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I. Introduction

- Virtual Machines (VM) on Physical Machines 
(PM) = ROI

- Different situations require different resources
- Energy Consumption, QoS, SLAs
- Nature of Workloads in Cloud data centers
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I. Introduction

- Knowledge and Heuristic-based Algorithms 
< Reinforced Learning

- Development of Megh



II. Related Works

- Dynamic VM Consolidation
❖ Pack VM tightly while preserving SLAs
❖ Max-Weight Algorithms

- Reinforcement Learning Algorithm
❖ Markov Decision Processes
❖ Q-Learning



III. The Cloud Data Center: System and Cost Models

- Each PM defined by number of CPUs, CPU cores, RAM, and 
bandwidth

- Each VM allocated CPU performance, memory size, RAM, 
and bandwidth

- No knowledge of what apps will be used, simulates uncertain 
dynamics

- Megh = Global Resource Manager of Cloud
- CPU utilization data = key metric for workloads



III. The Cloud Data Center: System and Cost Models

- Cp(t) = data center power consumption cost
- P(Θ) dependent on CPU, memory, disk, and cooling
- Example shown with spec2014, using servers with different 

CPUs



III. The Cloud Data Center: System and Cost Models

- SLA violation time = downtime
- CV(t) is the formula used 
- 2 QoS Degradation: Overload or Live Migration



IV Live Migration as a Learning Problem

❖ The authors formulate the problem of energy and 
performance efficient resource management during live 
migr. Of VMs as a reinforcement learning problem

❖ Data center has M pms, with a homogenous CPU 
capacity h.

❖ Each VM is assigned to a user, thus the the maximum # 
of users  is the max # VMs it could allocate



IV Live Migration as a Learning Problem

❖ A sudden change in workloads in one or many VMs 
consequently overloads hosts

❖ This is when one of the VMs in the overloaded PM has 
to be migrated to another PM such that the cost for 
energy consumption and SLA violation remains 
minimal.

❖ The system has to decide which VM to move to where, 
and when to start moving so that the penalty will be 
minimum for max profit and max QoS for users



IV Live Migration as a Learning Problem

❖ The process of live migration with uncertain workloads 
as MDP.

❖ State space S is the Cartesian product of C and W
❖ C is the set of all configurations of the VMs on the PMs
❖ W is an array of elements that represent the CPU 

usage of a VM at that instance
❖ W varies continuously and stochastically, making the 

state space infinitely dimensional and introduces 
uncertainty in state transitions.



IV Live Migration as a Learning Problem

❖ The action space A corresponds to migration of any of 

the VMs from one PM to another depending on 

operating workloads.

❖ Each action is represented by (j,k), where j is the VM to 

be migrated and k is the destination PM

❖ Transition function f: S x A -> P(S), where P is the 

probability measure over state space. 

❖ f returns the probability to reach another state



IV Live Migration as a Learning Problem

❖ The cost of changing a configuration of VMs is the sum 
of the change of data center power consumption cost 
(Cp) and the change of cost of SLA violation (CV)

❖ This formulation reduces the problem to finding the 
sequence of configurations that minimizes the sum of 
future per-stage costs.

❖ The problem can be phrased as finding the optimal 
policy that minimizes the expected cumulative cost.



Megh: Learn to Migrate As-You-Go

❖ Megh answers three questions of the VM migration 
problem: when to start migrating the VM, which VM to 
migrate, and where i.e, to which PM to migrate it.

❖ In order to minimize expected cumulative cost, Megh 
starts with an initial guess of the policy, which changes 
as more information is gained such that the current 
estimation of accumulated cost remains minimal (policy 
iteration)



Megh: Learn to Migrate As-You-Go

❖ In live VM migration, policy iteration suffers from two 
issues:

❖ First: To update the cost-to-go function (function for 
expected cumulative cost) and to find the optimal policy, 
the whole state action space must be searched through 
(combinatorially large, thus making policy updates 
expensive)

❖ Second: The Equation to updatye



Megh: Learn to Migrate As-You-Go

❖ Second: The Equation to update the cost-to-go function 
that uses a dynamic programming technique cannot be 
computed given the stochastic nature of workload, VM 
configurations and transitions are not know a priori 

❖ Authors don’t restrict the workload dynamic to a specific 
model in order to not narrow down the applications of 
Megh

❖ Megh solves both issues



Megh: Learn to Migrate As-You-Go

❖ Megh solves the curse of dimensionality by projecting 

the state action space a d = NxM dimensional space X.

❖ X is spanned with d basis vectors Φjk

❖ Each basis vector Φ corresponds to an action (j,k) such 

that the jkth element of it is one and all other elements 

are zero.

❖ All actions or configuration changes in the cloud are 

represented using basis vectors or linear combinations 

of them



Megh: Learn to Migrate As-You-Go
❖ Rationale: during transition from a state to another the 

accessible subspace is constructed by the states which 
are one action away from the present state. 

❖ Instead of searching over the whole state space in each 
and every step it is logical to search in a subspace X 
that contains all the states s′ reachable from s by 
actions Φjk or linear combinations of them

❖ Thus, the combinatorially explosive state-action space 
of VM configurations is projected to a polynomial 
dimensional vector space with a sparse basis. 



Megh: Learn to Migrate As-You-Go
❖ Megh plugs polynomial size projection space X and 

incremental update of T to Least Square Policy Iteration 
algorithm .

❖ Which is a functional approximation algorithm that 
implements in an actor-critic framework. 

❖ Megh first tries to find out an estimation of cost to-go 
function by least-square estimation in the actor format 
and then to update the policy such that it maximizes the 
estimate in the critic format



Megh: Learn to Migrate As-You-Go



5.1 Inducing Exploration in Action Selection
❖ Instead of greedily choosing the action with the 

minimum expected cumulative cost, Boltzmann 
exploration is used as the on-policy mechanism

❖ Authors adapt Boltzmann exploration with decreasing 
temperature.

❖ Temperature decays with a factor exp (-epsilon)
❖ As Temp decreases, the policy becomes the greedy 

selection of the minimum



5.2 Managing the Complexity Bottleneck

❖ Megh has a space complexity of O(d^2) and a time 
complexity of (d^3).

❖ Time complexity is reduced to (d^2) by using Gauss-
Jordan elimination process to compute the inverse of 
the operator T to update B

❖ Initial space complexity is reduced to O(d) by storing 
only non zero entries of matrix B and vector Phi as a 
triplet (row number, column number, value)



6 Performance Evaluation
❖ Experiments were performed using CloudSim toolkit
❖ Assumes cost of  0.18675 USD/kWh
❖ User has to pay 1.2 USD per hour of using VM 

instance.
❖ Cloud providers would pay back 16.7 and 33.3 percent 

of user’s money depending on whether the performance 
degradation is less than or greater than 0.10 percent.

❖ Authors consider Beta= 70% as the overloading 
threshold of the PMs and alpha =30% for the minimum 
CPU usage threshold by VMs during migration



6 Performance Evaluation: Performance
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6 Performance Evaluation: Scalability
❖ The per-step cost decreases when increasing initial 

Temperature value from 0.5 to 3.0, but starts to 
increase with higher values than 3.0

❖ Per-step cost when changing epsilon was too sporadic 
to pinpoint a best value.



Conclusions
This work addresses when to migrate VMs, what VMs to migrate, and 
which Pm to migrate with respect to energy cost and maintaining QoS 
in a real time scenario.

Megh is able to work irrespective of application and hardware 
heterogeneity while learning the uncertain dynamics.

Megh is able to mitigate curse of dimensionality by reducing the state 
space to a polynomial dimensional state state action space with 
sparse basis

Megh incurs the smallest cost and least execution overhead with the 
Google cluster and PlanetLab datasets when compared to state-of-
the-art algorithms.



Future directions
Authors are investigating the opportunity to take advantage 
of additional knowledge about the workload such as 
periodicity or a queueing model

Also leverage knowledge of the network topology like fat 
trees.


