ENERGY-EFFICIENT DATA REPLICATION IN CLOUD COMPUTING DATACENTERS Presented by David Ocejo

OVERVIEW

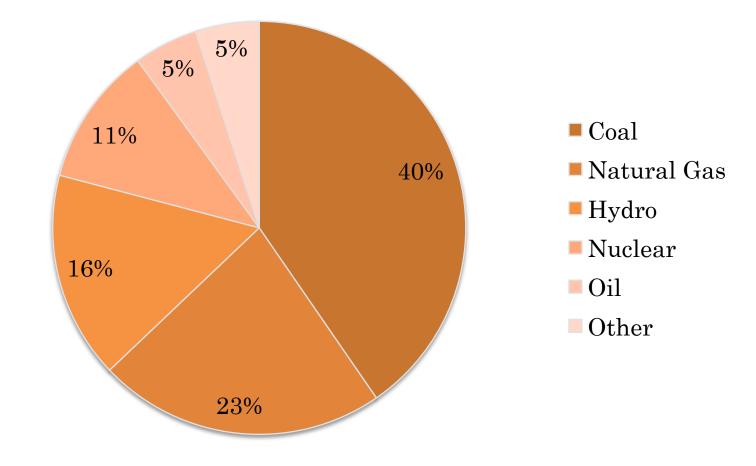
• Problem

• Saving Energy ("Solution")

- Efficiency
- Data Center Topology

• Simulation

- Conditions
- Results


PROBLEM

• Increasing energy consumption

• Up to 1.5% of World's Electricity (in 2010)

• from 1.0% (in 2005)

WORLD'S ELECTRICITY GENERATION

DATA CENTER ENERGY CONSUMPTION

- Cooling
- Power Distribution
- Networking
- Servers

- Two approaches:
 - Shutting down components
 - Scaling down performance

- Shutting Down Components
 - Dynamic Power Management (DPM)
 - Dynamic Network Shutdown (DNS)

- Scaling Down Performance
 - Dynamic Voltage and Frequency Scaling (DVFS)
 Applicable only to CPU
 - Other components still consume at peak rates
 - Dynamic Voltage Scaling (DVS)
 Links
 - $P = V^2 * f$

• = (supplied voltage ²) * (operating frequency)

• Virtualization

OUR DATA REPLICATION APPROACH

• Joint optimization of energy consumption and bandwidth capacity

• Optimization of communication delays

- Three Tier Topology
 - Core Layer
 - Flows going in and out of data center
 - Aggregation Layer
 - Integrates connections and traffic flows from racks
 - Access Layer
 - Where computing servers are arranged into racks

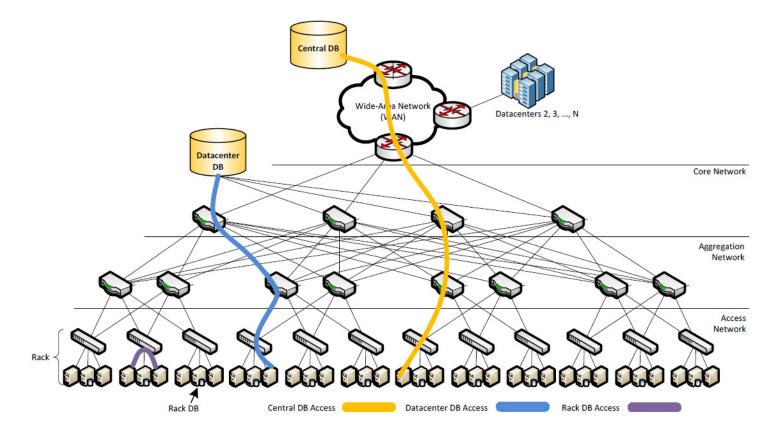


Fig. 1. Three-tier cloud computing data center architecture.

• External requests directed to Rack DB

• If necessary, Database DB and Central DB

• Databases maintain and exchange access records

- Requesting (rack) server and database
- Number of data item accesses and updates

• Popularity

- Access rate: number of access events in given time period
- Decays

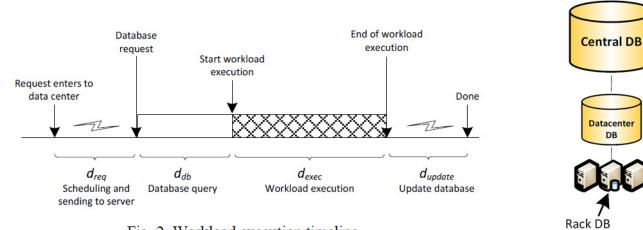


Fig. 2. Workload execution timeline.

DATA CENTER TRANSMISSIONS

Uplink – Bandwidth

- Propagating database requests
- Updating data items

o Downlink – Bandwidth

- Delivering workload descriptions
- Receiving database objects
- Propagating updates between DB replicas

POWER CONSUMPTION - SERVERS

$$= Fixed + \left(\frac{Peak - Fixed}{2}\right)\left(1 + load - e^{-\frac{1}{a}}\right)$$

1

- Servers consume two-thirds when idle
 - Memory modules, disks, I/O, etc. still consuming at peak rate

POWER CONSUMPTION - SWITCHES

 $= Chassis + (Number Of Line Cards * Line Card) + \sum_{n=1}^{\infty} (n_p^r * P_p^r * u_p^r)$

- Power drawn by port running at rate r
- Number of ports running at rate r
- Utilization of ports
- 85-97% fixed energy consumption
- 3-15% consumed by port transceivers

SIMULATION

• Performed using GreenCloud simulator

- Cloud computing simulator
- Packet level communication

• Single data center simulation

• 60 minutes

SIMULATION-CONDITIONS

TABLE I. POWER CONSUMPTION OF DATACENTER HARDWARE

Parameter	Power Consumption [W]		
	Chassis	Line cards	Port
Gateway, core, aggregation switches	1558	1212	27
Access switches	146	-	0.42
Computing server	301		

TABLE II. DATACENTER TOPOLOGY

Parameter	Value	
Gateway nodes	1	
Core switches	4	
Aggregation switches	8	
Access (rack) switches	32	
Computing servers	1024	
Gateway link	100 Gb/s, 50 ms	
Core network link	10 Gb/s, 3.3 µs	
Aggregation network link	10 Gb/s, 3.3 µs	
Access network link	1 Gb/s, 3.3 μs	

SIMULATION - CONDITIONS

• DB queries limited to 1500 bytes

• Fits into single Ethernet packet

• Varying:

- Data item size
- Data access and update rates
- Replication threshold

• DNS power saving enabled

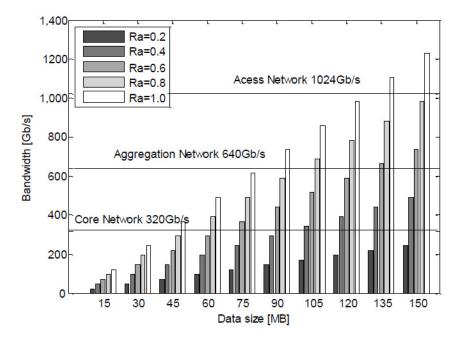


Fig. 3. Downlink bandwidth demand.

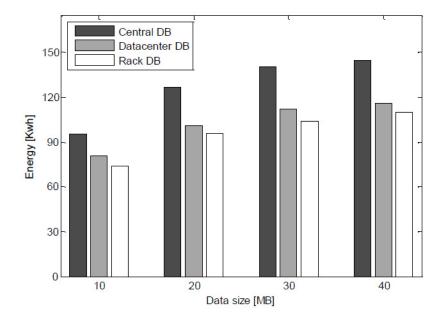
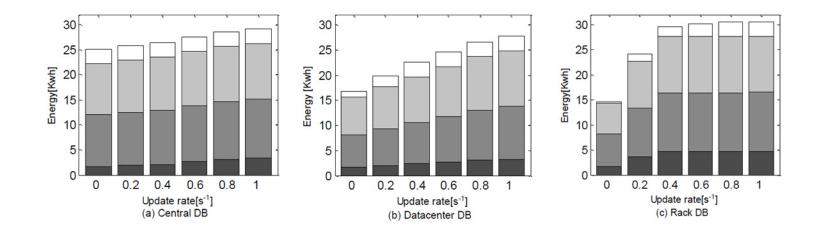
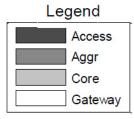




Fig. 4. Energy consumption of servers.

Fig. 5. Energy consumption of network switches.

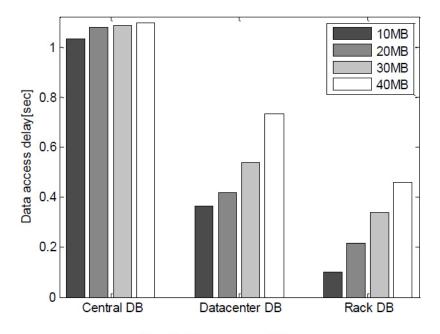


Fig. 6. Data access delay.

CONCLUSION

• Replicating data closer to data consumers reduces:

- Energy consumption
- Bandwidth usage
- Communication delays

• Degree of reduction dependant on update rate