Joint Virtual Machine Placement and Migration in Dynamic Policy-Driven Data Centers

$\bullet \bullet \bullet$

Hugo Flores J Lucas California State University Dominguez Hills Department of Computer Science

Presentation Overview

- 1. Introduction
- 2. Related Works
- 3. System Model
- 4. Virtual Machine Migration
- 5. Virtual Machine Placement
- 6. Performance Evaluation
- 7. Conclusion

Introduction

What is a Dynamic Policy Driven Data Center (PDDC)?

• Data Center

- Physical Machines (PMs)
- Switches
- Virtual Machines (VMs)

• Policy Driven

- Middleboxes (MBs)
- Policy Chains (Ordered or Unordered)

• Dynamic

• Communication Frequencies

Figure 1: Sample fat tree topology.

What is VM Placement?

What is VM Migration?

Goals

Virtual Machine Placement

- Given:
 - An empty PDDC
 - Policies (Ordered or Unordered)
 - Unplaced VM Pairs with Comm. Frequency
- Output:
 - VM Placement with minimum Comm. cost
- How:
 - Optimal Algorithm
 - Placement Approximation Algorithm

Virtual Machine Migration

- Given:
 - A PDDC
 - Policies (Ordered or Unordered)
 - Placed VM Pairs with new Comm. Frequency
- Output:
 - VM Migration with minimum Comm. & Migration cost
- How:
 - MCF Algorithm
 - Migration Approximation Algorithm

Related Works

Virtual Machine Placement or Migration

- Improving the Scalability of Data Center Networks with Traffic-aware Virtual Machine Placement
 - 2010 Proceedings IEEE INFOCOM
 - X. Meng, V. Pappas, & L. Zhang
 - TrafficAware Algorithm
- PACE: Policy-Aware Application Cloud Embedding
 - 2013 Proceedings IEEE INFOCOM
 - L. E. Li et al.
- PLAN: Joint Policy- and Network-Aware VM Management for Cloud Data Centers
 - 2016 IEEE Transactions on Parallel and Distributed Systems
 - L. Cui et al.
 - PLAN Algorithm

Virtual Machine Placement and Migration

- Joint Virtual Machine Placement and Migration Scheme for Data Centers
 - 2014 IEEE Global Communications Conference
 - T. Duong-Ba, T. Nguyen, B. Bose, & T. Tran
- Traffic-Aware Virtual Machine Migration in Topology-Adaptive DCN
 - 2017 IEEE/ACM Transactions on Networking
 - Y. Cui et al.

System Model

Datacenter

- Fat Tree Topology
 - K-parameter determines number of PMs
 & switches
- PDDC:
 - Undirected Graph G(V, E)
 - $\circ \quad V = V_P \cup V_S$
 - \circ *E* is the set all edges
- Physical Machines:
 - *i*-th PM has *m*(*i*) resource slots
 - Each VM requires 1 slot

Middleboxes

- Set of Middleboxes: • $M = \{ mb_1, mb_2, ..., mb_m \}$
- MB Switch:
 - $\circ \quad mb_j \to sw(j) \in V_s$
- Bump Off the Wire Design

VM Pairs

- VM Pairs:
 - $\circ P = \{ (v_1, v_1'), (v_2, v_2'), \dots, (v_L, v_L') \}$
 - \circ v_i = Source VM
 - v'_{i} = Destination VM
- Communication Frequency:
 - $\circ \qquad \boldsymbol{\mathfrak{X}} = \langle \ \boldsymbol{\mathfrak{X}}_1 \ \textbf{,} \ \boldsymbol{\mathfrak{X}}_2 \ \textbf{,} \dots \ \textbf{,} \ \boldsymbol{\mathfrak{X}}_L \ \rangle$
 - Non-constant vector

Policies

- Ordered Policies
 - ($mb_1, mb_2, ..., mb_m$)
 - Ingress Switch = First MB visited
 - Egress Switch = Last MB visited
 - Sequential MB Dependencies
- Unordered Policies
 - $\circ \quad \{ mb_1, mb_2, \dots, mb_m \}$
 - Independant MBs

Costs

- Distance Cost
 - \circ c(i,j)
- VM Pair Communication Cost
 (frequency) * (number of hops)
- VM Pair Migration Cost

 μ*c(i,j)

Virtual Machine Migration

Ordered Policy Goal

$$C_{t}(m) = \sum_{i=1}^{l} \lambda_{i} \cdot \sum_{j=1}^{m-1} c(sw(j), sw(j+1)) + \sum_{i=1}^{l} \left(\mu \cdot c(p(v_{i}), m(v_{i})) + \lambda_{i} \cdot c(m(v_{i}), sw(1)) \right) + \sum_{i=1}^{l} \left(\mu \cdot c(p(v_{i}'), m(v_{i}')) + \lambda_{i} \cdot c(sw(m), m(v_{i}')) \right)$$

Ordered Policy Goal

$$C_{t}(m) = \sum_{i=1}^{l} \lambda_{i} \cdot \sum_{j=1}^{m-1} c(sw(j), sw(j+1)) + \sum_{i=1}^{l} \left(\mu \cdot c(p(v_{i}), m(v_{i})) + \lambda_{i} \cdot c(m(v_{i}), sw(1)) \right) + \sum_{i=1}^{l} \left(\mu \cdot c(p(v_{i}'), m(v_{i}')) + \lambda_{i} \cdot c(sw(m), m(v_{i}')) \right)$$

MB Traversal Cost

Migration and Ingress Cost

Migration and Egress Cost

Ordered Policy Solution - MCF Algorithm

- 1. Add Source & Sink Node: $V' = \{s\} \cup \{t\} \cup V_m \cup V_p$
- 2. Connect Source/Sink to VMs/PMs: $E' = \{(s,v) : v \in V_m\} \cup \{(v,pm_j : v \in V_m, pm_j \in V_p\} \cup \{(pm_j,t) : pm_j \in V_p\}$
- 3. Source to VM: capacity 1, cost 0 & PM to Sink: capacity m_i , cost 0
- 4. Source VM to PM edges: capacity 1, cost: $\mu \cdot c(p(v_i), pm_j) + \lambda_i \cdot c(pm_j, sw(1))$ Destination VM to PM edges: capacity 1, cost: $\mu \cdot c(p(v'_i), pm_j) + \lambda_i \cdot c(pm_j, sw(m))$ 5. Supply = 21. Demand = 21
- 5. Supply = 2L, Demand = 2L

Ordered Policy Solution - MCF Algorithm

Ordered Policy Solution - MCF Algorithm

Unordered Policy Goal

$$C_t(m,\vec{\pi}) = \sum_{i=1}^l \left(\mu \cdot c\big(p(v_i), m(v_i)\big) + \mu \cdot c\big(p(v'_i), m(v'_i)\big) \right)$$

$$\sum_{i=1}^{l} \lambda_i \cdot \Big(\sum_{j=1}^{m-1} c\big(sw(\pi^i(j)), sw(\pi^i(j+1))\big) + c\big(m(v_i), sw(\pi^i(1))\big) + c\big(sw(\pi^i(m)), m(v_i')\big)\Big)$$

Ϊ

Unordered Policy Goal

$$C_t(m, \vec{\pi}) = \sum_{i=1}^l \left(\mu \cdot c(p(v_i), m(v_i)) + \mu \cdot c(p(v'_i), m(v'_i)) \right)$$

$$\sum_{i=1}^{l} \lambda_i \cdot \left(\sum_{j=1}^{m-1} c(sw(\pi^i(j)), sw(\pi^i(j+1))) + c(m(v_i), sw(\pi^i(1))) + c(m(v_i), sw(\pi^i(1))) \right)$$

 $+c(sw(\pi^i(m)), m(v'_i)))$

Migration Cost

Variable MB Cost

Cost to First MB

Cost to Last MB

Algorithm 1: VM²P Algorithm for Unordered Policy. **Input:** A PDDC with unordered policy $\{mb_1, mb_2, ..., mb_m\}$, VM pairs P with placement p, $V_p = \{pm_i\}, m(i)$. **Output:** A migration m and its total energy cost $C_t(m, \vec{\pi})$. 0. $m = \phi, C_t(m, \vec{\pi}) = 0, k = 0$ 1. while $(k \le l)$ //not all VM pairs are migrated yet $a = 1, b = 1, c_{min} = \infty;$ 2. 3. for $(i = 1; i \le |V_p|; i + +)$ 4. if $(m(pm_i) == 0)$ break; 5. for $(j = i; j \le |V_p|; j + +)$ 6. if $(m(pm_i) == 0)$ break; 7. if $(i == j \land m(s_i) \le 1)$ break; $V_{K}^{i,j} = \{pm_{i}, pm_{j}, sw(1), sw(2), ...sw(m)\};\$ 8. 9. Construct complete graph $K^{i,j} = (V_K^{i,j}, E_K^{i,j});$ Compute a minimum spanning tree MST for $K^{i,j}$; 10. 11. Compute a walk W from pm_i to pm_i on MST by visiting all vertices using each edge at most twice, and calculate the cost $c_{i,i}$ of W; 12. $c(pm_i) = \mu \cdot c(p(v_i), pm_i),$ $c(pm_{i}) = \mu \cdot c(p(v_{i}^{\prime}), pm_{i});$ 13. $c_{i,j} = \lambda_k \cdot c_{i,j} + c(pm_i) + c(pm_j);$ 14. if $(c_{i,i} < c_{min})$ $a = i, b = j, c_{min} = c_{i,j};$ 15. end for: 16. end for: $m = m \cup \{(pm_a, pm_b)\};$ 17. 18. $C_t(m, \overrightarrow{\pi}) += c_{min};$ $m(pm_a) - -, m(pm_b) - -;$ 19. // the next VM pair 20. k + +: 21. end while; 22. **RETURN** m and $C_t(m, \vec{\pi})$.

Sketch of Optimal Proof

Virtual Machine Placement

Ordered Policy Goal

$C_t(m) = \sum_{i=1}^{l} \lambda_i \cdot \sum_{j=1}^{m-1} c(sw(j), sw(j+1)) +$

$\sum_{i=1}^{l} \left(\lambda_i \cdot c(m(v_i), sw(1)) + \lambda_i \cdot c(sw(m), m(v'_i)) \right)$

Ordered Policy Goal

$$C_t(m) = \sum_{i=1}^{l} \lambda_i \cdot \sum_{j=1}^{m-1} c(sw(j), sw(j+1)) + \sum_{i=1}^{m-1} c(sw(j+1)) + \sum_{i=1}^{m-1} c(sw(j+1)) + \sum_{i=1}^{m-1} c(sw(j+1)) + \sum_{i=1}^{m$$

$$\sum_{i=1}^{l} \left(\lambda_i \cdot c(m(v_i), sw(1)) + \lambda_i \cdot c(sw(m), m(v'_i)) \right)$$

MB Traversal Cost

Ingress and Egress Cost

Ordered Policy Solution - Optimal

Algorithm 2: VMP² Algorithm for Ordered Policy. **Input:** A PDDC with ordered policy $(mb_1, mb_2, ..., mb_m)$, VM pairs $P, V_n = \{pm_i\}, m(i).$ **Output:** A placement p and the total comm. cost $C_c(p)$. Notations: $\mathcal{I}[i].id$, $\mathcal{I}[i].dist$, $\mathcal{E}[i].id$, E[i].dist: ID and cost of the i^{th} resource slot in \mathcal{I} and \mathcal{E} . 0. $i = 1, j = 1, k = 1, C_c(p) = 0,$ $\mathcal{I}=\phi$ (empty set), $\mathcal{E}=\phi$, $p=\phi$; 1. Assign all resource slots in the PDDC unique IDs; 2. Sort them in ascending order of their costs to ingress switch sw(1) (and egress switch sw(m)), store the first 2l resource slots and their costs in an array A (and B); 3. while (k < l)while $(A[i].id \in \mathcal{E})$ i + +;4 5. while $(B[j].id \in \mathcal{I})$ j + +;if $(A[i].id \neq B[i].id)$ 6. 7. $\mathcal{I}[k].id = A[i].id, \mathcal{I}[k].dist = A[i].dist;$ $\mathcal{E}[k].id = B[j].id, \mathcal{E}[k].dist = B[j].dist;$ 8. 9. i++; j++;10. else 11. while $(A[i+1].id \in \mathcal{E})$ i++;while $(B[j+1].id \in \mathcal{I}) \quad j++;$ 12. **if** (A[i+1].dist < B[i+1].dist)13. 14. $\mathcal{I}[k].id = A[i+1].id, \mathcal{I}[k].dist = A[i+1].dist;$ $\mathcal{E}[k].id = B[j].id, \mathcal{E}[k].dist = B[j].dist;$ 15. 16. i += 2; j++;17. else 18. $\mathcal{I}[k].id = A[i].id, \mathcal{I}[k].dist = A[i].dist;$ 19. $\mathcal{E}[k].id = B[j+1].id, \mathcal{E}[k].dist = B[j+1].dist;$ 20. i++; j+=2;21. end if; 22. end if: 23. k++;24. end while: 25. $a = \sum_{j=1}^{m-1} c(sw(j), sw(j+1));$ 26. for $(1 \le i \le l)$ 27. Place v_i at resource slot $\mathcal{I}[i].id$; 28. Place v'_i at resource slot $\mathcal{E}[i].id$; 29. $p = p \cup \{(\mathcal{I}[i].id, \mathcal{E}[i].id)\};$ 30. $C_c(p) \mathrel{+}= \lambda_i * (\mathcal{I}[i].dist \mathrel{+} a \mathrel{+} \mathcal{E}[i].dist);$ 31. end for: 32. **RETURN** p and $C_c(p)$.

Ordered Policy Solution - Optimal

Unordered Policy Goal

$$c^{p,\pi^{i}} = \sum_{i=1}^{l} \left(\lambda_{i} \cdot c(p(v_{i}), sw(\pi^{i}(1))) + \lambda_{i} \cdot \sum_{j=1}^{m-1} \left(c(sw(\pi^{i}(j), sw(\pi^{i}(j+1)))) \right) \right)$$

$$+\lambda_i \cdot c(sw(\pi^i(m)), p(v'_i)))$$

Cost to First MB

Variable MB Traversal Cost

Cost to Last MB

Algorithm 3: VMP² Algorithm for Unordered Policy. **Input:** A PDDC with unordered policy $\{mb_1, mb_2, ..., mb_m\}$, VM pairs $P, V_p = \{pm_i\}, m(i).$ **Output:** A placement p and the total comm. cost $C_c(p, \vec{\pi})$. 0. $X = \phi$; // stores each PM pair and the cost of the walk for $(i = 1; i \le |V_p|; i + +)$ 1. 2. for $(j = i; j \le |V_p|; j + +)$ $V_{K}^{i,j} = \{pm_i, pm_j, sw(1), sw(2), ...sw(m)\};$ 3. Construct complete graph $K^{i,j} = (V_K^{i,j}, E_K^{i,j});$ 4. Compute a minimum spanning tree MST for $K^{i,j}$; 5. 6. Compute a walk W from pm_i to pm_i on MST by visiting all vertices using each edge at most twice, and calculate the cost c(i, j) of W. 7. $X = X \cup \{(i, j, c(i, j))\};$ 8. end for: 9. end for: 10. Sort X in non-descending order of c(i, j). Let $X = \{(s_1, t_1, c(s_1, t_1)), (s_2, t_2, c(s_2, t_2)), ...\};$ 11. i = 1, j = 1; // the i^{th} VM pair (v_i, v'_i) is placed at the j^{th} PM pair (s_i, t_j) in X; $p = \phi, C_c(p, \overrightarrow{\pi}) = 0;$ 12. while (i < l) //not all VM pairs are placed yet 13. while $(m(s_j) \ge 1 \land m(t_j) \ge 1)$ 14. Place v_i at PM s_i , place v'_i at PM t_i ; 15. $p = p \cup \{(s_i, t_i)\};$ 16. $C_c(p, \overrightarrow{\pi}) += \lambda_i * c(s_i, t_i);$ 17. $m(s_i) = -, m(t_i) = -;$ 18. i++;19. if (i > l) break: 20.end while; i++; // the next available PM pairs 21. 22. end while: 23. **RETURN** p and $C_c(p, \vec{\pi})$.

Performance Evaluation

Common Simulation Parameters

• Fat Tree Topology (k = 8)

- 128 Physical Machines
- Frequency Range [1, 1000]

• Varying One of the Following (Placement):

- Number of VM Pairs
- Number of MBs
- Number of Resource Slots
- Varying Mu Parameter (Migration)

Ordered Placement - VM Simulation (rc = 40, mb = 3)

Ordered Placement - MB Simulation (rc = 40, I = 1000)

Ordered Placement - RC Simulation (I = 1000, mb = 3)

Unordered Placement - VM Simulation (rc = 40, mb = 3)

Unordered Placement - MB Simulation (rc = 40, I = 1000)

Unordered Placement - RC Simulation (I = 1000, mb = 3)

Ordered Migration - (I = 1000, mb = 3, rc=40)

Unordered Migration - (I = 1000, mb = 3, rc=40)

Conclusion

Conclusion

- Placement Special Case of Migration
- Ignoring PDDC constraints leads to Inefficiencies
- Future Work:
 - Testing in Real Networks
 - Variable 'sized' VMs
 - Network Function Virtualization (NFVs)