority	Demand
VM 1	2	1
VM 2	2	2
VM 3	5	3
VM 4	6	4

Link Cap. = 5	Priority	Demand
VM 1	2	1
VM 2	2	2
VM 3	5	3
VM 4	6	4

Items \ Weight	0	1	2	3	4	5
0	0	0	0	0	0	0
VM 1						
VM 2						
VM 3						
VM 4						

Link Cap. = 5	Priority	Demand
VM 1	2	1
VM 2	2	2
VM 3	5	3
VM 4	6	4

Items \ Weight	0	1	2	3	4	5
0	0	0	0	0	0	0
VM 1	0	2	2	2	2	2
VM 2						
VM 3						
VM 4						

Link Cap. = 5	Priority	Demand
VM 1	2	1
VM 2	2	2
VM 3	5	3
VM 4	6	4

Items \ Weight	0	1	2	3	4	5
0	0	0	0	0	0	0
VM 1	0	2	2	2	2	2
VM 2	0	2	2	4	4	4
VM 3						
VM 4						

Link Cap. = 5	Priority	Demand
VM 1	2	1
VM 2	2	2
VM 3	5	3
VM 4	6	4

Items \ Weight	0	1	2	3	4	5
0	0	0	0	0	0	0
VM 1	0	2	2	2	2	2
VM 2	0	2	2	4	4	4
VM 3	0	2	2	5	7	7
VM 4						

Link Cap. = 5	Priority	Demand
VM 1	2	1
VM 2	2	2
VM 3	5	3
VM 4	6	4

Items \ Weight	0	1	2	3	4	5
0	0	0	0	0	0	0
VM 1	0	2	2	2	2	2
VM 2	0	2	2	4	4	4
VM 3	0	2	2	5	7	7
VM 4	0	2	2	5	7	8

Link Cap. = 5	Priority	Demand
VM 1	2	1
VM 2	2	2
VM 3	5	3
VM 4	6	4

VM4 and VM1 Chosen

					-	
Items \ Weight	0	1	2	3	4	5
0	0	0	0	0	0	0
VM 1	0	2	2	2	2	2
VM 2	0	2	2	4	4	4
VM 3	0	2	2	5	7	7
VM 4	0	2	2	5	7	8

Dynamic Programming

VM4 and VM1 selected

VM communication sent

Total of 8 priority

Simulation and Results

Simulation Parameters

Tree data center with 84 nodes each node with 4 children

- 21 switches
- 64 physical machines

VM communication attributes randomized

- Communication priority in the range of 1-100
- Communication frequency in the range of 1-10
- Communication demand in the range of 1-10

Variables checked: Amount of Mbs, link capacity, and amount of VMs

Varying Amount of Middleboxes

Amount of MBs = 3, 5, 8

Link Cap. = 200

Amount of pairs = 200

Dynamic programming outperforms in all cases

Varying Amount of Middleboxes

General case, VM placement unrestricted

Highest Average Priority First performs the best

Varying Amount of Link Capacity

Link Cap. = 100, 300, and 500

Amount of MBs = 5

Amount of pairs = 200

Dynamic programming outperforms in all cases

Varying Link Capacity Special Case

Varying Amount of Link Capacity

General case, VM placement unrestricted

Performance increase with link capacity

Highest Average Priority First performs the best

Varying Amount of Communication Pairs

Amount of pairs = 100, 300, and 500 Amount of MBs = 5 Link Cap. = 200 Dynamic programming outperforms in all cases

Number of VM Pairs

Varying Amount of Communication Pairs

General case, VM placement unrestricted

Highest Average Priority First performs the best

Varying Amount of VM Pairs General Case

Future work and Conclusion

Future Work

Development and testing of general solution

Multiple middleboxes with multiple instances

Addition of other NFV technologies such as VM replication

Testing proposed solutions in emulated environment

Conclusion

Four algorithms proposed for priority maximization

Three heuristics and dynamic programming

Showed the tree network can be modeled as 1/0 knapsack under special conditions

Showed Dynamic programming approach performed the best, with the highest average demand performing the best in the general case