
Graph Compression Using

Quadtrees

Dr. Amlan Chatterjee

Computer Science Department

California State University, Dominguez Hills

April 27, 2016

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 2

Outline

Storing graphs

Quadtree representation of graphs

Special graphs

Modifying graphs for efficient storage

Hybrid approach

Other representations

1

2

3

4

5

6

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 3

Outline

Storing graphs

Quadtree representation of graphs

Special graphs

Modifying graphs for efficient storage

Hybrid approach

Other representations

1

6

2

3

4

5

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 4

• Consider the following graph G = (V,E)

The adjacency

matrix

representation

is given by:

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

Storing Graphs

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 5

• Consider the following graph G = (V,E)

The adjacency

list

representation

is given by:

Storing Graphs

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 6

• Consider the following graph G = (V,E)

The adjacency

array

representation

is given by:

Storing Graphs

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 7

Storing Graphs (contd.)

• The values in the adjacency matrix can be stored
using boolean data type. For the sample graph G = (V,
E), where |V| = 8, it would require 8x8 = 64 bytes.

• Since the value is either 0 or 1, using bits instead of
boolean the size of the adjacency matrix can be
reduced

• Size required to store adjacency matrix using bit array
for the sample graph G:

 (nxn)/8 bytes = 8x8/8 bytes

 = 8 bytes

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 8

Storing Graphs (contd.)

• For the sample graph G = (V, E), where |V| = n and

|E| = m, using boolean data type and assuming 64-bit

pointer (i.e., 8 byte pointer), the space required for the

adjacency list is:

 2m*64 + 2mlog(n) + nlogn

 (size of pointers) (node numbers) (size of each list)

• Similarly, the space required for the adjacency array

is:

 n*64 + 2mlog(n) + nlogn
 (size of pointers) (node numbers) (size of each list)

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 9

Storing Graphs (contd.)

Considering the previous example graph

G = (V,E)

For the above graph, n = 8, m = 16.

The adjacency matrix size is: 64 bits

The adjacency list size is: 2168 bits

The adjacency array size is: 632 bits

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 10

Other techniques to store graphs

• Other than using adjacency matrix, adjacency
list and adjacency array, the following are some
other common techniques to store graphs

• Unordered edge sequences:

– The data is represented as pair values, each
indicating the pair of vertices where an edge
exists

• Incidence matrix

– Two edges are said to be incident if they
share a vertex; incidence matrix contains
data with respect to edges

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 11

Outline

Storing graphs

Quadtree representation of graphs

Special graphs

Modifying graphs for efficient storage

Hybrid approach

Other representations

6

3

4

5

2

1

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 12

Quadtree

• Quadtree is a data structure which is used to

normally represent images using partitioning of the

two dimensional space by recursively subdividing

into four quadrants or regions; each internal node of

the quadtree has exactly four children

• Quadtrees can also be used to store graphs

efficiently

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 13

Sample Data Points in a 2-D space & Quadtree

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 14

The adjacency

matrix: size 64bits

Quadtree representation:

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

Size: 10 bits (5 elements)

Graph G = (V,E)

Quadtree representation of a graph

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 15

Quadtree representation of a graph (contd.)

• Given a quadtree, the entire graph information can be stored in
the form of an array using bits

• The quadrants are converted and stored according to the row
major order of the adjacency matrix

• The contents of the bit array are stored as follows

 0: all 0's in quadrant

 1: all 1's in quadrant

 2: 0’s in diagonal, and rest 1’s

 3: the quadrant needs to be expanded further

• Since there are only 4 types of values, using 2 bits for each is
enough

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 16

Byte representation of the Quadtree:

The adjacency

matrix: size 64bits

Quadtree

representation:

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

Graph G = (V,E)

Q = {3, 0, 1, 1, 0}

Quadtree representation of a graph (contd.)

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 17

• Consider the following graph

The adjacency

matrix:

Quadtree:

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

Size: 21 elements:

42 bits

Graph G = (V,E)

Representing Graphs

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 18

• The previous example graph using different
numbering

The adjacency

matrix:

Quadtree:

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

Size: 5 elements:

10 bits

Graph G = (V,E)

Representing Graphs (contd.)

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 19

Numbering matters

• The numbering of the nodes of the graph G = (V, E)

matters when represented using quadtrees

• The adjacency matrix representation varies

according to the node numbering

• In quadtrees, quadrants with uniform values don’t

expand further, while others do increasing the

overall space required

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 20

Problem statement

• The size required for representing the graphs is
directly proportional to the number of
quadrants that are non-uniform

• Since the adjacency matrix varies with the
numbering of the nodes, some combinations
might be better than others

• Therefore, the problem at hand can be stated
as: Given a graph G = (V,E), does there exist a
numbering Y: v -> v', such that the number of
quadrants that have to be expanded is the
smallest

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 21

Outline

Storing graphs

Quadtree representation of graphs

Special graphs

Modifying graphs for efficient storage

Hybrid approach

Other representations 6

4

5

1

3

2

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 22

Special graphs

Following are some of the special graphs that we

consider for representing using quadtrees:

a. Complete bipartite graph

b. Complete k-partite graph

c. Block graphs

d. Chordal graphs

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 23

a. Complete bipartite graph

1 2 3

4 5 6 7 8

0 0 0 1 1 1 1 1

0 0 0 1 1 1 1 1

0 0 0 1 1 1 1 1

1 1 1 0 0 0 0 0

1 1 1 0 0 0 0 0

1 1 1 0 0 0 0 0

1 1 1 0 0 0 0 0

1 1 1 0 0 0 0 0

The adjacency matrix:

Quadtree:

Graph G = (V,E)

Size:

Adjacency matrix: 64 bits

Quadtree: 82 bits

Special graphs (contd.)

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 24

b. Complete k-partite graph

3

1

2

5

4

8

6

7

0 0 0 1 1 1 1 1

0 0 0 1 1 1 1 1

0 0 0 1 1 1 1 1

1 1 1 0 0 1 1 1

1 1 1 0 0 1 1 1

1 1 1 1 1 0 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 0 0 0

The adjacency matrix:

Quadtree:

Graph G = (V,E)

Size:

Adjacency matrix: 64 bits

Quadtree: 106 bits

Special graphs (contd.)

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 25

c. Block graphs

1 2

3 4

5

6

78

0 1 1 1 0 0 0 0

1 0 1 1 0 0 0 0

1 1 0 1 0 0 0 0

1 1 1 0 1 1 1 1

0 0 0 1 0 1 1 1

0 0 0 1 1 0 1 1

0 0 0 1 1 1 0 1

0 0 0 1 1 1 1 0

The adjacency matrix:

Quadtree:

Graph G = (V,E)

Size:

Adjacency matrix: 64 bits

Quadtree: 58 bits

Special graphs (contd.)

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 26

d. Chordal graphs

• Definition: An undirected graph G = (V, E) is chordal

(triangulated, rigid circuit) if every cycle of length

greater than three has a chord: namely an edge

connecting two non-consecutive vertices on the cycle.

3

1

2

54

8

6

7

Given graph G

Quadtree representation

Size:

Adjacency matrix: 64 bits

Quadtree: 61 elements; 122 bits

0 1 1 0 0 0 0 0

1 0 1 1 1 0 0 1

1 1 0 1 0 0 0 0

0 1 1 0 1 1 0 0

0 1 0 1 0 1 1 1

0 0 0 1 1 0 1 0

0 0 0 0 1 1 0 0

0 1 0 0 1 0 0 0

The adjacency matrix:

Special graphs (contd.)

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 27

Special graphs (contd.)

Chordal graphs (contd.)

In a graph G = (V, E), a vertex v is called simplicial if
and only if the subgraph of G induced by the vertex set
{v} ∪ N(v) is a complete graph, where N(v) is the set of
neighboring vertices of v.

A graph G on n vertices is said to have a perfect
elimination ordering if and only if there is an ordering
{v1, . . . vn} of G’s vertices, such that each vi is simplicial
in the subgraph induced by the vertices {v1, . . . vi}.

The chordal graphs may also be characterized as the
graphs that have perfect elimination orderings.

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 28

Chordal graphs (contd.)

Perfect Elimination Ordering (PEO): Using the sample

graph G=(V,E), a PEO is shown below

3

1

2

54

8

6

7

Given graph G

PEO: 1 ,3 , 8 , 7 , 6 , 2 , 4 , 5

Special graphs (contd.)

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 29

Chordal graphs (contd.)

Renumbering the nodes according to the PEO; the old

numbers are shown in parentheses

Given graph G

0 1 0 0 0 1 0 0

1 0 0 0 0 1 1 0

0 0 0 0 0 1 0 1

0 0 0 0 1 0 0 1

0 0 0 1 0 0 1 1

1 1 1 0 0 0 1 1

0 1 0 0 1 1 0 1

0 0 1 1 1 1 1 0

The adjacency matrix:

Size: 45 elements: 90 bits

So, the size decreases by 32

bits by renumbering

according to PEO

Quadtree representation

Special graphs (contd.)

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 30

Outline

Storing graphs

Quadtree representation of graphs

Special graphs

Modifying graphs for efficient storage

Hybrid approach

Other representations 6

5

1

2

4

3

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 31

Consider the following graph

0 1 0 0 0 1 0 1

1 0 0 0 0 1 1 0

0 0 0 0 0 1 0 1

0 0 0 0 1 0 0 1

0 0 0 1 0 0 1 1

1 1 1 0 0 0 1 1

0 1 0 0 1 1 0 1

1 0 1 1 1 1 1 0

The adjacency matrix:

Quadtree representation Size: 37 elements: 74 bits

Modifying graphs

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 32

Consider the following graph

0 1 0 0 0 1 0 1

1 0 0 0 0 1 1 0

0 0 0 0 0 1 0 1

0 0 0 0 1 0 0 1

0 0 0 1 0 0 1 1

1 1 1 0 0 0 1 1

0 1 0 0 1 1 0 1

1 0 1 1 1 1 1 0

The adjacency matrix:

Quadtree representation

Size: 37 elements: 74 bits

 This edge has been

added to the PEO

numbered chordal

graph

Additional edge info: 6 bits

Total space required to

store the PEO numbered

chordal graph: 80 bits

Space reduced by: 10 bits

Modifying graphs

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 33

Consider the following graph

0 1 0 0 0 1 0 1

1 0 0 0 0 1 1 0

0 0 0 0 0 1 0 1

0 0 0 0 1 0 1 0

0 0 0 1 0 0 1 1

1 1 1 0 0 0 1 1

0 1 0 1 1 1 0 1

1 0 1 0 1 1 1 0

The adjacency matrix:

Quadtree representation
Size: 29 elements: 58 bits

Modifying graphs (Contd.)

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 34

Consider the following graph

0 1 0 0 0 1 0 1

1 0 0 0 0 1 1 0

0 0 0 0 0 1 0 1

0 0 0 0 1 0 1 0

0 0 0 1 0 0 1 1

1 1 1 0 0 0 1 1

0 1 0 1 1 1 0 1

1 0 1 0 1 1 1 0

The adjacency matrix:

Quadtree representation
Size: 29 elements: 58 bits

 These edges have

been added to the

PEO numbered

chordal graph

Edge (4,8) has

been removed

Edge information for 3

edges need to be stored (2

removed, 1 added)

Extra space required: 18

bits (6 bits per edge)

Total space: 76 bits

Space Reduced by : 14 bits

Modifying graphs (Contd.)

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 35

Modifying graphs (Contd.)

• Further modifications can be made to the chordal graph
to reduce space required

• In addition to adding (1,8), (4,7) and removing (4,8), the
following needs to change

– Add (2,5)

– Remove (2,6)

• These changes reduce the quadtree size to 42 bits;
additional 30 bits are required to store the modified edge
information

• The total size for this case is 72 bits, which is
significantly reduced from the original size of 122 bits for
the chordal graph

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 36

Outline

Storing graphs

Quadtree representation of graphs

Special graphs

Modifying graphs for efficient storage

Hybrid approach

Other representations 6

1

2

3

5

4

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 37

• For many cases, the quadtree representation for
graphs of size 8 nodes require more than 64 bits,
which is inefficient compared to the adjacency matrix
representation

• However, for larger graphs, the quadtree approach is
efficient compared to other data structures

• Even for larger graphs, when the quadrant reduces to
8x8 bits, the quadtree would require more space for
further reductions

• Therefore, a hybrid approach, where the recursive
division of the quadrants stop whenever the quadrant
size reaches 8x8 is a better technique

Hybrid approach

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 38

• In the byte representation of the quadtree, an

additional bit for each node is required to indicate

whether the quadrant is further expanded or

represented using adjacency matrix

• Although this would need additional bits, overall the

space required decreases.

Hybrid approach (Contd.)

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 39

Outline

Storing graphs

Quadtree representation of graphs

Special graphs

Modifying graphs for efficient storage

Hybrid approach

Other representations

1

2

3

4

6

5

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 40

1-bit coding

• Real-world graphs are usually sparse, and most
of the quadrants consist of just 0's in them.

• Hence, instead of using 2-bits to represent each
element, the method can be modified to use 1-
bit for each element; in this case a quadrant
with all 0's is represented by a 0, else it is
broken into smaller quadrants which is denoted
by a 1.

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 41

Comparison of sizes: 1024 node graph

Technique Size (bits) % Compared to

Adjacency matrix

Adjacency Matrix 1048576 100

2-bit 261370 24.93

1-bit 130873 12.48

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 42

What about using 3 bit coding?

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 43

Comparison of sizes: 1024 node graph

Technique Size (bits) % Compared to

Adjacency matrix

Adjacency Matrix 1048576 100

2-bit 261370 24.93

1-bit 130873 12.48

3-bit 300227 28.63

3-bit hybrid 125538 11.97

3-bit hybrid + folding 62889 6

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 44

Topological Information helps?

• The patterns used for the 3-bit compression

are fixed for all graphs

• Using the topology for specific graphs or

domains, relevant patterns can be chosen

• This provides an additional 30%

compression

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 45

Conclusion

• Comparing with the adjacency matrix
representation, all the techniques achieve more
than 70% compression.

• The techniques with 1-bit and 3-bits outperform
the 2-bit one

• Since real-world graphs are sparse, the 3-bit
technique does not reach it’s potential with
many of the patterns reporting low counts of
occurrences.

• In other domains, where the graphs are denser,
the 3-bit compression schemes should be able to
take advantage of the common patterns and
perform better.

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 46

• Questions..??

Graph Compression Using Quadtrees 4/27/2016 Amlan Chatterjee 47

[1] L.S. Chandran, L. Ibarra, F. Ruskey, J. Sawada, Generating and characterizing the perfect

elimination orderings of a chordal graph, Theoretical Computer Science, 307 (2003), pp. 303–317

[2] H. Samet, Using quadtree to represent spatial data, NATO ASI Series, Vol. F18, pp.229 – 247,

1985

[3] M. Nelson, S. Radhakrishnan, A. Chatterjee, and C. N. Sekharan. On compressing massive

streaming graphs with Quadtrees, 2015 IEEE International Conference on Big Data, pages

2409–2417, Oct 2015.

References

