
Learn-as-you-go with Megh: Efficient Live
Migration of Virtual Machines

Debabrota Basu , Xiayang Wang , Yang Hong, Haibo Chen , Senior Member, IEEE,

and St�ephane Bressan

Abstract—Cloud providers leverage live migration of virtual machines to reduce energy consumption and allocate resources efficiently

in data centers. Each migration decision depends on three questions: when to move a virtual machine, which virtual machine to move

and where to move it? Dynamic, uncertain, and heterogeneous workloads running on virtual machines make such decisions difficult.

Knowledge-based and heuristics-based algorithms are commonly used to tackle this problem. Knowledge-based algorithms, such as

MaxWeight scheduling algorithms, are dependent on the specifics and the dynamics of the targeted Cloud architectures and

applications. Heuristics-based algorithms, such as MMTalgorithms, suffer from high variance and poor convergence because of their

greedy approach. We propose an online reinforcement learning algorithm called Megh. Megh does not require prior knowledge of the

workload rather learns the dynamics of workloads as-it-goes. Megh models the problem of energy- and performance-efficient resource

management during live migration as a Markov decision process and solves it using a functional approximation scheme. While several

reinforcement learning algorithms are proposed to solve this problem, these algorithms remain confined to the academic realm as they

face the curse of dimensionality. They are either not scalable in real-time, as it is the case of MadVM, or need an elaborate offline

training, as it is the case of Q-learning. These algorithms often incur execution overheads which are comparable with the migration time

of a VM. Megh overcomes these deficiencies. Megh uses a novel dimensionality reduction scheme to project the combinatorially

explosive state-action space to a polynomial dimensional space with a sparse basis. Megh has the capacity to learn uncertain

dynamics and the ability to work in real-time without incurring significant execution overhead. Megh is both scalable and robust. We

implement Megh using the CloudSim toolkit and empirically evaluate its performance with the PlanetLab and the Google Cluster

workloads. Experiments validate that Megh is more cost-effective, converges faster, incurs smaller execution overhead and is more

scalable than MadVM and MMT. An empirical sensitivity analysis explicates the choice of parameters in experiments.

Index Terms—Cloud computing, reinforcement learning, virtual machine, live migration, Markov decision process, energy efficiency,

performance efficiency

Ç

1 INTRODUCTION

INFRASTRUCTURE as a Service (IaaS) environments of
Cloud computing leverage virtualization technology [1]

to provide a shared platform of resources accessible at any
time and from anywhere through the Internet. Cloud pro-
viders allocate Virtual Machine instances (VM) on a cluster
of Physical Machines (PM). VMs allow users to share physi-
cal resources concurrently. Therefore, VMs enhance utiliza-
tion of resources and increase return on investment for
Cloud providers.

Making such an optimal allocation of resources is chal-
lenging not only in general-purpose IaaS Clouds [2] but also
in Clouds with specialised features like scientific com-
puting [3] or online transaction. A large number of users

accessing the Cloud, the diversity of applications, and the het-
erogeneity of hardware yield significant variations in perfor-
mance. Furthermore, the uncertain dynamics of workloads
creates abrupt and unpredictable changes in resource utiliza-
tion. Thus, dynamic allocation of VMs in Clouds is indispens-
able. In order to avoid disruption due to dynamic allocation,
[4] and [5] proposed the idea of a live migration scheme. Dur-
ing live migration, pages from the memory of the migrating
VM are copied to the destination machine while it keeps on
running on its present host. If properly carried out, live
migration causes minimal downtime andminimal noticeable
effect from the user end. Livemigration raises three questions
to the Cloud administrator: which VM to move, where, i.e, to
which physical host tomove, andwhen tomove?

These resource management decisions during live migra-
tion drastically affect the energy consumption of the Cloud
data centers. As energy consumption contributes almost 75
percent of the operation cost of a data center [6], from the
Cloud provider side it is the most important metric for live
migration. Migration events may also cause significant dete-
rioration of the Quality of Service (QoS) promised by the
Cloud providers and can violate the Service Level Agree-
ments (SLAs) [7]. These agreements also define monetary
penalties for the Cloud providers when violated. In this
work, we develop cost models for the SLA violations and

� D. Basu and S. Bressan are with the Department of Computer Science,
School of Computing, National University of Singapore, 119077, Singapore.
E-mail: debabrota.basu@u.nus.edu, steph@nus.edu.sg.

� X. Wang, Y. Hong, and H. Chen are with the Institute of Parallel and
Distributed Systems, Shanghai Jiao Tong University, Shanghai 200240,
China. E-mail: {xywang.sjtu, yang.hong, haibochen}@sjtu.edu.cn.

Manuscript received 3 Nov. 2017; revised 4 Dec. 2018; accepted 3 Jan. 2019.
Date of publication 18 Jan. 2019; date of current version 8 July 2019.
(Corresponding author: Debabrota Basu).
Recommended for acceptance by X. Wang.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2019.2893648

1786 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

1045-9219� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on February 18,2024 at 06:11:50 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3204-2884
https://orcid.org/0000-0002-3204-2884
https://orcid.org/0000-0002-3204-2884
https://orcid.org/0000-0002-3204-2884
https://orcid.org/0000-0002-3204-2884
https://orcid.org/0000-0001-6717-3051
https://orcid.org/0000-0001-6717-3051
https://orcid.org/0000-0001-6717-3051
https://orcid.org/0000-0001-6717-3051
https://orcid.org/0000-0001-6717-3051
https://orcid.org/0000-0002-9720-0361
https://orcid.org/0000-0002-9720-0361
https://orcid.org/0000-0002-9720-0361
https://orcid.org/0000-0002-9720-0361
https://orcid.org/0000-0002-9720-0361
mailto:
mailto:
mailto:

the energy consumption during a live migration and aggre-
gate them to construct an operation cost.

Energy- and performance-efficient resource management in
Cloud data centers is difficult as the workloads running
on the corresponding VMs are uncertain, dynamic and het-
erogeneous. Figs. 1a and 1b reasserts this nature of the
workloads in Cloud data centers. While Fig. 1a illustrates
the workloads to have long duration but high variance,
Fig. 1b depicts workloads to have wide range of durations
that does not follow a standard probability distribution.
These observations emphasize the need of learning the
workload on-the-go than estimating them with a specific
model in order to formulate a generic algorithm.

Knowledge-based and heuristics-based algorithms are
applied to solve the resource management problem. Knowl-
edge-based algorithms, such as MaxWeight scheduling
algorithms [8] or [9] for video streaming data centers, are
oblivious to the specifics and the dynamics of Cloud architec-
tures and applications that do not belong to their knowledge-
base. Heuristics like dynamic consolidation algorithms [10],
[11] do not use such specific knowledge base. They save
the power by greedily accumulating a majority of VMs
on a smaller number of servers. Heuristics-based algorithms
improve the performance by taking cost-effective VMmigra-
tion decisions from under- or over-utilized servers. These
heuristics may become unstable while tackling uncertain
dynamics and may make suboptimal decisions due to their
myopic and greedy nature.

The shortcomings of knowledge-based and heuristics-
based algorithms hasmotivated us to look into reinforcement
learning (RL) [12]. RL is a paradigm of machine learning. In
RL, an agent operating in an uncertain environment takes
optimal decisions by learning more about the dynamics of its
surroundings as-it-goes. If we consider the Cloud adminis-
trator system as a learning agent and the user workloads oper-
ating on the Cloud with corresponding resource distribution
as the uncertain environment, our problem manifests as an
RL problem. The system takes optimal live migration deci-
sions as-it-goes by learning the dynamics of the workload
and adapting accordingly. A policy or a sequence of decisions
made by RL is optimal if it does live migration and resource
management of data center with minimum operation cost.
RL achieves such optimality by predicting as-it-goes the opti-
mal decisions based on immediate costs. As the number of
ways the VMs can be allocated to the hosts or PMs is

combinatorially large, it creates a huge state space and also
makes RL intractable. This problem of exploding state space
is called curse of dimensionality in RL. Curse of dimensional-
ity restricts the applicability of recently proposed learning
algorithms in real-life scenarios. These algorithms are either
not scalable in real-time, as it is the case of MadVM [13],
or need an elaborate offline training, as it is the case of Q-
learning [12]. We propose an online RL algorithm, called
Megh, to solve this problem as-it-goes. Megh uses a func-
tional approximation framework that uses a set of sparse
basis functions to efficiently and effectively estimate the
long-term effect of a migration decision. Megh projects the
state space into a smaller vector space spanned by sparse
basis functions and learns the dynamics of the workloads
without assuming any model or prior knowledge. Megh is a
robust algorithm to learn the uncertainty and diversity of
workloads as-it-goes. At each step, the sparsity of the pro-
jected space is leveraged to act effectively without creating
any significant overhead in the course of live migration.
The data structure exploiting this sparsity makes Megh time-
efficient and therefore, a contending real-time solution for
energy- and performance-efficient livemigration.

Following the experimental setup of [10], [11], we evalu-
ate the performance of Megh by simulating it using the
CloudSim toolkit [14] over workload data extracted from
PlanetLab [15] and Google Cluster [16]. We compare Megh
with state-of-the-art dynamic consolidation basedMinimum
Migration Time (MMT) algorithms: THR-MMT, IQR-MMT,
MAD-MMT, LR-MMT, and LRR-MMT [10], [11]. We also
test the performance of Megh against MadVM [13], which is
the most recent RL-based algorithm for dynamic resource
management in a data center. Experiments prove the effi-
ciency of Megh as it significantly reduces the total operation
cost and the number of VM migrations occurring over a
period of time with respect to the competing algorithms.
Unlike MadVM suffering from the curse of dimensionality,
Megh takes significantly smaller execution time (�5 ms)
than MMT heuristics (�4000 ms) even for large data center
configurations. The results validate the robustness, effi-
ciency, fast convergence, and real-time execution of Megh to
cost-effectively decide live migrations under uncertain
workload dynamics. A comparative scalability analysis also
demonstrates Megh’s better scalability than THR-MMT.
Experiments also show the Q-table of Megh to grow subli-
nearly with the number of PMs and VMs. A sensitivity

Fig. 1. Dynamics of PlanetLab workloads and distribution of task durations in Google Cluster.

BASU ETAL.: LEARN-AS-YOU-GOWITH MEGH: EFFICIENT LIVE MIGRATION OF VIRTUAL MACHINES 1787

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on February 18,2024 at 06:11:50 UTC from IEEE Xplore. Restrictions apply.

analysis empirically explicate our choices of parameters
controlling the exploration-exploitation trade-off ofMegh.

Our Contribution.Here, we summarise the main contribu-
tions of this paper.

– We propose an online reinforcement learning algo-
rithm, Megh, to solve the problem of energy- and
performance-efficient live VM migration where the
workload dynamics is not known a priori, or mod-
elled explicitly.

– We develop a sparse projection scheme that approxi-
mates the value function uniquely (Theorem 1). While
the projection scheme reduces the complexity of
Megh and practically resolves the curse of dimension-
ality, Megh asymptotically converges to the optimal
policy (Theorem 2).

– The projection scheme and the proposed online transi-
tion operator update induce two significant improve-
ments in Megh’s performance. Firstly, Megh is
oblivious to the training phase. Megh learns thework-
load dynamics on-the-go while optimizing the deci-
sions simultaneously. Secondly, each iteration of
Megh incurs small execution time proportional to the
number of VMmigrations happening at that iteration.

– In order to verify these outcomes, we discuss a sys-
tem model and the cost model inspired by [10], [13]
(Section 3). Though Megh is applicable for even com-
plex cost models, we use this model for further
experimentation.

– We experimentally verify the performance ofMegh for
workload traces of PlanetLab and Google Cluster that
differ significantly in nature and dynamics. Compara-
tive performance evaluation validates that Megh
reduces 14 and 8 percent operational cost with respect
to THR-MMTandMadVMrespectively, whileMegh’s
execution time is 86 and 0.0001 percent of that of the
THR-MMTandMadVM.

Structure of the Paper. The rest of this paper is organised as
follows. In Section 2, we review the relatedwork. In Section 3,
we depict the system model and build up the mathematical
formulation to calculate costs of energy consumption and
SLA violation. We introduce the problem of cost-optimal live
migration as a reinforcement learning problem and formulate
it mathematically in Section 4. Following that in Section 5,
we propose an algorithm Megh to solve it in real-time. In
Section 6, we elaborate the detailed experimental set-up and
also evaluate the performance ofMegh.We discuss the future
research directions and conclude the paper in Section 7.

2 RELATED WORKS

While Megh tries to perform energy and performance efficient
live VM migrations for resource management, the form of the
problem it solves and the way it solves are based on rein-
forcement learning. Here, we review the related works in
these two areas.

2.1 Dynamic VM Consolidation

A profitable strategy for Cloud vendors is the dynamic con-
solidation of underutilized virtual machines to fewer physical
servers to save hardware, to reduce energy consumption [17]

and to eliminate hotspots [18]. Due to the dynamic nature of
Cloudworkloads, there have beenmany studies in the field to
investigate an optimal dynamic VM provisioning plan. One
key requirement of dynamic VM consolidation is to pack
VMs tightly while preserving SLAs. Mann et al. [19] recently
presented an extensive survey of the problem models and
optimization algorithms. Wang et al. [20] consider the dyn-
amic network bandwidth demand for real workloads and
model the VM consolidation into a Stochastic Bin Packing
problem. Song et al. [21] similarly applied a variant of the
relaxed on-line bin packingmodel, whichwas shown towork
well on a small-scale cluster. Maguluri et al. [8] further mod-
elled VM consolidation using a stochastic model where jobs
arrive according to a stochastic process, and described Max-
Weight algorithms, a family of frame-based non-pre-emptive
VM configuration policies to improve overall throughput.
Compared to existing models and algorithms, Megh makes
no a priori assumption on the workload arriving pattern or
load distribution, which may be adapted to various scenarios
while requiring a small number of migration requests and
thus having little impact on runningworkloads.

In the existing literature, the Minimum Migration Time
family of algorithms [10], [11] function without any assump-
tion on the workload model like Megh and perform in real-
time. Due to this general structure and online mode of oper-
ation, we have compared Megh’s performance with them.
These algorithms are heuristics designed for energy and
performance efficient dynamic consolidation of VMs in
Clouds. They start migrating a VM when its utilization
crosses a certain threshold. The threshold can be fixed (for
THR-MMT) or determined adaptively (for IQR-MMT,
MAD-MMT, LR-MMT and LRR-MMT) from the summary
statistics of workloads’ history. The VM is migrated to a dif-
ferent host such that the migration time is minimum. These
methods are greedy heuristics that suffer from high varia-
tion and instability like other heuristic-based algorithms,
while Megh, being a learning algorithm, does not.

2.2 Reinforcement Learning Algorithms

Reinforcement learning [12] is a paradigm of machine
learning. In RL, an agent aims at taking optimal decisions
by developing an understanding of the constantly evolving
environment around it. Markov decision processes (MDP) [22]
are a model for RL. MDPs assume that it is sufficient to
remember the present state of the system to decide the next
decision or action, while rewards of state-action pairs carry
the relevant information of system’s history. The agent tries
to fix a policy or a sequence of decisions that will maximize
the cumulative sum of rewards acquired.

[23], [24] apply Q-learning [25] for energy–efficient reso-
urce management in Clouds. [26] uses it for automatic
reconfiguration of resource sharing VMs. Q-learning is an
offline algorithm. We have to go through computationally
expensive training periods of a few hundred iterations
before using it in an online setup like the one addressed.
But there is no reliable guarantee on the optimality of Q-
learning for online learning setup for any approximated
value function [27]. The general efficient VM migration
problem may consist of cases where the algorithm encoun-
ters a significant variance in the real-life workload than the

1788 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on February 18,2024 at 06:11:50 UTC from IEEE Xplore. Restrictions apply.

training one due to change in user base or their applications.
Under such conditions, Q-learning has a high probability
to break down or perform sub-optimally. We have done
a comparative performance analysis with respect to Q-
learning. We omit an elaborate description of that in this
article due to Q-learning’s dependence on offline training
and presence of a recent, on-line approach called MadVM
that performs better than the Q-learning in testing phase.

MadVM [13] models the energy-efficient dynamic reso-
urce management of VMs in a data center as an approxi-
mate MDP. This algorithm assumes no prior knowledge of
workload and uses value iteration [28] algorithm to solve
the problem. At each step, MadVM tries to select decisions
that simultaneously maximize the expected cumulative
rewards of each of the VMs. This algorithm is indirect as it
does not try to optimize directly over a policy space but
rather rely exclusively on value function approximation,
that hopefully returns a near-optimal policy. Due to the
combinatorially large state space of the problem, MadVM
also faces the curse of dimensionality of RL approach. This
leads to a key state selection procedure to connect the policy
space and the value functions. This procedure for dim-
ensionality reduction, however, is computationally expen-
sive. MadVM tries to simultaneously optimize the utility
functions of each of the VMs. Simultaneous optimization
requires bookkeeping of transition functions and evaluation
of key states for each of them. This computational burden
makes MadVM poorly scalable for real-time applications.

Furthermore, MadVM is a critic based RL algorithm whe-
reas Q-learning is an actor based RL algorithm. Actor based
algorithms suffer from high variance due to its sensitivity to
the estimates of the gradient. Critic based algorithms are sta-
ble but usually needs a discretized version of the state-action
space. Discretization may lead to suboptimal results. Megh
relies on the actor-critic [29] framework of RL and a functional
approximation scheme for computation. The actor tries to
estimate the policy as an incremental functional approxima-
tion problem. The critic leverages this estimated policy for
approximating and updating value function using samples
collected as-it-goes. This feedback ensures better conver-
gence property and stability. In our paper, we use such
an off-policy actor-critic framework of least-square policy
iteration (LSPI) algorithm [30] as the skeleton. We utilize
the projection based dimensionality reduction techniques
and sparsity-based improved data structures described in
Section 5 to construct our real-time learnerMegh.

3 THE CLOUD DATA CENTER: SYSTEM

AND COST MODELS

In the following subsections, we describe the system model
of a data center used by Megh and formulate cost models
for energy consumption and SLA violations. We use these
cost models in Section 4 in the problem formulation, and in
Section 6 for further experimentation.

3.1 System Model

In IaaS environments Cloud providers serve the users with
virtualized computing resources over the Internet. In order to
model such a system, we consider a data center consisting of
M heterogeneous physical machines or hosts. Each of these

PMs is characterized on the basis of the number of CPUs, the
number of cores, the amount of RAM and the network band-
width. Here, the performance of a CPU is defined in Millions
Instructions Per Second (MIPS). In our paper, we consider all
of the CPUs belonging to the same PM as a single-core CPU
with the cumulative MIPS performance of all of them. Inde-
pendent users submit requests for provisioning of computing
resources to the Cloud and are assigned to N heterogeneous
VMs hosted byM PMs. Each of the VMs is allocatedCPUper-
formance, memory size, RAM, and network bandwidth as
per the users’ requirements. We assume no a priori knowl-
edge of the applications, workload dynamics and the time of
provisioning of VMs. This allows us to deal with both gen-
eral-purpose and specialised setting of mixed workloads
with uncertain dynamics that utilize the resources of a PM
concurrently. In some of the research works [31], [32], [33],
[34], authors assume the distribution of incoming jobs in a
workload to be a Poisson distribution and model the alloca-
tion of resources to jobs in the form of VMs as a queueing sys-
tem. They are proved to be useful for systems where network
dependent constraints dictate the relation between VM allo-
cation and incoming workload though there is no discussion
about effect of such workload model on energy efficiency.
Since our main goal is to investigate energy efficiency of VM
migration, and we do not want to assume such a distribution
for the workload, or any specific network model rather we
want to learn the workload dynamics and its effect on live
VMmigration on-the-go.

The proposed reinforcement learning algorithm, Megh,
is implemented as a part of the global resource manager of
the Cloud. This global manager acts as an interface between
users’ workloads and requirements, and the virtualization
layer. The Virtual Machine Managers (VMMs) operating
at each of the physical nodes act as the continuous monitor-
ing systems. They send the workload dynamics of each
VM and the resources utilized by them to the global man-
ager. The global manager acts as the learning agent in
Megh. The global manager accumulates the information
and allocates the resources such that the energy consump-
tion as well as the SLA violation will be minimized. Follow-
ing this, the decision is sent to VMMs as a resource map
and VMs are migrated and consolidated accordingly. Megh
may migrate the VMs allocated in an underloaded PM to
another PM with potential capacity and put the first PM
down to sleep. Similarly, if a PM gets overloaded, some of
the VMs operating on it are migrated to another PM such
that the expenditure for energy consumption and SLA
violation remains minimal.

Following previous works on energy–efficient live mig-
ration in Clouds [10], [11], [13], we consider CPU utilization
data as the key metric of characterizing the workloads. We
are aware of the importance of bandwidth and memory as
resources and research works [35], [36] accounting available
bandwidth and network traffic as principal decision varia-
bles for VM migration. One can build cost models for these
resources and add them as additional modules in the cost
calculation without modifying Megh algorithmically.

3.2 Energy Consumption Cost

Energy consumption cost of the Cloud data center can be
considered as a function of time CpðtÞ, such that

BASU ETAL.: LEARN-AS-YOU-GOWITH MEGH: EFFICIENT LIVE MIGRATION OF VIRTUAL MACHINES 1789

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on February 18,2024 at 06:11:50 UTC from IEEE Xplore. Restrictions apply.

CpðtÞ ¼ cp

Z t

0

P ðuÞdu; 8t � 0: (1)

Here, cp denotes the cost of consuming 1 Watt of power for
1 second. It is a fixed constant according to the place where
the data center is built up, whereas P ðuÞ is the function rep-
resenting the amount of power (in Watts) consumed by the
data center at time u (in seconds). This function does not
only depend on the workload dynamics of VMs but also on
the CPU performance, memory size, disk storage and cool-
ing system of the PMs installed in the data center [37].
Following the works by [11], we leverage the power
consumption data provided by the SPECpower ssj 2008
benchmark [38], [39] rather than moving our focus to pre-
cisely modelling P ðuÞ. This is a certified industry-standard
benchmark to evaluate the power and performance charac-
teristics of server-class computer equipments. SPECpower
ssj 2008 is tested on a wide variety of operating systems and
hardware architectures to remove extensive dependence on
data center infrastructure for power–performance charac-
teristics calculations. This benchmark spec2014 provides
energy consumption level y for a collection of servers with
different CPU architectures under a workload of x% work-
ing on its CPU, as shown later in Table 1. Now, if we assume
that the Cloud management system extracts the workload
dynamics at a certain interval, say t > 0, we can model the
cost of energy consumption up to time t as

CpðT Þ ¼ cp
XT
k¼0

XM
i¼1

yiðktÞt; 8T � 0; (2)

where, T , dtte represents the discretized version of time t,
yiðktÞ is the power consumed by the ith PM at time kt and
M denotes the total number of PMs operating in the data
center.

3.3 SLA Violation Cost

Though energy consumption covers the major part of the
Cloud provider’s expenditure, Quality of Service provided
by the Cloud is a concern from the user’s side. Specifically,
QoS is negotiated using a legal agreement between the user
and the Cloud provider, called Service Level Agreement.
SLAs provided by companies like Amazon, Microsoft and
Google confirm that service providers promise to pay users
certain monetary penalties if the QoS degrades below cer-
tain levels. We also observe that QoS is defined as the
uptime percentage of the user. Uptime is the percentage of
total access time for which the user can utilize the Cloud
services without any interruption. Downtime is the percent-
age of total access time for which the user cannot utilize the
Cloud services due to the interruption. Some of the Cloud
providers do not consider any continuous downtime below
5 minutes as a degradation of QoS to provide the system

privilege. In this paper, we consider the exact downtime
without such bias. Thus, SLA violation cost at time t for a
Cloud withM PMs andN VMs can be expressed as,

CvðtÞ ¼
XN
j¼1

cjvðtÞ; 8t � 0: (3)

Here, cjvðtÞ is the SLA violation cost for VM j until time t.
cjvðtÞ can be defined as

cjvðtÞ ¼

cv1; if user0s downtime percentage up to t

2 0:05%; 0:10%ð �
cv2; if user0s downtime percentage up to t

> 0:10%

0; otherwise

8>>>>>><
>>>>>>:

as the system model considers each VM is used to virtually
assign computing resources to each of the users.

As we allocate andmanage the resources bymigrating the
VMs from one machine to another, we face two cases of QoS
degradation. In the first case, when one or multiple VMs are
allocated to a PM, it faces a sudden rise of workload. The PM
gets overloaded. Overloading happens when VMs try to use
more resources than the capacity of the host PM.Overloading
creates a scenario where we need to migrate VMs from that
host to another. Due to discretized time of observations by
the global learning agent and the inherent delay of the host
system to react and adapt to the scenario, some time is lost
before the migration decision is made and executed. During
this period, the VMsworking on that host remain suspended
or their performance degrades substantially. This phenome-
non introduces a downtime in each of the VMs working on
that host and is termed as the overloading time. In this paper,
we denote the overloading time of host PM i at time t as Toit

.
Toit represents the total time during which the host i has
experienced the utilization of greater than b% leading to
overloading. If the active time Tait

of the PM i is the total time
for which it is serving the users, we define the percentage of
overloading time as

OiðtÞ , Toit

Tait

: (4)

In the second case, the downtime is caused by the live
migration process itself. Though the live migration transfers
a VM from a host PM to another destination PM without
suspending the running application, it still causes a down-
time. The migration time is defined as the time required to
copy all the pages of a VM from its present host memory to
the destination memory. If Mjt is the amount of memory
used by VM j right before initiating the migration at time t,
and, Bjt is the available bandwidth of the network, expected
migration time of VM j is expressed as TMjt , Mjt

Bjt
. Thus, the

downtime of VM j during live migration is estimated as the
time for which its estimated CPU utilization bujðtÞ will be
less than a certain threshold. This threshold is introduced as
a given a% > 0 of the workload ujðtÞ that is demanded
from the VM by the user. Thus, we estimate the live migra-
tion downtime of VM j at time t as

TABLE 1
Power Consumption of Servers in Watts for

Different Level of Workload [38], [39]

Server Type 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

HP ProLiant G4 86 89.4 92.6 96 99.5 102 106 108 112 114 117
HP ProLiant G5 93.7 97 101 105 110 116 121 125 129 133 135

1790 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on February 18,2024 at 06:11:50 UTC from IEEE Xplore. Restrictions apply.

Tdjt
,

Z tþTMjt

t

11 bujðuÞ < aujðuÞ
� �

du;

where ujðtÞ is the CPU utilization by VM j at that moment
and 11 is the indicator function defined as

11 bujðtÞ < aujðtÞ
� �

, 1; bujðtÞ < aujðtÞ
0; otherwise

�
; 8t � 0:

If Trjt is the total active time requested by the VM j till the
time t, we estimate the percentage of live migration downtime
of VM j as

DjðtÞ ,
Tdjt

Trjt
; (5)

Thus, the total downtime percentage for VM j up to time
t is defined as the sum of its downtime due to live migration
and the overloading time of the PMs, which got overloaded
while the VM was operating on it. Equations (4) and (5)
give us a concrete mathematical model to calculate the SLA
violation cost for each of the VMs. Though we develop and
use the aforementioned cost model for SLA violation, it can
be replaced with other cost models considering varying
market prices and various subtle factors [40] without further
modifying Megh.

4 LIVE MIGRATION AS A LEARNING PROBLEM

In this section, we formulate the problem of energy—and
performance—efficient resource management during live
migration of VMs as a reinforcement learning problem.

Let us consider a Cloud data center with M PMs. Each of
the PMs has homogeneous CPU capacity h. Each of the VMs
is assigned to each of the users on the basis of their requests.
Thus, the maximum number of users that the Cloud can han-
dle is the maximum number of VMs it can allocate. Though
theworkloads and requirements of usersmay differ, themax-
imum CPU capacity that can be allocated to a VM is a con-
stant, say v. Under the worst case scenario, when each of the
VMs will ask for maximum CPU capacity, the maximum
number of VMs n that can be allocated to a single PM is h

v. Fur-
thermore, the total number of VMs N that can be allocated to
the data center at any instance is Mn. The VMs are accessed
by a large volume of users with diverse requirements and
applications, and the dynamics of these workloads are also
uncertain. This may cause a sudden change in workloads of
one or multiple VMs and consequently overloading of hosts.
Then one of the VMs working on the overloaded host has to
be migrated to another destination PM such that cost for
energy consumption and SLA violation remains minimal.
While doing so the system has to decide which VM to move
to which destination host and when to start moving, so that
the penalty will be minimum ensuring maximum profit of
Cloud provider and alsomaximumQoS for users.

[41] proves that optimal scheduling of tasks in a multi-
processor system is impossible in the absence of any prior
knowledge of the deadline and the request distribution. [42]
states that resource allocation among even soft real-time
tasks under fully stochastic environment is analytically
intractable. Thus, online allocation of tasks in a data center

with unknown job request distribution and unknown job
durations is intractable, and learning the stochastic nature
of workload is essential for taking optimal decisions.

We model the process of live migration with uncertain
workloads as aMarkov Decision Process [22]. In this model, a
state is a configuration of the VMs, with certain workloads,
operating on the PMs. Thus, the state spaceS is Cartesian prod-
uct of the set of all configurations of the VMs on the PMs C,
and the workloads operating on the VMs at any instance W .
At a certain instance, W is an array of N elements, where an
element represents the CPU usage of a VM at that instance.
Since W varies continuously and stochastically, it makes the
state space infinite dimensional and introduces uncertainty in
state transitions. The action space A corresponds to migration
of any of the VMs from one PM to another depending on the
operating workloads. Each action is represented by a pair
ðj; kÞ, where j is the migrating VM, and k is the destination
PM. In order to capture the uncertainty of workloads, we
define transition function f : S �A! PðSÞ, whereP is a prob-
ability measure over state space. Given the present state and
an action, f returns the probability to reach another state. In
the problem addressed in this paper, it is not known a priori
and has to be learned. The cost of changing a configuration
st�1 of VMs to another configuration st is given by

Cðst�1; stÞ ¼ 4Cpðst�1; stÞ þ4Cvðst�1; stÞ; t 2 ½1; T �; (6)

where, 4Cpðst�1; stÞ and 4Cvðst�1; stÞ are the costs of
energy consumption and SLA violation in the interval
t� 1; tð �. Here, Cp and Cv are defined by Equations (2)
and (3) respectively. We observe 4Cpðst�1; stÞ is always
positive as the system will always consume some energy
whether any migration happens or not, whereas 4Cvðst�1;
stÞ � 0. The equality holds if and only if there is no SLA vio-
lation in that interval.

This formulation reduces the problem to finding the
sequence of configurations that minimizes the sum of future
per-stage costs. Unlike MadVM that assumes an average
cost structure and computationally considers the effect of a
migration is limited to a fixed future time horizon, we
assume an infinite horizon [12] formulation of MDP. Infinite
horizon means an action will affect all the future states
and actions of the system. This formulation makes the
cumulative sum of future per-stage costs infinite. In order
to circumvent this problem a discount factor g 2 ½0; 1Þ is
introduced. Mathematically, g makes the cumulative sum
of per-stage costs convergent. Physically, g let the effect of a
past action decay with each passing instance. The discount
factor inclines the system to give more importance to imme-
diate costs than to costs distant in the future, which follows
a practical intuition. Now, the problem translates into
finding the sequence of configurations that minimizes a
discounted cumulative cost. Under Markov assumption, a con-
figuration change depends on its present state only. Given
the current configuration and workloads, i.e the current
state st, a policy p : S ! A determines the next decision at.
We define the cost-to-go function V p for a policy p as

V pðsÞ , Ef

X1
t¼1

gt�1Cðst�1; stÞ
" #

(7)

BASU ETAL.: LEARN-AS-YOU-GOWITH MEGH: EFFICIENT LIVE MIGRATION OF VIRTUAL MACHINES 1791

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on February 18,2024 at 06:11:50 UTC from IEEE Xplore. Restrictions apply.

such that the initial state s0 ¼ s, and st is the state reached
from state st�1 through an action pðst�1ÞÞ. The value of
V pðsÞ represents the expected cumulative cost for following
the policy p from the current configuration s. Thus, V pðsÞ
allows us to optimize the long-term effect of migration deci-
sions, unlike greedy MMT algorithms that try to minimize
the present cost only. Let U be the set of all policies for the
given set of VMs on the cluster of PMs. Now, the problem
can be phrased as

p� , argmin
p2U

V pðs0Þ: (8)

i.e, to find the optimal policy p� that minimizes the expected
cumulative cost.

5 MEGH: LEARN TO MIGRATE AS-YOU-GO

Depending on the cost model developed in Section 3
and the problem formulation in Section 4, we propose in thi
section an online reinforcement algorithm, Megh. Megh
answers three basic questions of the VMmigration problem:
when to start migrating the VM, which VM to migrate, and
where i.e, to which PM to migrate it.

Megh answers these questions by solving the minimiza-
tion problem of Equation (8). This equation shows that opti-
mal decision making is analogous to computing the optimal
function p� that minimizes the cost-to-go function. This
is a sequential functional approximation problem over the
space of policies U . In order to do so, we begin with an ini-
tial guess of the policy p0. Following that as we gain more
information about the configuration of VMs and also the
dynamics of workloads on them, we improve our approxi-
mation consequently such that the current estimation of
cost-to-go function remains minimal. In RL literature, this
strategy is known as policy iteration [12].

If transition function f i.e, the stochastic nature of work-
load and its effect on migration, is known a priori, we can
apply Bellman’s dynamic programming technique [43] to
update the estimate of cost-to-go function at every time step
using the following formula,

V ptðsÞ ¼ Ef Cðs; s0Þ þ gV pt�1ðs0Þ� �
: (9)

Thus, the updated policy would be pt ¼ argminpt2UV
ptðsÞ.

The algorithm terminates when there is no or very small
change in the policy. Policy iteration has strong optimality
and convergence properties [44].

In live VM migration problem, policy iteration suffers
from two main issues. Firstly, to update the cost-to-go func-
tion in Equation (9) and to find the optimal policy, we have
to search through the whole state-action space. The state
space consists of all possible configurations of VMs on all
the PMs and is combinatorially large. As computation of
an estimate of the cost-to-go function involves searching
through the state space S, high dimensionality of S makes
the policy update expensive and almost impossible to per-
form in real-time. This exponential blow-up in computation
due to the huge state space is called the curse of dimensional-
ity [44]. Secondly, the expectation in Equation (9) is not com-
putable as the stochastic nature of workload, its correlation
with VM configurations, and transition of configurations

are not known a priori. In order to conserve the robustness
and universality of Megh, we do not restrict this workload
dynamics to a specific model. Indeed that would narrow
down the applications and the hardware architectures the
algorithm can deal with. Megh solves both the issues.

In order to solve the curse of dimensionality, Megh proj-
ects the state-action space to a d ¼ N �M dimensional
space X. X is spanned with d basis vectors ffjkgN;M

j¼0;k¼0.
Each of the basis fjk corresponds to an action ðj; kÞ such that
the jkth element of it is one, and all other elements are zero.
All the actions or configuration changes in the Cloud are
represented using these basis vectors or linear combinations
of them. The basic rationale behind this projection is during
transition from a state to another the accessible subspace is
constructed by the states which are one action away from
the present state. Instead of searching over the whole state
space in each and every step it is logical to search in a sub-
space X that contains all the states s0 reachable from s by
actions fjk or linear combinations of them. Thus, the combi-
natorially explosive state-action space of VM configurations
is projected to a polynomial dimensional vector space with
a sparse basis. Hence Megh approximates the cost-to-go
function as V ðstþ1Þ ¼ uTfat

, where at ¼ ptðstÞ is the action
taken at time t. This enable Megh to update the cost-to-go
function effectively in real-time. Theorem 1 proves that this
design of basis vectors is not ad hoc rather leads to a unique
projection vector to approximate the cost-to-go function.

Theorem 1. There exists a unique projection vector u 2 Rd that
approximates the cost-to-go function as V sð Þ ¼ uTfp sð Þ for all
states s 2 S and policy p 2 U.

Algorithm 1.

1: functionMEGH(S, A, g, �, Temp0)
2: Initialize d d;B0 1

d
IId�d;f0 0d;

3: u0 0d;pðs0Þ 0d; z0 0d; C0 0
4: while t � 1 do
5: at argmaxa2A ptðstÞ
6: Take action at.
7: Observe state stþ1.
8: Ctþ1 Calculate cost using Equation (6).
9: Btþ1 ¼ T�1tþ1 update using Equation (10).
10: ztþ1 zt þ fat

Ctþ1
11: utþ1 Btþ1ztþ1
12: pðstþ1Þ PolicyCalculatorðfat

; utþ1Þ
13: end while
14: end function

While the projection scheme resolves curse of dimensional-
ity, the expectation of cost-to-go function is still not comput-
able due to lack of prior knowledge about workload
dynamics, and how it affects the VM configurations and their
transitions. In order to capture this notion, we create a sto-
chastic operator T . T is updated on-the-go in a frequentist
fashion. T accumulates the possibility of using an action to
move to another configuration from the present one depend-
ing on the nature of workload and the changes caused by
them. In this work, we begin with T0 ¼ 1

d
IId, where d is a large

positive number and IId is an identity matrix of order d. Here,
we have considered d as d. It implies that initially, there is no
bias and the system can migrate any of the VMs to any of the

1792 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on February 18,2024 at 06:11:50 UTC from IEEE Xplore. Restrictions apply.

PMs equally probably. As the system extract information of
the workload and VM configurations at each time step t, it
decides an action at according to the policy pt. Using this
information, we can update the operator T as

Ttþ1 ¼ Tt þ fat
fat
� gfptðstþ1Þ

h iT
: (10)

where, fptðstþ1Þ represents the probable action at time tþ 1,
if the policy pt is followed at the next time instance. Thus,
Equation (10) captures the effect of present state and action
and its influence in future action with a discount g.

In Megh, we plug in these two schemes of polynomial size
projection spaceX and incremental update of the operator T
to Least-Square Policy Iteration algorithm [30]. As described
in Section 2.2, Least-Square Policy Iteration is a functional
approximation algorithm that implements in an actor-critic
framework. Megh first tries to find out an estimation of cost-
to-go function by least-square estimation in the actor format
and then to update the policy such that it maximizes the esti-
mate in the critic format. The pseudo-code of Megh is
depicted in Algorithm 1. We begin with a random policy
that allocates equal probability to all possible actions. The
cost of any action is initiated from 0, and the transitionmatrix
is initiated as a diagonalmatrix with elements 1

d.
Theorem 2 shows that Algorithm 1 asymptotically con-

verges to an optimal policy p� that minimises the cost-to-go
function while learning as-it-goes.

Theorem 2. If there exists a unique vector u such that
VpðsÞ ¼ uTfpðsÞ for any configuration s and for any policy
p 2 U , Algorithm 1 asymptotically converges to an optimal
policy.

5.1 Inducing Exploration in Action Selection

Instead of greedily choosing the action with minimum
V ptðstþ1Þ, we use Boltzmann exploration [45] as the on-policy
mechanism [12]. Adaptation of Boltzmann mechanism with
decreasing temperature parameter for Megh is shown in
Algorithm 2. Boltzmann exploration compares the goodness
of an action with respect to the others by assigning expo-
nentially weight to each action. It allows the off-policy
algorithm exploremorewith a bias towards the actions yield-
ing less cost. The temperature parameter controls the trade-
off between the bias towards the actions with less cost and
the exploration of other actions. Here, we have started with
an initial temperature value Temp0 and decay it consequently
with a factor expð��Þ. Initially, the large Temp means rather
than choosing the maximum greedily it is trying to explore
more. As Temp decreases with time, PolicyCalculator bec-
omes the greedy selection of the minimum. Thus, Boltzmann
exploration allows to adapt the exploration and greedy selec-
tion of actionswith time.

5.2 Managing the Complexity Bottleneck

Algorithm 1 has space complexity of Oðd2Þ and time com-
plexity of Oðd3Þ. Though this algorithm is computationally
cheaper and faster than the actual combinatorially explosive
problem scenario, still it can be slow enough for a real-time
system operating over a large number of VMs and PMs.
The space complexity bottleneck is storing the d� d matrix
B. The time complexity bottleneck is computing the inverse

of the operator T to update B at each time-step, as shown in
Line 1 inAlgorithm 1. If we use theGauss-Jordan elimination
process [46] provided by linear algebra packages [47], inver-
sion of T costs time complexity ofOðd3Þ. In order to compute
the inverse incrementally at every step, we use Sherman-
Morrison Formula [48] on Equation (10) given by,

Btþ1 ¼ Bt �
Btfat

fat
� gfptðstþ1Þ

h iT
Bt

1þ fat
� gfptðstþ1Þ

h iT
Btfat

: (11)

Thus, the time complexity of every step is reduced to Oðd2Þ.

Algorithm 2.

1: functionPOLICYCALCULATOR(fat
, utþ1)

2: Temptþ1 Temptexpð��Þ
3: for all i ¼ 1; . . . ; d do
4: Qðstþ1; aiÞ fT

ai
utþ1

5: end for
6: MIN Q minaQðstþ1Þ
7: for all i ¼ 1; . . . ; d do

8: pðstþ1Þi exp
�Qðstþ1 ;aiÞþMIN Q

Temptþ1

h i
9: end for
10: end function

We reduce the complexity further by leveraging the spar-
sity of the basis vectors fai

’s. Since all the zero entries are
redundant in the calculation of product, we store only the
non-zero entries of the matrix B and vector fai

as a triplet
(row number, column number, value). This reduces the ini-
tial memory storage to OðdÞ. Because during initialization
we start with a diagonal matrix of order d and d basis vec-
tors each with single non-zero entry. The memory storage
increases at each step as per the number of migrations
happened during the interval. Thus, the multiplication in
Equation (11) turns into simply choosing the non-zero terms
in Bt according to the non-zero entries in fai

’s involved in
the calculation, and then adding or subtracting them. It
reduces the time complexity of Line 9 in Algorithm 1 to
Oð#mÞ, where #m is the number of migrations per step.
The aforementioned use of online update and inversion
technique, and also leveraging the sparsity of the basis vec-
tor reduces both the space and time complexity of Megh
substantially. These techniques give Megh the speed-up to
be a real-time system for live VM migration while keeping
its structure and learn-as-you-go strategy intact.

6 PERFORMANCE EVALUATION

6.1 Experimental Setup

We perform experiments using the CloudSim toolkit [14] as
the simulation platform. CloudSim uses CPU utilization as
the key metric to characterize the workloads. We follow this
characterization throughout our experiments. In the power
model, we use the standard price of the local power pro-
viders, 0.18675 USD/kWh, to calculate the energy consump-
tion cost. We assume that the user has to pay 1.2 USD per
hour for using a VM instance. Though it is a bit costlier than
reality, it does not harm the analysis. Following the model
mentioned in Section 3.3, we also assume that Cloud pro-
viders would pay back 16.7 and 33.3 percent of user’s

BASU ETAL.: LEARN-AS-YOU-GOWITH MEGH: EFFICIENT LIVE MIGRATION OF VIRTUAL MACHINES 1793

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on February 18,2024 at 06:11:50 UTC from IEEE Xplore. Restrictions apply.

money depending on whether the performance degradation
is less than or greater than 0.10 percent. We consider
b ¼ 70% as the overloading threshold of the PMs and
a ¼ 30% for the minimum CPU usage threshold by VMs
during migration. The experiments are conducted on a
server with two AMD Opteron(TM) Processor 6272 CPUs.
Each CPU has eight cores, 128 GB memory and clock rate of
2.1 GHz. Each core has two threads.

MMT algorithms are tested using the code embedded
with the CloudSim toolkit, whereas Megh and MadVM are
implemented and embedded in the CloudSim framework
using Java. For both of them, the value of g is set to 0.5.
g ¼ 0:5 imposes 50:50 importance of both new and old infor-
mation. Temp0 and � are set to 3 and 0.01 respectively for the
experiments in Section 6.3 and 6.4. We explicate such choice
of parameters in Section 6.5. At each time-step, we allow a
maximum 2 percent of VMs to be migrated by Megh.

6.2 Dataset and Workload

PlanetLab Dataset

CloudSim contains workloads extracted from the CoMoN
project which was a monitoring infrastructure for Planet-
Lab [15]. Each of the workloads consists of CPU utilization
data extracted at a regular interval of 5 minutes for a span
of 7 days. Fig. 1a shows the statistical nature of the work-
load and depicts inherent uncertainty in its dynamics. All
the workloads operate continuously on the PlanetLab sys-
tem for the 7 days. The average workload operating on a
VM is �12 percent and the standard deviation of the work-
load is �34 percent. At any moment, the maximum and
minimum workload levels vary from �90 to �5 percent.
This demonstrates the diversity of workload dynamics and
presency of heavy workloads in the system.

The workloads are working on a set of 800 heterogeneous
physical machines. Half of these PMs are HP ProLiant ML110
G4 servers and the other half areHP ProLiantML110 G5 serv-
ers. The power consumption characteristics of these two serv-
ers is obtained from SPECbenchmark and is shown in Table 1.
Though they follow different energy consumption models,
each of them has a dual-core processor with 4 GB RAM and
are provided with 1 Gbps network bandwidth. There are a
total of 1052 applications are running on this system. Each of
the applications are allocated on a VMwith 1 vcpu, 0.5-2.5 GB
RAM, 0.5-2.5MIPS and 100Mbps bandwidth.

Google Cluster Dataset

The Google Cluster trace represents dynamic tasks running
on Google’s Hadoop MapReduce clusters with 12,500 het-
erogeneous machines [2]. The trace contains continuous
information of 29 days with event records and sampled
resource usage at an interval of 5 minutes. We select 500

machines as physical machines and the tasks scheduled on
those machines as virtual machine workloads. We create
2000 virtual machines with each running an individual task
to completion and switching to another. Unlike PlanetLab
where all of the workloads are together varying intensely,
the Google Cluster trace has tasks with varying durations,
starting times, and obfuscated resource usages as shown in
Fig. 1b. Fig. 1b also shows that the durations of the tasks do
not follow any standard distribution, and vary in a wide
range from the order of 101 to 106 seconds. These observa-
tions demonstrates need of a prior bias free learning
algorithm to perform efficiently for both the datasets.

PlanetLab is a huge geo-distributed computing platform
consisting of hundreds of sites and more than one thousand
nodes [15]. It is hosted by organisations across the world.
Users can access the computing resources by deploying appli-
cations to a subset of the nodes in the form ofVMs. The trace is
collected fromPlanetLab to track the CPU usage of each VM’s
workload. The result represents the typical workload running
in an enterprise Cloud environment. While the PlanetLab
trace is mainly related to academic and other organisational
computation tasks, the Google Cluster trace records the
events in Google’s Hadoop MapReduce clusters. Google’s
trace shows the characteristics of workloads running in the
publicly available Cloud systems [2]. In order to confirm, we
plotted Cullen and Frey graph [49] for the workloads of both
the datasets. They did notmatchwith any of the standard par-
materic distributions. This shows the need of learning them
without imposing a prior assumption. Evaluating Megh with
the traces from both the community and the industry vali-
dates its universality and robustness.

6.3 Comparative Performance Analysis

Megh versus MMT algorithms

Table 2 depicts the performance of Megh and the MMT
algorithms on a week-long trace of PlanetLab. Table 3 sum-
marizes the performance of the aforementioned algorithms
for the Google Cluster dataset. Total cost of operation of
the data center (in USD) obtained by adding the power con-
sumption cost and SLA violation cost, the number of VM
migrations, average number of active hosts, and execution
time (in milliseconds) of each iteration of the algorithms
are used as the performance measures of the algorithms.
As THR-MMT performs the best among the MMT algo-
rithms, we show a comparison of Megh with THR-MMT in
Figs. 2 and 3.

We observe from Tables 2 and 3 after 7 days of operation
Megh reduces the expenditure by 14.25 percent for Planet-
Lab and 2.5 percent for Google Cluster with respect to that
of THR-MMT. Figs. 2a and 3a show the per-step operation
cost for Megh not only converges faster than the contending

TABLE 2
Performance Evaluation for PlanetLab

Algorithms THR-MMT IQR-MMT MAD-MMT LR-MMT LRR-MMT Megh

Total cost (USD) 1347 1504 1367 1392 1392 1155
#VMmigrations 325299 444624 331304 324079 324079 2309
#Active hosts 666 684 682 692 692 203
Execution time (ms) 2016 3077 2226 1924 2080 1426

1794 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on February 18,2024 at 06:11:50 UTC from IEEE Xplore. Restrictions apply.

algorithms but also has less variance for both PlanetLab and
Google. Here, the per-step operation cost includes both the
energy consumption cost and the SLA violation cost in the
5 minutes interval between two observations. Megh takes
around 100 time-steps before converging to almost stable
cost per-step for both PlanetLab and Google Cluster data-
sets. We do not observe such a fast convergence for THR-
MMT. THR-MMT takes around 600 and 300 time-steps in
order to converge for PlanetLab and Google Cluster data-
sets, respectively. Being a greedy heuristics, THR-MMT still
faces high variance and instability even after initial conver-
gence. The comparatively fast convergence speed and less
variance in per-step cost after convergence validate robust-
ness and stability of Megh for a diverse set of workloads
with respect to other heuristics.

In order to measure the performance of the system and
its QoS, we use the number of VM migration as another
metric. In our experiments, we consider that during the
course of migration the CPU capacity allocated to a VM on
the destination node is same as that of the present host. This
means that each migration may cause some SLA violation.
Therefore, it is crucial to minimize the number of VM

migrations. The total number of VM migrations for THR-
MMT is almost 140 times and 97 times more than that of
Megh for PlanetLab and Google respectively. Fig. 2b and 3b
report the evolution of the cumulative number of VM
migrations over the span of 7 days. As the total number of
VM migrations up to an instance for Megh is much less
than that of the THR-MMT, it shows that at any instance
Megh performs significantly better.

Decreasing the number of active hosts also decreases the
power consumption. Thus, the number of active hosts is
also used as a performance metric for resource manage-
ment algorithms [13]. Though reducing the number of
active hosts is the approach taken by VM consolidation
algorithms, it may prove not to be a perfect metric. Because
keeping a larger number of hosts at very low utilization
level may cause less power consumption than keeping a
few hosts at very high utilization level. We observe this
dilemma from Figs. 2c and 3c. For PlanetLab, Megh keeps
fewer hosts active than other MMT algorithms, whereas for
Google it keeps more active VMs while incurring the least
per-step cost for both datasets. Figs. 2c and 3c interestingly
indicates towards a subtle balance between the number of

TABLE 3
Performance Evaluation for Google Cluster

Algortihm THR-MMT IQR-MMT MAD-MMT LR-MMT LRR-MMT Megh

Total cost (USD) 706 708 708 710 710 688
#VMmigrations 299352 262185 266706 233172 233172 3104
#Active host 82 72 73 59 59 194
Execution time (ms) 2887 4030 4000 3889 3923 1945

Fig. 2. Performance of Megh and THR-MMTalgorithms for PlanetLab dataset.

BASU ETAL.: LEARN-AS-YOU-GOWITH MEGH: EFFICIENT LIVE MIGRATION OF VIRTUAL MACHINES 1795

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on February 18,2024 at 06:11:50 UTC from IEEE Xplore. Restrictions apply.

active hosts and the feature of corresponding workloads.
For the data centers with VMs running for long enough
with heavy workloads, such as PlanetLab, the overloading
and thus migration is unavoidable. Thus, consolidating
VMs on smaller number of hosts than equally distribu-
ting them is intuitive as we see in VM consolidation litera-
ture. In contrary, we observe that if the VMs have very low
workload operating for small duration, such as the Google
Cluster, the VMs are distributed over larger number of
hosts. As each host has less workload, the probability of
overloading and hence that of the migration reduces signifi-
cantly. This reduces the number of migrations and the cost
due to degradation of performance but maintains more
number of active hosts. This phenomenon is counter-
intuitive with respect to the VM consolidation literature.

While the results establish Megh’s effectiveness to solve
the live migration decisions with less expenditure and better
QoS, Megh has to fulfil another criterion to be a real-time sys-
tem: a small execution time. From Figs. 2d and 3d, we observe
Megh is running faster than that of the heuristic based online
algorithms. As shown in Tables 2 and 3, Megh speeds up the
decision making by 1.41 and 1.48 times with respect to THR-
MMT for PlanetLab and Google respectively. Since migration
time of a VM is in the order of a few seconds, speed up of
Megh with respect to the state-of-the-art can help the system
to make decisions and to execute them with significantly less
overhead or downtime to the process of migration. This, in
turn, improves the QoS of the system too. This empirically
proves the efficiency ofMegh not only as an effective learning
algorithm but also as an eligible real-time resource manage-
ment system in Clouds.

Megh versus MadVM

MadVM fails to scale-up for the complete PlanetLab or Goo-
gle Cluster in our experimental facilities. Thus, in order to
compare the performance of Megh with MadVM, we have
chosen two random sets of 150 workloads running on 100
PMs for 3 days from PlanetLab and Google Cluster traces.
In the beginning, all these workloads are allocated uni-
formly at random to each of the PMs, such that there is no
initial bias for the learning and the robustness of both the
algorithms can be tested. The 50:50 ratio of two type of serv-
ers is still maintained.

From Figs. 4a and 5a, we observe that Megh incurs less
cost (4.3 and 8.8 percent) than MadVM at every time step.
Additionally, Megh converges faster than MadVM. Figs. 4b
and 5b show Megh causes significantly less number (5.5
and 6.1 times) of migrations than MadVM. Figs. 4c and 5c
depict at every time step MadVM (average �58 and 34)
keeps more hosts active than Megh (average �21 and 20).
Figs. 4a and 5a show that Megh takes 100 and 40 time-steps
to converge whereas MadVM takes 200 and 700 steps to
converge for PlanetLab and Google Cluster respectively.

The main factor where MadVM stumbles is the execution
time. MadVM takes on an average 4143 ms and 4057 ms to
execute a single iteration for a system of 100 PMs and 150
VMs. In PlanetLab set-up, the migration time of a VM of
0.5 GB RAM is at least 4000 ms. Thus, MadVM incurs a large
execution overhead that disrupts VM migration to be ‘live’.
In contrary to MadVM, Megh incurs 1

1000th of the execution
overhead of MadVM that allows the live VM migration to
happen without additional delay. As the RL algorithms face
the curse of dimensionality and have a huge transition

Fig. 3. Performance of Megh and THR-MMTalgorithms for Google Cluster dataset.

1796 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on February 18,2024 at 06:11:50 UTC from IEEE Xplore. Restrictions apply.

matrix for bookkeeping at each time step, it makes RL algo-
rithms slower for a real-time system. Though authors of
MadVM tries to handle such scenario, Figs. 4d and 5d

depict its inability to scale in real-time for large data centers.
Since Megh leverages the sparsity-based projection tech-
nique (Theorem 1), along with the specialised data structure

Fig. 5. Performance of Megh and MadVM for a dataset of 100 PMs and 150 VMs extracted from Google Cluster trace.

Fig. 4. Performance of Megh and MadVM for a dataset of 100 PMs and 150 VMs extracted from PlanetLab trace.

BASU ETAL.: LEARN-AS-YOU-GOWITH MEGH: EFFICIENT LIVE MIGRATION OF VIRTUAL MACHINES 1797

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on February 18,2024 at 06:11:50 UTC from IEEE Xplore. Restrictions apply.

(Section 5.2), it takes the same migration decisions in
approximately 7 ms and 8 ms respectively for PlanetLab
and Google datasets.

The experiments validate that though Megh uses the RL
framework, it is significantly more efficient and faster than
the latest state-of-art RL algorithm for live VMmigration.

6.4 Scalability Analysis

Scalability is an important issue that an algorithm has to
achieve in order to perform for a large-scale Cloud data cen-
ter. We show a comparative analysis of scalability of Megh
and THR-MMT in Figs. 6a and 6b. In order to conduct such
experiments, we randomly choose m and n number of PMs
and VMs from the PlanetLab data. Here, both m and n take
values in f100; 200; 300; 400; 500; 600; 700; 800g. For each
value of m and n, we conduct 25 experiments with 25 ran-
domly chosen set of PMs and VMs.

We observe fromFigs. 6a and 6b as the number of PMs and
VMs increase, the execution time per-step increases for both
THR-MMT and Megh. With the increase of number of PMs
and VMs, the decision making algorithm has to choose
among larger set of actions and has to face an increased
uncertainty in workload dynamics. Thus, this increase in exe-
cution time is intuitive and natural. For Megh the rise in exe-
cution time is much smaller than that of THR-MMT. This
significant difference in per-step execution time shows that
Megh scales up better than THR-MMT. This scalability estab-
lishes Megh more effective as a real-time decision maker for
large-scale Clouds.

In Fig. 7, we report the growth of the number of non-zero
elements in the Q-table of Megh with time and the number of
physical machines. We assume the number of VMs to be
equal to the number of PMs for these experiments. We
observe that the Q-table grows linearly with time, and shifts
by certain constant factors due to increase in the number of
PMs. These observations empirically proves constant incre-
ment in complexity of every iteration of Megh with time.
Fig. 7 also show that the vertical shift in the growth of Q-table
for Megh is linear with respect to the number of PMs with a
proportionality constant around 0.3.

As MadVM takes execution time more than the migra-
tion time of a VM even for 100 � 150 PMs, it is not realistic
to use it for live VM migration of a larger number of PMs
and VMs. Additionally, MadVM is not scalable beyond this
setup for our experimental resources. Thus, we cannot con-
duct such a comparative study of scalability with MadVM.

6.5 Parameter Sensitivity

Temp0 and � are used as parameters to tune the explora-
tion-exploitation trade-off of Megh. We test and analyze
Megh’s performance on different values of the parameters.
We vary Temp0 from 0.5 to 10 with a granularity of 0.5 while
keeping � ¼ 0:001. We run experiments on 30 distinct values
of �, which belong to the interval 10�3; 100½ � and are at a log-
arithmic (base 10) distance of 0.1. In this case, Temp0 is fixed
to 1. For each value of Temp0 and �, Megh is tested 25 times
on the PlanetLab dataset described in Section 6.2.

Figs. 8a and 8b show boxplots of per-step cost (in USD) of
Megh for each of the values of the parameter. These boxplots
depict the median and 90 percentile distribution of the per-
step cost. We observe that the median cost decreases first as
the Temp0 increases but the cost rises as Temp0 becomes
greater than 3. Though for � this change in per-step cost is a
bit sporadic, we empirically observe that the variance and the
median both reach a localminimum at � ¼ 0:001.

Since use of Temp in Algorithm 2 allows Megh to
explore more rather than direct exploitation, increase in
Temp0 would increase the initial exploration. We observe
till Temp0 ¼ 3 this increase in exploration is decreasing the
median cost. Because increased exploration stops agent
from getting stuck at local minima and take decisions
more globally. After that point, we see the adverse effect
of too much exploration. As Temp0 increases after 3, the
algorithm cannot benefit enough from exploitation. Thus,

Fig. 6. Scalability analysis of THR-MMT (left) and Megh (right).

Fig. 7. Increase in the number of non-zero elements in the Q-table with
time and number of PMs.

1798 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on February 18,2024 at 06:11:50 UTC from IEEE Xplore. Restrictions apply.

the curve instantiate the exploration-exploitation trade-off
in case of Megh.

� controls decay of Temp0 with time. As Temp0 decays,
the exploratory nature turns dormant and exploitative
nature begins to dominate. Thus, increase in � would cause
faster decay of Temp. Though we expect to observe similar
nature as that of the variation of Temp0, here we find out a
bit of sporadic nature where it is hard to detect a single tip-
ping point for exploration-exploitation trade-off. Hence, we
make our choice empirically from observation.

We have conducted additional experiments that show
effects of energy and SLA costs on the performance of
Megh. We do not present any detailed analysis of them due
to space constraints.

7 CONCLUSION AND FUTURE DIRECTIONS

This work addresses the problem of energy—and perfor-
mance—efficient resource management during live migra-
tion of VMs in a Cloud data center. Uncertain dynamics and
diversity of workloads as well as the heterogeneous Cloud
hardware demand for a generic algorithm to solve the effi-
cient VM migration problem under uncertainty. Reinforce-
ment learning provides a general framework to learn as-
you-go and to take decisions under uncertainty. Thus, we
propose an online reinforcement learning algorithm, Megh,
that works irrespective of application and hardware hetero-
geneity while learning the uncertain dynamics. State-of-the-
art reinforcement learning algorithms encounter curse of
dimensionality and unavailability of a model for workload’s
uncertainty. These issues make such algorithms not scalable
in real-time and asks for extensive training respectively.
Megh dissolves both of the issues in real-time. It is scalable,
operates in real-time with small execution overhead, and
does not require a training phase. In order to overcome the
curse of dimensionality, Megh projects the combinatorially
explosive state-action space to a polynomial dimensional
space with sparse basis. Megh updates the transition opera-
tor incrementally without using any prior knowledge of
workload dynamics. Through this update, Megh learns the
uncertainty and dynamics of workload as-it-goes. Megh uses
these two schemes to develop the sequential functional
approximation framework with asymptotic convergence
guarantee.We leverage a data structure based on the sparsity
of the basis for fast and scalable real-time updates and

learning. Megh incurs the smallest cost and the least
execution overhead with respect to its contenders both on
PlanetLab and Google Cluster workloads. This validates
Megh’s claim as a cost-effective, time-efficient and robust
algorithm. The comparative scalability analysis of Megh and
THR-MMT demonstrates that Megh has better scalability
than the competing algorithm. We explicate our choices of
parameters controlling the exploration-exploitation trade-off
through a sensitivity analysis ofMegh.

We are currently investigating the opportunity to take
advantage of additional knowledge about the workload,
such as periodicity or a queueing model representing the
dynamics of incoming workload [32], [33], [34], and also to
leverage knowledge of the network topology like fat-
trees [50]. We are confident that network and memory shar-
ing can be seamlessly accommodated without modifying
our solution algorithmically. Megh can be used with some
other cost model till the MDP formulation of the problem is
kept intact. We are studying the necessary extensions of the
cost model to such settings in order to apply Megh. Though
this paper majorly focuses on theoretical study and validat-
ing it on a simulation platform like [11], [13], we are also
planning to extend this research and study performance of
Megh in real-life large-scale Cloud data center.

ACKNOWLEDGMENTS

We thank Prof. Pierre Senellart for his valuable feedbacks
on this work. This work is supported by the National
Research Foundation, Prime Minister’s Office, Singapore
under its Campus for Research Excellence and Technologi-
cal Enterprise (CREATE) programme and by the National
University of Singapore Institute for Data Science project
WATCHA: WATer CHallenges Analytics.

REFERENCES

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” ACM SIGOPS Operating Syst. Rev., vol. 37, no. 5,
pp. 164–177, 2003.

[2] P. Li, S. Guo, T. Miyazaki, X. Liao, H. Jin, A. Y. Zomaya, and
K. Wang, “Traffic-aware geo-distributed big data analytics with
predictable job completion time,” IEEE Trans. Parallel Distrib.
Syst., vol. 28, no. 6, pp. 1785–1796, Jun. 2017.

[3] A. Iosup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer,
and D. Epema, “Performance analysis of cloud computing serv-
ices for many-tasks scientific computing,” IEEE Trans. Parallel Dis-
trib. Syst., vol. 22, no. 6, pp. 931–945, Jun. 2011.

Fig. 8. Sensitivity of per-step cost (in USD) on Temp0 and �.

BASU ETAL.: LEARN-AS-YOU-GOWITH MEGH: EFFICIENT LIVE MIGRATION OF VIRTUAL MACHINES 1799

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on February 18,2024 at 06:11:50 UTC from IEEE Xplore. Restrictions apply.

[4] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live migration of virtual machines,” in
Proc. 2nd Conf. Symp. Networked Syst. Des. Implementation-Vol. 2,
2005, pp. 273–286.

[5] M. Nelson, B.-H. Lim, and G. Hutchins, “Fast transparent migra-
tion for virtual machines,” in Proc. Annu. Conf. USENIX Annu.
Tech. Conf., 2005, pp. 25–25.

[6] C. L. Belady, “In the data center, power and cooling costs more
than the it equipment it supports,” Electronics Cooling, vol. 13,
no. 1, p. 24, 2007.

[7] P. Wieder, J. M. Butler, W. Theilmann, and R. Yahyapour, Service
Level Agreements for Cloud Computing. New York, NY, USA:
Springer Science & Business Media, 2011.

[8] S. T. Maguluri, R. Srikant, and L. Ying, “Stochastic models of load
balancing and scheduling in cloud computing clusters,” in Pro-
ceedings IEEE INFOCOM, 2012, pp. 702–710.

[9] H.-W. Tseng, T.-T. Yang, K.-C. Yang, and P.-S. Chen, “An energy
efficient vm management scheme with power-law characteristic
in video streaming data centers,” IEEE Trans. Parallel Distrib. Syst.,
vol. 29, no. 2, pp. 297–311, Feb. 2018.

[10] A. Beloglazov and R. Buyya, “Optimal online deterministic
algorithms and adaptive heuristics for energy and performance
efficient dynamic consolidation of virtual machines in cloud data
centers,” Concurr. Comput. : Pract. Exper., vol. 24, no. 13, pp. 1397–
1420, Sep. 2012.

[11] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for
cloud computing,” Future Gener. Comput. Syst., vol. 28, no. 5,
pp. 755–768, May 2012.

[12] R. S. Sutton and A. G. Barto, Reinforcement Learn.: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

[13] Z. Han, H. Tan, G. Chen, R. Wang, Y. Chen, and F. C. M. Lau,
“Dynamic virtual machine management via approximate markov
decision process,” in Proc. 35th Annu. IEEE Int. Conf. Comput. Com-
mun., Apr. 2016, pp. 1–9.

[14] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and
R. Buyya, “Cloudsim: A toolkit for modeling and simulation of
cloud computing environments and evaluation of resource provi-
sioning algorithms,” Softw.: Practice Exp., vol. 41, no. 1, pp. 23–50,
2011.

[15] K. Park and V. S. Pai, “Comon: a mostly-scalable monitoring sys-
tem for planetlab,” ACM SIGOPS Operating Syst. Rev., vol. 40,
no. 1, pp. 65–74, 2006.

[16] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage
traces: format+ schema,” Google Inc., White Paper, pp. 1–14, 2011.

[17] R. Nathuji and K. Schwan, “Virtualpower: Coordinated power
management in virtualized enterprise systems,” in Proc. 21st ACM
SIGOPS Symp. Operating Syst. Principles, 2007, pp. 265–278.

[18] T. Wood, P. Shenoy, A. Venkataramani, andM. Yousif, “Black-box
and gray-box strategies for virtual machine migration,” in Proc.
4th USENIX Conf. Networked Syst. Des. Implementation, 2007,
pp. 11–13.

[19] Z. A. Mann, “Allocation of virtual machines in cloud data centers–
a survey of problem models and optimization algorithms,” ACM
Comput. Surv., vol. 48, no. 1, pp. 11:1–11:34, Sep. 2015.

[20] M. Wang, X. Meng, and L. Zhang, “Consolidating virtual
machines with dynamic bandwidth demand in data centers,” in
Proceedings IEEE INFOCOM, 2011, pp. 71–75.

[21] W. Song, Z. Xiao, Q. Chen, and H. Luo, “Adaptive resource provi-
sioning for the cloud using online bin packing,” IEEE Trans. Com-
put., vol. 63, no. 11, pp. 2647–2660, Nov. 2014.

[22] M. L. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming. Hoboken, NJ, USA: Wiley, 2014.

[23] F. Farahnakian, P. Liljeberg, and J. Plosila, “Energy-efficient vir-
tual machines consolidation in cloud data centers using reinforce-
ment learning,” in Proc. 22nd Euromicro Int. Conf. Parallel Distrib.
Netw.-Based Process., Feb. 2014, pp. 500–507.

[24] S. S. Masoumzadeh and H. Hlavacs, “Integrating vm selection cri-
teria in distributed dynamic vm consolidation using fuzzy q-
learning,” in Proc. 9th Int. Conf. Netw. Serv. Manage., Oct. 2013,
pp. 332–338.

[25] C. J. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8,
no. 3/4, pp. 279–292, 1992.

[26] J. Rao, X. Bu, C.-Z. Xu, L. Wang, and G. Yin, “Vconf: A reinforce-
ment learning approach to virtual machines auto-configuration,”
in Proc. 6th Int. Conf. Autonomic Comput., 2009, pp. 137–146.

[27] L. Baird, et al., “Residual algorithms: Reinforcement learning with
function approximation,” in Proc. 12th Int. Conf. Mach. Learn.,
1995, pp. 30–37.

[28] R. Bellman, “A markovian decision process,” Indiana Univ. Math.
J., vol. 6, pp. 679–684, 1957.

[29] I. Grondman, L. Busoniu, G. Lopes, and R. Babuska, “A survey of
actor-critic reinforcement learning: Standard and natural policy
gradients,” IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev.,
vol. 42, no. 6, pp. 1291–1307, Nov. 2012.

[30] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,” J.
Mach. Learn. Res., vol. 4, pp. 1107–1149, 2003.

[31] K. R. Babu, A. A. Joy, and P. Samuel, “Load balancing of tasks in
cloud computing environment based on bee colony algorithm,” in
Proc. 5th Int. Conf. Adv. Comput. Commun., 2015, pp. 89–93.

[32] H. Khazaei, J. Misic, and V. B. Misic, “Performance of an iaas
cloud with live migration of virtual machines,” in Proc. IEEE
Global Commun. Conf., 2013, pp. 2289–2293.

[33] C. Zhu, B. Han, Y. Zhao, and B. Liu, “A queueing-theory-
based bandwidth allocation algorithm for live virtual machine
migration,” in Proc. IEEE Int. Conf. Smart City/SocialCom/Sustain-
Com, 2015, pp. 1065–1072.

[34] H. Lu, C. Xu, C. Cheng, R. Kompella, and D. Xu, “vhaul: Towards
optimal scheduling of live multi-vm migration for multi-tier
applications,” in Proc. IEEE 8th Int. Conf. Cloud Comput., 2015,
pp. 453–460.

[35] D. G. Lago, E. R. Madeira, and D. Medhi, “Energy-aware virtual
machine scheduling on data centers with heterogeneous
bandwidths,” IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 1,
pp. 83–98, Jan. 2018.

[36] R. Yu, G. Xue, X. Zhang, and D. Li, “Survivable and bandwidth-
guaranteed embedding of virtual clusters in cloud data centers,”
in Proc. IEEE Conf. Comput. Commun., 2017, pp. 1–9.

[37] L. Minas and B. Ellison, Energy Efficiency for Information Technol-
ogy: How to Reduce Power Consumption in Servers and Data Centers.
Santa Clara, CA, USA: Intel Press, 2009.

[38] K. Huppler, K.-D. Lange, and J. Beckett, “Spec: Enabling efficiency
measurement,” in Proc. 3rd ACM/SPEC Int. Conf. Perform. Eng.,
2012, pp. 257–258.

[39] S. P. Committee, et al., “Spec power and performance benchmark
methodology,” Standard Performance Evaluation Corporation,
Tech. Rep. Version, vol. 2, 2014.

[40] A. Alsarhan, A. Itradat, A. Y. Al-Dubai, A. Y. Zomaya, and
G. Min, “Adaptive resource allocation and provisioning in multi-
service cloud environments,” IEEE Trans. Parallel Distrib. Syst.,
vol. 29, no. 1, pp. 31–42, Jan. 2018.

[41] M. L. Dertouzos and A. K. Mok, “Multiprocessor online schedul-
ing of hard-real-time tasks,” IEEE Trans. Softw. Eng., vol. 15,
no. 12, pp. 1497–1506, Dec. 1989.

[42] L. Sha, T. Abdelzaher, K.-E. A
	
rz�en, A. Cervin, T. Baker, A. Burns,

G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok, “Real time
scheduling theory: A historical perspective,” Real-Time Syst.,
vol. 28, no. 2–3, pp. 101–155, 2004.

[43] R. Bellman and R. E. Kalaba, Dynamic Programming and Modern
Control Theory, Academic Press, New York, 1965.

[44] W. B. Powell, Approximate Dynamic Programming: Solving the
Curses of Dimensionality. Hoboken, NJ, USA: Wiley-Interscience,
2007.

[45] S. Singh, T. Jaakkola, M. L. Littman, and C. Szepesv�ari, “Con-
vergence results for single-step on-policy reinforcement-learning
algorithms,”Mach. Learn., vol. 38, no. 3, pp. 287–308, 2000.

[46] K. E. Atkinson, An Introduction to Numerical Analysis. Hoboken,
NJ, USA: Wiley, 2008.

[47] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen, LAPACK Users’ Guide, vol. 9. Philadelphia, PA, USA:
SIAM, 1999.

[48] J. Sherman and W. J. Morrison, “Adjustment of an inverse matrix
corresponding to a change in one element of a given matrix,” Ann.
Math. Statist., vol. 20, 1949, Art. no. 317.

[49] A. C. Cullen, H. C. Frey, and C. H. Frey, Probabilistic Techniques in
Exposure Assessment: a Handbook for Dealing with Variability and
Uncertainty in Models and Inputs. New York, NY, USA: Springer
Science & Business Media, 1999.

[50] C. E. Leiserson, “Fat-trees: Universal networks for hardware-
efficient supercomputing,” IEEE Trans. Comput., vol. 34, no. 10,
pp. 892–901, Oct. 1985.

1800 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on February 18,2024 at 06:11:50 UTC from IEEE Xplore. Restrictions apply.

Debabrota Basu received the BE degree in elec-
tronics and telecommunication engineering from
Jadavpur University, India, in 2014 and the PhD
degree in computer science from the School of
Computing, National University of Singapore, in
2018. He is joiningChalmersUniversity of Technol-
ogy as a postdoctoral research fellow in adversar-
ial machine learning in 2019. His research
interests include reinforcement learning, statistical
learning theory, information theory, differential pri-
vacy, and their applications in real-world systems.

Xiayang Wang received the BS degree in soft-
ware engineering from Fudan University, China,
in 2014. He is now working toward the PhD
degree in the School of Software, Shanghai Jiao
Tong University. His research interests include
program analysis and software security.

Yang Hong received the BS degree in software
engineering from Shanghai Jiao Tong University,
China, in 2013. He is now working toward the
PhD degree in the School of Software, Shanghai
Jiao Tong University. His research interests inclu-
de parallel systems and networked systems.

Haibo Chen received the PhD degree in com-
puter science from Fudan University, in 2009. He
is currently a tenured full professor with the
School of Software, Shanghai Jiao Tong Univer-
sity. His research interests include operating sys-
tems and parallel & distributed systems. He is a
senior member of the IEEE.

St�ephane Bressan received the PhD degree in
computer science from the University of Lille,
France, in 1992. He is an associate professor
with the Department of Computer Science,
School of Computing, National University of Sin-
gapore. In 1990, he joined the European Com-
puter-industry Research Centre of Bull, ICL, and
Siemens in Munich, Germany. From 1996 to
1998, he was research associate with the Sloan
School of Management, Massachusetts Institute
of Technology. His research interests include the

integration, management and analysis of data from heterogeneous, dis-
parate and distributed sources.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

BASU ETAL.: LEARN-AS-YOU-GOWITH MEGH: EFFICIENT LIVE MIGRATION OF VIRTUAL MACHINES 1801

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on February 18,2024 at 06:11:50 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

