Service Function Chain Placement in Cloud
Data Center Networks: a Cooperative
Multi-Agent Reinforcement Learning

Approach
Lynn Gao, University of California, Irvine

Yutian Chen, California State University, Long Beach
Bin Tang, California State University, Dominguez Hills

Outline

* Introduction
 Service Function Chain (SFC)
e SFC Placement Problem

* Algorithms
* Multi-agent Reinforcement Learning (MARL)
* Dynamic Programming (DP)
e Optimal Exhaustive (Optimal)

 Performance Evaluation
* Conclusions and Future Work

Service Function Chaining (SFC)

* An SFC, consisting of a sequence of virtual network functions (VFNs)
(i.e., firewalls and load balancers), is an effective service provisioning
technique in cloud data centers

e Virtual machine (VM) cloud traffic traverses the chain of VNFs in a
order to achieve security and performance guarantees

* An example of an SFC of three VNFs: firewall
* First, the firewall blocks malicious traffic vm1|——»~7/’.\ -
* Next, the load balancer avoids network congestion —1
* Finally, the cache proxy caches network packets for /~\ 7
data access by other cloud load balancer [& l! r\ cache proxy

SFC Placement Problem

* As cloud network resources such as bandwidth and energy are limited
in a cloud data center network, one important task for the cloud
operator is to install the VNFs at the right locations inside the network
to optimize the cloud traffic or user-perceived VM communication

delay.

* SFC Placement Problem: Given a VM flow in the cloud data center
and an SFC, how to place the VNFs of the SFC inside the cloud data
center to minimize the communication cost (i.e., network traffic or
delay) of the VM flow?

An Example of SFC Placement

* A small cloud data center of six switches
* One VM communication flow (vmy, vm,)
* SFC placement (a): traversing six switches, with six network hops

* SFC placement (b): traversing three switches, with two network hops
* (b) is more network-efficient than (a)

firewall s firewall E3 @l load balancer
S =T TTEEL
Vi l — oo vin, @ — & =
// \\ vin, \\\ vin,
7 S
///«*.".._ -*7_',_..; I £T0 T ; I
”~ - -~ ——
7 7/ /7 <
/ S / /‘\ / -
. - AW = 7 P S =T
* cache proxy

"

SFC Placement is Equivalent to k-Stroll

Problem

 k-Stroll Problem
* Given
* a weighted undirected graph
e source s and destination ¢,
* an integer k

* Goal: find an s-t path or walk
(i.e., a stroll) of minimum length
that visits at least k distinct
nodes excluding s and t.

e k-stroll is NP-hard

Optimal 2-stroll between s and t:
s,D,t,C,t with cost 6

SFC Placement in Fat-tree Data Centers

* One pair of communicating VMs (v, v’), v is at host s(v) and v’ at s(vV')

* SFC with n VNFs: f, f5, ..., and f,
e Place the n VNFs to minimize communication cost:

n—1

Ce(p) = 3 ¢(p(): 9 + 1)) + (e(s(0:), p(1D) + e(p(n) 5(1)))).

i=1

Optimal SFC Placement and VM Communication

= = — Non-optimal SFC Placement and VM Communication

—
[] L] L] Core Switches

\ - — . .
fi Aggregation Switches
__________________________________ D #2) f; Edge Switches
- i =4: VNF
Bl oog | W " =

SFC Placement in Fat-tree Data Centers

* One pair of communicating VMs (v, v’), v is at host s(v) and v’ at s(vV')

* SFC with n VNFs: f, f5, ..., and f,
e Place the n VNFs to minimize communication cost:

n—1

SFC Placement in Fat-tree Data Centers

* One pair of communicating VMs (v, v’), v is at host s(v) and v’ at s(vV')

* SFC with n VNFs: f, f5, ..., and f,
e Place the n VNFs to minimize communication cost:

n—1

Ce(p) = 3 ¢(p(): 9 + 1)) + (e(s(0:), p(1D) + e(p(n) 5(1)))).

i=1

Optimal SFC Placement and VM Communication

= = — Non-optimal SFC Placement and VM Communication

—
[] L] L] Core Switches

\ - — . .
fi Aggregation Switches
__________________________________ D #2) f; Edge Switches
- i =4: VNF
Bl oog | W " =

Algorithms for SFC Placement

* MARL algorithm
* DP algorithm

* Optimal algorithm

MARL Algorithm

e Uses reinforcement learning and Q-learning
* Finite set of states S
Finite set of actions A
State transition function t
Reward function r
* Value based methods
* Agents explore the world by taking actions based on the state of the world

Q(s,a) <+ (1 —a)-Q(s,a) +a-|r(s,a)+ v - maxpQ(t,b)]

MARL Algorithm - Action Selection Rule

* Exploitation: move to node t where

Q(s,u)]°
w(s,u)]P }

* Exploration: move to node t following distribution

Q0] w(s, b))
P(s:1) = s Bt P Tu(s P

12

Algorithm 1 MARL Algorithm for SFC Placement.
Input: A data center graph G(V =V, UV, E), s(vy), s(v}), and an
SFC (f1, fa; - fn)-

. Output: A k-stroll from s(v;) to s(v}); that is, a switch p(j) € V; to place
g O r I I I I each of the k VNFs f; € F and the cost C,(p)) of the k-stroll.

Notations: i: index for switches; j: index for agents;
Uj: the set of nodes unvisited by agent j, initially U; = V,, the set of switches;
ry: the node where agent j is located currently; .
. . . . u,v): Q-value of edge (u,v), nitially Gre=——""—"—0
* Takes place in episodes (iterations) B, B Y T
. a: learning rate, a = 0.1;
* Each episode has two stages: 7: discount factor, 7 = 03,
. for (i = 1;i <= ki;i++) // Finding the k switches to place VNFs =
e Stage 2: finds the smallest cost k-stroll for (j = 1;j < m;j++) /[Agent j ’
and updates reward and Q-value for o e
H L oL . ri,81)=(1—a)-Q(rs, s a-v-maxzer.Q(sq,2); -value
 Terminate after specified number of & o 0 0 T sl ¢ Stage 1
iterations or within proximity to o 1= Us =tk // Switches not yet visited by agent j g

el ol

Lj: the path taken by agent j, initially empty;
* All the m agents start at host s(v) b the length of L, initially zero
s U(L0)’
p: an array storing the distinct switches on s(vq)-s(v}) stroll;
W: a constant value of 10 following [17];
° . i i -
Stage 1 ¥ eaCh agent fl nds |tS own k 1. Initially all the m agents are at host s(v), i.e, r; = s(v),1 < j < m;
St rO” f0| IOW' ng aCtIOn rUIes 2. while (termination condition is not met)
Agent j decides the next node s; to move to following action rule
edges in this k-stroll 6. Ly=LyU{s);
7. Iy =1l; +w(ry,s;);

end for;
i 1 12. end for;
Compared DP Or Optlmal algorlthms 13. for (j =’1:j§m;j+-) // Agent j ends at destination host s(v’)
. . 14. Ly =Ly u{s(v)}
* Time complexity: O(Nmk) 5. b=btuls@)
. 19. Q(rj,sj), =(1-a)-Q(ry,s;) +a-v- -max;cy, Q(sy,2); // Q-value
* N:number of episodes 7. =) —
. 19. Let j* = argmin mly be the agent with a k-stroll of smallest length;
* M. number Of agents 20. for -()each e(?ge(llt.gi')gEJLJ.)

° k: num ber Of VN FS 21. r(u,v) = 7‘:— // Update reward value r(u,v);

22 Qu,v) + (1 —a)-Q(u,v) + a - [r(u,v) + - maxpQ(v,b)]; // Q-value Stage 2
23. end for;

24. end while;

25. RETURN The switch p(j) € V; to place VNF f; € F and the cost C,(p).

Dynamic Programming
Algorithm

* Based on the observation
that although finding the
shortest stroll visiting k
distinct nodes is NP-hard,
finding the shortest stroll of
k edges can be solved
optimally and efficiently
using DP

* Time complexity: O (k|V|*)

Algorithm 2 A DP Algorithm for SFC Placement Problem.

Input: A complete graph G'(V',E’), s(v), s(v'), and an SFC (fi, fa, ..., fi)-
Output: cost of an s(v)-s(v’) stroll in G’ visiting at least k distinct switches.
Notations: e: index for edges; i: index for switches;

c(u,s(v"),e): cost of a u-s(v") stroll with e edges, initially +oo ;

successor(u, s(v'),e): u’s successor in a u-s(v') stroll with e edges, initially -1 ;

T

p:

number of edges needed on s(v)-s(v’) stroll, initially k& + 1;
an array storing distinet switches on s(v)-s(v’) stroll;

num: the number of distinct switches in p;
found: true if it has found a s(v)-s(v’) stroll with at least k distinct switches,

1.

N

Noohw

%o

initially false;
V' = {u1,...,upy}, let ug = s(v) and upy,| = s(v');
Vu;,u; € V' with i # j, e(u, uj, 1) = ¢y, o;, successor(u;, u;, 1)

llJ',

successor(uj, ui, 1) = u;; Yu; € V', e(ui, ui, 1) = +oo, successor(u;i, ui, 1) = —

while (= found)
for (e =2;e <=rje++) // edges in u;-s(v’) stroll
for (i=1;i < |V'| — L;i++) // node u;
for (each u, u # u; Au # s(v') Au; # successor(u,s(v'),e — 1))
if (c(ui,s(v'),€) > cu;u + c(u, s(v'),e — 1))
c(u;, s(v'), €) = ey, o + c(u, s(v'),e — 1);
successor(u;, s(v'), e) = u;
end if;
num = 0; p = ¢ (empty set), e——;
b = successor(s(v), s(v'), e);
while (e > 1)
if (b#s(v)Ab#s(v')Abép)
plnum| = b; num++;
end if;
e— —;
b = successor(b, s(v'), e);
end while;
if (num < k) r++; // less than k distinct switches
else found = true;
. end while;
. Place fy, ..., fi on the first k switches stored in p;
. RETURN ¢(s(v),s(v"),r).

1;

14

Optimal Algorithm

Algorithm 3 Exhaustive and Optimal SFC Placement.

Input: A data center graph G(V, FE), s(v) and s(v’), and an SFC (f1, fo, ..., fx).

Output: A VNF placement p and the total cost C.(p).
1. C.(p) = +o0;

2. Among all |[Vg|- (|Vs| —1)-...,-(|Vs| — k+ 1) SFC placements, find p that
gives the minimum cost C.(p);

3. RETURN p and C.(p).

* Enumerates all the SFC placements and finds the one with
minimum cost

» Time complexity: O(|V|¥)

15

Communication Cost

Performance Evaluation — K=4 Fat Trees

B DP ERL W Optimal B DP ERL EOptimal

15 - 2.5
2 £
£ 10 E 15
: e | |
() > O
EO 6 7 3 9 10 %% . " . l '

-1.5

Number of VNFs Number of VNFs

16

Communication Cost

(Number of Hops)

Performance Evaluation — K=8 Fat Trees

mDP ERL mDP mRL
15 3
’g 2.5
10 =
6 8 15
- C
S5 O 1
5 O O
I e 5 00
= 0
o
0 =5 05 ‘ 8. 1! 1
6 8 10 12 e N

Number of VNFs Number of VNFs

17

P

Communication Cost

Performance Evaluation — K=8 Fat Trees

HDP ERL B DP HRL

15 3
) oy 25 .
) E
T 10 =
© S8 15
- L & 05
> X U .

- o 05 M l .

6 8 10 12 - 1
Number of VNFs Number of VNFs
Algorithm Time Complexity
5

V| = 2" K2 MARL Algorithm O(N *K3 k)

Dynamic Programming Ok =K?®)

18

Performance Evaluation -

Table 2: Varying number of agents m in RL. Here, £ = 10 and K = 6.

of Agents in MARL

Number of Agents m 1 5 10 15 20
Communication Cost (number of hops)|23.3 [17.6 |14.7 |13.7 |13.4
Execution Time (seconds) ba.9d (2072 007 20 (02D
Number of Iterations 169:6: 505 12225 K. 3 1

19

Conclusions and Future Work

* Novelties
* The core of the the SFC placement problem is the k-stroll problem.
* Solved k-stroll with RL with good performance

* Under the k-stroll modeling of SFC placement, deep reinforcement learning is
not necessary.

* Future

* Convergence and convergence speed of our RL algorithm.

* Balance cooperation with competition to find a near-optimal SFC placement
efficiently in a rational and game theoretical environment.

