
Service Function Chain Placement in Cloud
Data Center Networks: a Cooperative
Multi-Agent Reinforcement Learning

Approach
Lynn Gao, University of California, Irvine

Yutian Chen, California State University, Long Beach
Bin Tang, California State University, Dominguez Hills

1

Outline

• Introduction
• Service Function Chain (SFC)
• SFC Placement Problem

• Algorithms
• Multi-agent Reinforcement Learning (MARL)
• Dynamic Programming (DP)
• Optimal Exhaustive (Optimal)

• Performance Evaluation
• Conclusions and Future Work

2

Service Function Chaining (SFC)

• An SFC, consisting of a sequence of virtual network functions (VFNs)
(i.e., firewalls and load balancers), is an effective service provisioning
technique in cloud data centers
• Virtual machine (VM) cloud traffic traverses the chain of VNFs in a

order to achieve security and performance guarantees
• An example of an SFC of three VNFs:
• First, the firewall blocks malicious traffic
• Next, the load balancer avoids network congestion
• Finally, the cache proxy caches network packets for quick

data access by other cloud

3

SFC Placement Problem
• As cloud network resources such as bandwidth and energy are limited

in a cloud data center network, one important task for the cloud
operator is to install the VNFs at the right locations inside the network
to optimize the cloud traffic or user-perceived VM communication
delay.

• SFC Placement Problem: Given a VM flow in the cloud data center
and an SFC, how to place the VNFs of the SFC inside the cloud data
center to minimize the communication cost (i.e., network traffic or
delay) of the VM flow?

4

An Example of SFC Placement
• A small cloud data center of six switches
• One VM communication flow (vm1, vm2)
• SFC placement (a): traversing six switches, with six network hops
• SFC placement (b): traversing three switches, with two network hops
• (b) is more network-efficient than (a)

5

SFC Placement is Equivalent to !-Stroll
Problem
• "-Stroll Problem
• Given
• a weighted undirected graph
• source # and destination $,
• an integer !

• Goal: find an #-$ path or walk
(i.e., a stroll) of minimum length
that visits at least ! distinct
nodes excluding # and $.

• !-stroll is NP-hard
6

Optimal 2-stroll between # and $:
#, &, $, ', $ with cost 6

SFC Placement in Fat-tree Data Centers
• One pair of communicating VMs (", "’), " is at host &(") and "’ at &("’)
• SFC with ' VNFs: (), f2, …, and fn

• Place the ' VNFs to minimize communication cost:

7

SFC Placement in Fat-tree Data Centers
• One pair of communicating VMs (", "’), " is at host &(") and "’ at &("’)
• SFC with ' VNFs: (), f2, …, and fn

• Place the ' VNFs to minimize communication cost:

8

SFC Placement in Fat-tree Data Centers
• One pair of communicating VMs (", "’), " is at host &(") and "’ at &("’)
• SFC with ' VNFs: (), f2, …, and fn

• Place the ' VNFs to minimize communication cost:

9

Algorithms for SFC Placement

•MARL algorithm
•DP algorithm
•Optimal algorithm

10

MARL Algorithm

• Uses reinforcement learning and Q-learning
• Finite set of states !
• Finite set of actions "
• State transition function #
• Reward function $
• Value based methods
• Agents explore the world by taking actions based on the state of the world

11

MARL Algorithm - Action Selection Rule

• Exploitation: move to node ! where

• Exploration: move to node ! following distribution

12

MARL Algorithm
• All the m agents start at host !(#)
• Takes place in episodes (iterations)
• Each episode has two stages:

• Stage 1: each agent finds its own %-
stroll following action rules

• Stage 2: finds the smallest cost %-stroll
and updates reward and &-value for
edges in this %-stroll

• Terminate after specified number of
iterations or within proximity to
compared DP or Optimal algorithms
• Time complexity: '(()%)

• (: number of episodes
• *: number of agents
• %: number of VNFs

13

Stage 1

Stage 2

Dynamic Programming
Algorithm
• Based on the observation

that although finding the
shortest stroll visiting k
distinct nodes is NP-hard,
finding the shortest stroll of
k edges can be solved
optimally and efficiently
using DP
• Time complexity: !(# $ %)

14

Optimal Algorithm

• Enumerates all the SFC placements and finds the one with
minimum cost
• Time complexity: !(|$|%)

15

Performance Evaluation – K=4 Fat Trees

16

Performance Evaluation – K=8 Fat Trees

17

Performance Evaluation – K=8 Fat Trees

! = 5
4 ∗ &'

Algorithm Time Complexity
MARL Algorithm ((* ∗ &+ ∗ ,)
Dynamic Programming ((, ∗ &.)

18

Performance Evaluation - # of Agents in MARL

19

Conclusions and Future Work

• Novelties
• The core of the the SFC placement problem is the k-stroll problem.
• Solved k-stroll with RL with good performance
• Under the k-stroll modeling of SFC placement, deep reinforcement learning is

not necessary.
• Future
• Convergence and convergence speed of our RL algorithm.
• Balance cooperation with competition to find a near-optimal SFC placement

efficiently in a rational and game theoretical environment.

20

