
A Multi-Objective Virtual Network Migration
Algorithm Based on Reinforcement Learning

Desheng Wang , Weizhe Zhang , Senior Member, IEEE, Xiao Han,

Junren Lin, and Yu-Chu Tian , Senior Member, IEEE

Abstract—Virtual network migration (VNM) helps improve network performance by remapping a subset of virtual nodes or links to

physical infrastructure, aligning the resource allocation to the virtual network’s changing conditions. However, existing VNMmethods

neglect integrating multiple objectives that affect network performance, such as energy, communication, migration, and service level

agreement violation (SLAV). It is challenging to make VNM decisions to optimize the overall objective in a large-scale cloud

environment. This article establishes a multi-objective optimization model and proposes a multi-objective VNM algorithm called

MiOvnm. The MiOvnm employs the double deepQ-learning approach to cope with ample state space. It also applies an action

selection method called actfilter to deal with large-scale action space. The MiOvnm finds the migration action with optimal potential

reward from the candidate action set. Simulation results demonstrate the superiority of our MiOvnm to the state-of-the-art methods.

More specifically, MiOvnm reduces average SLAV, communication cost, and total cost by 24.32%, 4.95%, and 12.45%, respectively.

Furthermore, evaluation results in a real-world OpenStack platform reveal that making full use of computation and network resources,

the MiOvnm reduces the completion time of computation- and network-intensive benchmarks by 11.35% and 10.31%, respectively, with

a total cost reduction of 26.02%.

Index Terms—Virtual network, migration, reinforcement learning, OpenStack

Ç

1 INTRODUCTION

IN recent years, cloud computing has experienced vigor-
ous growth due to its capacity to efficiently utilize the

information technology infrastructure while providing
users with high quality of service [1]. Virtualization tech-
nologies, including hardware and lightweight virtualiza-
tion, allow virtual networks (VNs) to reside on a physical
network (PN). This frees the tasks from the user’s local
limitations. Furthermore, due to VNs’ changing condi-
tions, virtualization empowered by migration technology
meets the ever-increasing demands of relocating virtual

resources within VNs to help achieve various resource
management objectives [2].

Virtual network migration (VNM) refers to remapping a
subset of virtual nodes or links to physical infrastructure,
thereby aligning the resource allocation to current network
conditions [3]. Different optimization objectives lead to dif-
ferent migration decisions. An efficient VNM process
should minimize both resource consumption and service
level agreement violation (SLAV).

A SLAV may occur when virtual nodes are consolidated
in over-utilized cloud servers. These nodes perform poorly
under computation and network resource shortage [4]. The
VNM is able to allocate sufficient resources for the VN to
avoid excessive consolidation in some hosts, thereby bring-
ing desired performance to each virtual node.

The optimization of resource consumption can be sum-
marized into the following three aspects:

1) Energy saving: Energy consumption becomes promi-
nent in cloud data centers [5]. Cloud servers con-
sume a massive amount of energy even at an utterly
idle state, contributing a significant portion of the
overall operational costs in data centers. They pos-
sess under-utilization issues in some instances (e.g.,
when only a few tasks run on the server), resulting
in a waste of high-cost resources [6]. Improving
energy efficiency, the VNM helps save energy and
thus reduces operational costs in data centers.

2) Communication cost reduction: In data-intensive
distributed applications, massive data transfer
occurs among multiple servers in general, resulting
in high traffic load among virtual nodes [7]. The
VNM can make virtual nodes to communicate with

� Desheng Wang, Xiao Han, and Junren Lin are with the School of Cyber-
space Science, Harbin Institute of Technology, Harbin, Heilongjiang
150001, China. E-mail: wangdesheng0821@hit.edu.cn, 1170301006@stu.
hit.edu.cn, linponys@163.com.

� Weizhe Zhang is with the School of Cyberspace Science, Harbin Institute of
Technology, Harbin, Heilongjiang 150001, China, and also with Cyber-
space Security Research Center, Peng Cheng Laboratory, Shenzhen,
Guangdong 518066, China. E-mail: wzzhang@hit.edu.cn.

� Yu-Chu Tian is with the School of Computer Science, Queensland Univer-
sity of Technology, Brisbane, QLD 4000, Australia. E-mail: y.tian@qut.
edu.au.

Manuscript received 12 October 2021; revised 23 May 2022; accepted 2 June
2022. Date of publication 9 June 2022; date of current version 7 June 2023.
This work was supported in part by the National Key Research andDevelopment
Program of China under Grant 2020YFB1406902, in part by the Key-Area
Research and Development Program of Guangdong Province under Grant
2020B0101360001, in part by Shenzhen Science and Technology Research and
Development Foundation under Grant JCYJ20190806143418198, in part by the
Major Key Project of PCL under Grant PCL2021A02, and in part by the Funda-
mental Research Funds for the Central Universities under Grant HIT.
OCEF.2021007.
(Corresponding author: Weizhe Zhang.)
Recommended for acceptance by Y. Yang.
Digital Object Identifier no. 10.1109/TCC.2022.3180784

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023 2039

2168-7161 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on April 05,2024 at 22:33:50 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7502-7094
https://orcid.org/0000-0002-7502-7094
https://orcid.org/0000-0002-7502-7094
https://orcid.org/0000-0002-7502-7094
https://orcid.org/0000-0002-7502-7094
https://orcid.org/0000-0003-4783-876X
https://orcid.org/0000-0003-4783-876X
https://orcid.org/0000-0003-4783-876X
https://orcid.org/0000-0003-4783-876X
https://orcid.org/0000-0003-4783-876X
https://orcid.org/0000-0002-8709-5625
https://orcid.org/0000-0002-8709-5625
https://orcid.org/0000-0002-8709-5625
https://orcid.org/0000-0002-8709-5625
https://orcid.org/0000-0002-8709-5625
mailto:wangdesheng0821@hit.edu.cn
mailto:1170301006@stu.hit.edu.cn
mailto:1170301006@stu.hit.edu.cn
mailto:linponys@163.com
mailto:wzzhang@hit.edu.cn
mailto:y.tian@qut.edu.au
mailto:y.tian@qut.edu.au

closer nodes, which may even reside on the same
physical host, with minimal data transfer delay,
reducing the communication congestion in the PN.

3) Migration overhead optimization: To achieve the
efficiency of the above objectives, sometimes unad-
visable migration decisions are made. Numerous
unnecessary migration actions cause much over-
head. Since migration is a resource-intensive process,
less migration reduces unnecessary resource con-
sumption, including CPU and memory resources at
the source and target hosts and bandwidth resources
on the path from the source to the destination [8].

1.1 Motivations

VNs are initially deployed with multiple techniques, includ-
ing fast provisioning [9]. However, the previous deploy-
ment of VNs may present limited performance due to VNs’
changing workloads over time. This study focuses on solv-
ing the multi-objective VNM problem caused by VNs’
changing workloads, thereby making full use of physical
resources and improving the service performance of the
cloud environment. The VNM problem is an NP-hard prob-
lem, in which each VN usually shows unpredictable vari-
ability [3]. There have been numerous efforts in the
literature to deal with this problem. However, in a cloud
environment with global shared state mechanism [10],
dynamic VNM is a fundamental yet challenging problem.

Numerous VNM methods are formulated to optimize
partial migration objectives [2], such as minimizing energy
or improving the efficiency of virtual nodes in general.
However, reducing communication cost is also a significant
challenge. It takes much longer to communicate between
two virtual nodes located on different hosts than on the
same host because the data on the same host is transmitted
through random access memory, which is usually faster
than PN [11]. Furthermore, the migration process consumes
additional physical resources to migrate virtual nodes,
implying a migration cost. Recently, VNM research based
on multiple objectives has also been rapidly developed [12].
However, due to multi-objective VNM modeling and
method design complexities, these existing methods show a
lack of generalizability and adaptability in tackling the
VNM problem of optimizing energy, migration, communi-
cation, and SLAV, thus failing to build such a multi-objec-
tive VNM model. Therefore, the first challenge is CH1: How
to build a multi-objective optimization model that considers
energy, communication, migration, and SLAV?

Additionally, most heuristic and multi-objective VNM
approaches obtain an immediate migration decision based
on current system observation or future system prediction.
However, these migration decisions can be sub-optimal due
to the NP-hard complexity of VNM. Furthermore, once we
have selected a policy and followed its decisions, it is still
not clear how good the decisions will be. Therefore, the sec-
ond challenge is CH2: How to obtain migration decisions to
optimize the overall VNM objective?

Efforts have also been made in the research based on the
Markov decision process (MDP) [3], which is proposed to
tackle the VN reconfiguration problem. However, a large-
scale VNM framework possesses high-dimensional state

and action spaces. Conventional ways to solve large-scale
MDP issues suffer from dimensionality [13]. Specifically, it
is practically infeasible to traverse all migration decisions
with an exhaustive search in high-dimensional action space
and then choose the best. Furthermore, most VNM
approaches also suffer from VN and PN scales. Therefore,
the third challenge is CH3: How to deal with high-dimensional
state and action spaces in a VNM framework?

1.2 Contribution

To address the above challenges, we have made in-depth
work in this paper. Targeting CH1, we analyze the key fac-
tors existing in the VNM process, including energy, migra-
tion, communication, and SLAV. Furthermore, a VNM
approach requires interaction with the cloud environment,
where each migration decision is selected according to cur-
rent state and is executed to transition to the next state dur-
ing the interaction process. Therefore, the VNM problem
obeys MDP. We finally build an MDP model for the multi-
objective VNM problem.

Targeting CH2, we apply reinforcement learning to learn
an optimization agent to make VNM decisions and adapt its
decisions to align the different system states. The learned
agent can maximize the potential reward for each state, i.e.,
the overall optimization of multi-objective VNM. Further-
more, the state and action spaces are discrete and high-
dimensional in a large-scale VNM framework. A value-
function-based deep reinforcement learning approach natu-
rally satisfies our research problem. Therefore, we employ
the recently proposed double deep Q-learning (DDQN)
method [14] to train the model by interacting with ample
state space in a cloud VNM environment. However, the
DDQNmethod suffers from high-dimensional action space.

Targeting CH3, we propose a candidate action selection
method for the DDQN agent. It selects candidate migration
actions that may optimize one or more objectives. And then
the learning agent selects the migration action with the most
significant potential reward from the candidate action set.

In summary, we build an MDP model for the multi-
objective VNM problem, employ the DDQN approach to
adapt to the different system states, and propose a candi-
date action selection method to improve the model’s effi-
ciency. Our proposed algorithm focuses on finding the
migration action with the maximized potential reward from
the candidate action set. The main contributions of this
paper are summarized as follows:

1) We build a novel multi-objective MDP-based VNM
model regarding energy, migration, communication,
and SLAV. Optimizing four objectives simulta-
neously for VNM is innovative.

2) We propose a multi-objective VNM algorithm called
MiOvnm based on DDQN to cope with ample state
space in a cloud VNM environment. Our method
provides dynamic migration solutions to optimize
the overall VNM objective.

3) We also propose an action selection algorithm called
actfilter for the MiOvnm to deal with large-scale
action space, thereby improving the efficiency of
model operation.

2040 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on April 05,2024 at 22:33:50 UTC from IEEE Xplore. Restrictions apply.

We have conducted simulation studies and real-world
OpenStack-based experiments to verify our algorithm. The
simulation results demonstrate that our proposed MiOvnm
is much more efficient than the state-of-the-art methods,
reducing average SLAV, communication, and total costs by
24.32%, 4.95%, and 12.45%, respectively. Furthermore, real-
world OpenStack evaluation demonstrates that the
MiOvnm makes full use of computation and network
resources and reduces the completion time of computation-
and network-intensive benchmarks by 11.35% and 10.31%,
respectively, with a 26.02% total cost reduction.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the related work. Section 3 describes the net-
work model and problem formulation of the study. Our
VNM algorithm based on reinforcement learning is pre-
sented in Section 4. This is followed by experimental studies
in Section 5. Finally, Section 6 concludes the study.

2 RELATED WORK

The VNM research aims to make VNM decisions with con-
sideration of multiple objectives. In early research of this
problem, the migration mechanism of the cloud data center
was a strategy obtained based on the virtual machine (VM)
deployment and VM merging during resource manage-
ment. The migration research focused on when to trigger
the migration mechanism and how to achieve efficient
migration [2]. Xiao et al. [15] introduced the concept of
skewness to measure the unevenness in multi-dimensional
resource utilization. By minimizing skewness, a set of heu-
ristics was proposed to prevent overload while saving
energy effectively. Kansal et al. [16] proposed a real-time
migration strategy based on the Firefly algorithm, which
avoids wasting CPU and memory resources during the
migration process. A binary graph matching-based bucket-
code learning algorithm was designed to solve the dynamic
migration of VMs [17]. In this algorithm, code learning and
mutation helped improve the migration performance. How-
ever, these works actually possessed the limited perfor-
mance in optimizing the overall VNM objectives.

In recent years, applications on cloud computing plat-
forms have emerged endlessly. Therefore, the research of
VM real-time migration algorithms based on diverse objec-
tives has also been developed rapidly with the consideration
of energy consumption, migration overhead, communica-
tion overhead, and SLAV optimizations [12].

With regard to energy consumption-related optimiza-
tion, Hieu et al. [18] proposed a VM migration strategy
based on the forecast of future resource utilization to reduce
load and power consumption. Al et al. [19] provided a
method to select VMs for migration and place the VMs
based on the multiple choice and knapsack, improving
energy efficiency and limiting the migration frequency. Han
et al. [13] formulated the dynamic VM management as an
MDP problem. They further exploited the particular struc-
ture of the problem and proposed an approximate MDP-
based dynamic VM management method named MadVM
to minimize power consumption. Sha et al. [20] presented a
collective behavior-based meta-heuristics algorithm to
reduce energy consumption via discrete bacterial foraging.
Zhang et al. [5] developed a heuristic energy-aware VN

migration algorithm called EA-VNM and presented an
enhanced group-based VN migration algorithm to reduce
time complexity. However, the competitiveness matrix of
the EA-VNM took a significant overhead in large-scale
VNs. Karthikeyan et al. [21] reported a naive Bayes classifier
with hybrid optimization using an artificial bee colony-bat
algorithm for migration to reduce energy consumption.
Garg et al. [22] proposed a load-aware three-gear threshold
algorithm and a modified best fit decreasing algorithm to
minimize total energy consumption while reducing SLAV
under dynamic VNs. Khaleel et al. [23] developed a VM
allocation algorithm to achieve a tradeoff between energy
and SLAV. The developed method over-utilized and under-
utilized hosts, selected VMs for migration based on the
modified best-fit decreasing algorithm, and turned off
selected under-utilized hosts.

For communication cost-related optimization, Zhang
et al. [24] proposed a genetic algorithm and artificial bee col-
ony to make a tradeoff between communication and migra-
tion costs. Xue et al. [25] presented a communication-aware
VM migration algorithm with the consideration of CPU,
memory, and bandwidth constraints to minimize inter-VM
traffic and migration costs. Cui et al. [26] investigated a pro-
gressive-decompose-rounding approach for VM migration
in polynomial time to cut communication and migration
costs. Gao et al. [3] developed a fully polynomial-time
approximation scheme to minimize physical link utilization,
physical node workload, and the migration number. The
scheme selects the virtual nodes to be migrated and takes a
random walk on a Markov chain to select new physical
nodes for the migrated virtual nodes. However, a pre-set-
ting geographical constraint of each virtual node simplified
the problem with a limited size of target physical nodes.
Flores et al. [27] designed heuristic policy-aware VM migra-
tion algorithms to minimize policy-aware data centers’ com-
munication and migration costs.

With regard to SLAV-related optimization, Saxena et al.
[28] selected the largest resource capacity VM from the
overloaded server to avoid SLAV caused by overload situa-
tions. The selected VMs were migrated to closer hosts to
reduce inter-VMs’ traffic and energy costs. Li et al. [29] for-
malized VN function migration and service-function-chain-
reconfiguration problems and proposed an improved
hybrid genetic evolution algorithm to minimize service
delay and guarantee network load balancing. They also
developed a multi-stage heuristic to reduce the computation
overhead in large-scale networks.

In the field of migration overhead-related optimization,
Wang et al. [8] proposed a fully polynomial-time approxi-
mation scheme to reduce the total migration time by maxi-
mizing effective transmission rate in the network, allowing
multiple VMs to be migrated simultaneously via multiple
routing paths. Nashaat et al. [30] designed two cooperative
algorithms, SESA and AWFDVP, to arrange and migrate
VMs based on the system evaluation, reducing the amount
of memory migrated, SLAV, and power consumption.

To present the contribution of this paper more clearly, we
classify the methods developed in the related work in terms
of the four optimization objectives, as shown in Table 1.
Most existing VNM methods traverse network information
to perform complex and time-consuming calculations,

WANG ETAL.: MULTI-OBJECTIVE VIRTUAL NETWORK MIGRATION ALGORITHM BASED ON REINFORCEMENT LEARNING 2041

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on April 05,2024 at 22:33:50 UTC from IEEE Xplore. Restrictions apply.

suffering from VN and PN scales. Furthermore, the existing
VNM methods deal with partial migration objectives and
show limited performance in optimizing the overall VNM
objective. Although the sampling-based estimation mecha-
nism [31], [32], [33] can efficiently tackle the scalability prob-
lem for most existing VNMmethods, it is still challenging to
make migration decisions to optimize the overall VNM
objective in a large-scale cloud environment. This study
takes advantage of deep reinforcement learning and action
filter to interact with complex environments efficiently and
optimizes the overall VNM objective with the consideration
of energy, communication, SLAV, and migration costs.

3 NETWORK MODEL AND PROBLEM FORMULATION

This section formalizes the networks, the VNM problem,
and VNM objectives. Key symbols used in this paper are
tabulated in Table 2.

3.1 Migration System

The VNM process mainly migrates part of the virtual nodes
to optimize energy, migration, communication, and SLAV.
As shown in Fig. 1, a cloud migration system consists of a
Resource Monitor Module (RMM), a Migration Decision
Module (MDM), and a Migration Control Module (MCM).
The RMM monitors system information through sensors in
each server, including PN and VN information. The MDM
periodically makes migration decisions based on the system
information from the RMM. The VNM algorithm proposed
in this study is the core of MDM. The MCM finally executes
the migration process via effectors in each server.

Migration requirement/objective and system informa-
tion affect the decisions of the VNM algorithm. As long as
the MDM periodically retrieves system information and

TABLE 1
Classification of the Relate Work

Ref. Optimization
goals

Approach

[15] (1)(3) Skewness minimization
[16] (1)(3) Firefly-based optimization
[17] (1)(2)(4) Bucket-code learning
[18] (1)(3)(4) Prediction-based consolidation
[19] (1)(4) Multiple Choice Knapsack
[13] (1)(3)(4) MDP-based optimization
[20] (1) Behavior-based metaheuristics
[5] (1) maximum weight matching
[21] (1) Artificial bee colony–bat
[22] (1)(3) Three-gear threshold and modified best fit decreasing
[23] (1)(3) Multi-step VM allocation
[24] (2)(4) Genetic algorithm and artificial bee colony
[25] (2)(4) Heuristic optimization for three problems regarding when, which, where
[26] (2)(4) Progressive-decompose-rounding approach
[3] (2)(4) Linear programming-based fully polynomial-time approximation scheme and random walk on a

Markov chain
[27] (2)(4) Heuristic policy-aware VMmigration
[28] (1)(2)(3) Online prediction and multi-objective VMmigration
[29] (2)(3) Hybrid genetic evolution approach
[8] (4) Linear approximation plus fully polynomial time approximation
[30] (1)(3)(4) Adaptive worst fit decreasing VM placement

� Optimization goals column: (1) energy, (2) communication, (3) SLAV, (4) migration.

TABLE 2
VNM Model Notations

Notation Description

Gs Physical network s
Ns Set of physical nodes
Ls Set of physical links
ns
i :vðtÞ Set of virtual nodes in physical node ns

i at time t
ns
i :tcðtÞ Total CPU of physical node ns

i at time t
ns
i :ucðtÞ Utilized CPU of physical node ns

i at time t
ns
i :rcðtÞ Remaining CPU of physical node ns

i at time t
lsi;j:tbðtÞ Total bandwidth of physical link lsi;j at time t
lsi;j:ubðtÞ Utilized bandwidth of physical link lsi;j at time t
lsi;j:rbðtÞ Remaining bandwidth of physical link lsi;j at time t
lsi;j:lðtÞ Set of virtual links spanning over lsi;j at time t
P s Set of all loop-free physical paths
psi;j:tbðtÞ Total bandwidth of physical path psi;j at time t
psi;j:ubðtÞ Utilized bandwidth of physical path psi;j at time t
Gv Virtual network v
Nv Set of virtual nodes
Lv Set of virtual links
nv
i :locðtÞ Physical node where virtual node nv

i is located at
time t

nv
i :mðtÞ Required memory of virtual nodes nv

i at time t
nv
i :cðtÞ Required CPU of virtual nodes nv

i at time t
lvi;j:bðtÞ Required bandwidth of virtual link lvi;j at time t
lvi;j:pðtÞ Path length between nv

i :locðtÞ and nv
i :locðtÞ at time t

Ce Energy cost
Cc Communication cost
Cs SLAV
ccpus ðtÞ Immediate computation SLAV at time t
cbds ðtÞ Immediate network SLAV at time t
Cm Migration cost
MðtÞ Set of virtual nodes to be migrated at time t
C Total cost

2042 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on April 05,2024 at 22:33:50 UTC from IEEE Xplore. Restrictions apply.

migration requirements from RMM and the cloud platform,
our proposed VNM algorithm can easily make migration
decisions for MCM to migrate virtual nodes, optimizing
multiple objectives for a cloud platform. A migration exam-
ple is presented in Fig. 1. Servers 1 and 2 are over-utilized
and under-utilized servers, respectively. Some virtual nodes
on server 1 are migrated to server 3. All virtual nodes on
server 2 are migrated to server 4. Finally, there are no over-
utilized or under-utilized servers in the entire system. In
this case, we can reduce the energy consumption of server 2
and improve VM running performance in server 1.

3.2 Physical Network

The PN topology is defined as an undirectedweighted graph
Gs ¼ ðNs; LsÞ, whereNs andLs represent the sets of physical
servers and links, respectively. In this paper, superscripts s
and v correspond to PN andVN, respectively. jNsj is the total
number of physical nodes. Each physical node ns

i (i 2 ½0;
jNsj � 1�) runs multiple virtual nodes. Define ns

i :vðtÞ as the
set of all virtual nodes on ns

i at time t. Current cloud frame-
works, such as OpenStack and Google Cloud, limit the host-
ing capacity of each host by setting the maximum number of
instances. We define ns

i :n as the maximum number of virtual
nodes on ns

i . The sets ns
i :tcðtÞ; ns

i :ucðtÞ, and ns
i :rcðtÞ respec-

tively represent the total, utilized, and remaining CPU
resources of ns

i at time t. To simplify the model, we focus on
CPUusage in this paper and consider RAMand disk as suffi-
cient resources.

If there is a link between any two different physical
nodes, ns

i and ns
j , we define this link as lsi;j 2 Ls. jLsj is the

total number of physical links. Similarly, lsi;j:tbðtÞ, lsi;j:ubðtÞ,
and lsi;j:rbðtÞ represent the total, utilized, and the remaining
bandwidth resource of lsi;j at time t. lsi;j:lðtÞ represents the set
of virtual links spanning over lsi;j at time t. Finally, we define
variables related to the physical path. Ps is defined as the set
of loop-free paths in a PN. A physical path psi;j 2 Ps means
the shortest path between ns

i and ns
j , consisting of a single

or a sequence of physical links. The total bandwidth of the
path psi;j at time t, denoted psi;j:tbðtÞ, depends on the physical
link with minimal total bandwidth capacity. The utilized
bandwidth of the path psi;j at time t is psi;j:ubðtÞ.

In this study, spanning is defined as the process of a vir-
tual link communicating through a physical link. For exam-
ple, Fig. 2 indicates that the virtual nodes a and b are
located on physical nodes A and E, respectively. When the
virtual nodes a and b communicate via path fA;F;Eg, we
consider that the virtual link between a and b spans over
physical links fA;Fg and fF;Eg. Furthermore, the shortest

path is defined as the communication path with the shortest
length. For example (Fig. 2), when virtual nodes a and b
communicate, the shortest path is fA;F;Eg. The loop-free
path is defined as the communication path with no cycles.
For example (Fig. 2), path fA;F;Eg is a loop-free path,
while path fA;F;G;B;A; F;Eg, which contains a cycle
fA;F;G;B;Ag, is not a loop-free path.

3.3 Virtual Network

Similar to the PN topology, the VN topology is also defined
as an undirected weighted graph Gv ¼ ðNv; LvÞ, where Nv

and Lv are the sets of virtual nodes and links. jNvj repre-
sents the total number of virtual nodes. At time t, nv

i :locðtÞ
represents the physical node where the virtual node nv

i

(i 2 ½0; jNvj � 1�) is located. Specifically, nv
i :locðtÞ ¼ ns

j

means nv
i is located on ns

j at time t. The amount of CPU
resource required by nv

i is denoted as nv
i :cðtÞ. Additionally,

nv
i :mðtÞ is defined as the amount of memory resource

required by nv
i at time t, related to migration cost (intro-

duced in Section 3.4). Virtual link lvi;j 2 Lv represents the
connection between two nodes, nv

i and nv
j , and jLvj repre-

sents the total number of virtual links. The lvi;j:bðtÞ represents
the required bandwidth of lvi;j. In addition, we denote lvi;j:pðtÞ
as the path length between nv

i :locðtÞ and nv
j :locðtÞ.

3.4 Problem Formulation of Virtual
Network Migration

As a necessary configuration in a PN, the network commu-
nication protocol finds a communication path for each vir-
tual link. For simplicity, it is set to take the shortest path
policy in this paper. Each virtual link is only mapped to one
physical path. To optimize the communication cost, our
algorithm needs to attain the communication path of virtual
links. The shortest path policy relates to, and provides the
basis for the calculation of, communication optimization.

The VNM in this study aims to change the original
assignment of VNs in the PN to save energy and communi-
cation costs without performance degradation while incur-
ring a low migration cost. More specifically, the dynamic
VNM is described as a multi-objective optimization prob-
lem with the consideration of energy consumption, migra-
tion cost, SLAV, and communication cost.

3.4.1 Energy Cost

In existing research [4], [13], energy cost, denoted by Ce, is
an integration of the total costs from all individual running
nodes over time (Equation (1)):

Ce ¼
Z XNsj j

i¼1
eiðtÞ

 !
dt; (1)

Fig. 2. An example of communication process.

Fig. 1. Cloud migration system.

WANG ETAL.: MULTI-OBJECTIVE VIRTUAL NETWORK MIGRATION ALGORITHM BASED ON REINFORCEMENT LEARNING 2043

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on April 05,2024 at 22:33:50 UTC from IEEE Xplore. Restrictions apply.

where eiðtÞ represents the energy cost at time t when the
physical node ns

i is switched on. It combines idle state
energy cost and computation energy cost (Equation (2)):

eiðtÞ ¼ PidleðiÞ þ PmaxðiÞ � PidleðiÞð Þ � ns
i :ucðtÞ; (2)

where the PidleðiÞ and PmaxðiÞ represent the power con-
sumption of 0% and 100% CPU utilization of ns

i , respec-
tively. A large amount of energy consumption results from
the physical hosts with very low utilization. However, the
energy consumption is nearly 0 when ns

i is switched off.
Therefore, switching off as many physical nodes as possible
is an effective way to save energy.

3.4.2 Communication Cost

As presented in existing research [17], communication cost,
denoted by Cc, results from network communication
between virtual nodes. When two virtual nodes are on the
same physical machine, their communication process is
accessed through random memory, of which the communi-
cation cost is considered as 0. When two virtual nodes
reside on different physical machines, their communication
consumes bandwidth in each physical path. Thus, the com-
munication cost is formalized as the total utilized band-
width of all physical links, as shown in Equation (3):

Cc ¼
Z XNsj j

i¼1

XNsj j

j¼1
lsi;j:ubðtÞ

 !
dt: (3)

The length of the communication path of each virtual
link influences the communication cost significantly.
Therefore, making the virtual link communication path
as close as possible or even communicating through ran-
dom access memory on the same host will reduce com-
munication costs.

3.4.3 Service Level Agreement Violation

As presented in [4], SLAV denoted by Cs characterizes the
total CPU and bandwidth shortages of the VN. Insufficient
computation and network resources may be provided to
virtual nodes and links, resulting in poor working perfor-
mance. The SLAV is formalized as follows:

Cs ¼
Z

ccpus ðtÞ þ cbds ðtÞ
� �

dt; (4)

where ccpus ðtÞ and cbds ðtÞ are the immediate SLAVs caused by
the shortages of CPU and bandwidth. For each physical
node ns

i , the difference between the required CPU of virtual
nodes on ns

i and the utilized CPU of ns
i is the CPU shortage

of ns
i . The ccpus ðtÞ is formalized as the total CPU shortage of

all physical nodes, as shown in Equation (5). Similarly, the
cbds ðtÞ is formalized as the total bandwidth shortage of all
physical links, as shown in Equation (6).

ccpus ðtÞ ¼
XNsj j

i¼1

X
nv2ns

i
:vðtÞ

nv:cðtÞð Þ � ns
i :ucðtÞ

0
@

1
A; (5)

cbds ðtÞ ¼
XNsj j

i¼1

XNsj j

j¼1

X
lv2ls

i;j
:lðtÞ

lv:bðtÞð Þ � lsi;j:ubðtÞ
0
@

1
A: (6)

It is worth mentioning that when the CPU (bandwidth)
resources of each virtual node (link) are insufficient, the
CPU (bandwidth) resource utilization of the PN becomes
smaller, as well as the energy (communication) cost.
Although a proper resource allocation causes energy and
communication consumption, it may effectively reduce the
SLAV because the resource shortage problem can be fixed.

3.4.4 Migration Cost

As presented in existing research [17], [34], migration cost
denoted by Cm mainly refers to the transfer data size during
the migration of the virtual nodes. Live migration technolo-
gies, such as pre-copy, post-copy, and hybrid-copy, allow
VMs to be migrated without loss of computation and stor-
age tasks, with a short switching time closely related to
memory utilization [12], [35]. They require to synchronize
the memory and storage data of the virtual nodes being
migrated. As the storage devices in the same cloud data cen-
ter are shared, storage migration is not required [1]. We
assume all PMs share backend storage in this study. Thus,
the migration cost is formalized as the total amount of mem-
ory data to be migrated, as shown below:

Cm ¼
Z X

nv2MðtÞ
nv:mðtÞ

0
@

1
Adt; (7)

where MðtÞ represents the set of virtual nodes to be
migrated at time t. It is seen from the migration cost defini-
tion that migration cost can be minimized by reducing the
migration size and times.

3.4.5 Problem Definition

Our dynamic VNM problem is defined as minimizing
multi-objective costs by migrating virtual nodes. The objec-
tive function of the VNM problem is formulated to mini-
mize the total cost C, which is expressed as a weighted sum
of the four individual costs discussed above:

minC ¼ a � Ce þ b � Cc þ u � Cs þ z � Cm; (8)

where a, b, u, and z are importance coefficients, which are
initialized from the environmental parameters.

The four objectives mentioned above can never reach
their optimal values simultaneously because they are con-
flicting in nature. If we try to aggregate hosts as much as
possible to reduce energy consumption, the communication
delay and SLAV will increase. If we aim to minimize the
communication overhead, we may make the virtual nodes
with the communication traffic reside on the same physical
host as much as possible. But this will often lead to resource
shortage of the physical host, thereby increasing the SLAV.
Moreover, the importance of each objective is different in
different cloud computing platforms. Therefore, one can set
the weight parameters of these four objectives. For example,
considering the PN is likely to cause communication con-
gestion, it is better to apply a high weight of communication
cost and set a high b value.

2044 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on April 05,2024 at 22:33:50 UTC from IEEE Xplore. Restrictions apply.

4 MULTI-OBJECTIVE VIRTUAL NETWORK

MIGRATION ALGORITHM

In order to cope with the complex VNM in a large-scale
cloud environment, we propose a VNM algorithm based on
DDQN, named MiOvnm. The architecture of the MiOvnm
learning algorithm is shown in Fig. 3. To deal with ample
state space and avoid excessively optimistic value estima-
tion, the algorithm uses double Q networks in the DDQN
model to perform action selection and target Q value calcu-
lation, separating the selection and evaluation of migration
actions. In response to the inefficiency caused by the consid-
erable action space in a large-scale environment, we pro-
pose a heuristic action selection algorithm named actfilter to
filter and reduce the action space. Our proposed algorithm
finds the migration action with the maximized potential
reward from the candidate action set. Since the reinforce-
ment learning algorithm satisfies the contraction mapping
principle, the migration decision can be replicated to get the
optimal solution from the candidate action set.

4.1 Markov Decision Process Model

In the MDP model, the agent chooses to perform an action
At with the maximum potential reward according to the
current state St, obtains an immediate reward Rt after per-
forming the action, and enters a new state Stþ1 in the next
time. Therefore, we define VNM as a quadruple < St;At;
Stþ1; Rt > .

The VNM environment information is complex, includ-
ing workload, communication relationships, and distribu-
tion. Especially in large-scale networks, it is difficult to use
all these information for model calculation. We define the
state with node information Sn

t and link information Sl
t. S

n
t

includes the remaining CPU resources of each physical
node, required CPU resources, and the location of each vir-
tual node. Sl

t includes the remaining bandwidth of each
physical link, and the required bandwidth of each virtual

link. Therefore, the state at time t is represented as a one-
dimensional vector:

St ¼ Sn
t ; S

l
t

� �
; (9)

where Sn
t and Sl

t are defined as follows:

Sn
t ¼ ns

i :rcðtÞ; nv
j :cðtÞ; nv

j :locðtÞj8ns
i 2 Ns; 8nv

j 2 Nv
h i

;

Sl
t ¼ lsi;j:rbðtÞ; lvm;n:bðtÞj8lsi;j 2 Ls; 8lvm;n 2 Lv

h i
: : (10)

8><
>:

In the VNM problem, when the number of virtual nodes
to be migrated is not limited, there are jNsjjNvj discrete
actions for selection each time. When both jNsj and jNvj are
large, it is almost practically impossible to make migration
decisions in such a considerable action space. In order to
reduce the action space, instead of no limit on the number
of virtual nodes to be migrated, we choose to migrate one
virtual node as an action. Then, the action space will become
jNsj � jNvj. In this way, we can significantly reduce the
dimensionality of the action space to speed up training. The
information in action includes the source host, the target
host, the virtual node to be migrated, as expressed below:

At ¼ ns
src; n

s
tar; n

v
migjns

src; n
s
tar 2 Ns; nv

mig 2 Nv
h i

: (11)

The goal of reinforcement learning is to get the most sig-
nificant reward for the agent after performing the action.
Our research problem is to get the least total cost after the
agent performs the migration action. Therefore, the immedi-
ate reward function can be set to the negative sum of the
immediate cost so that the maximum cumulative reward
represents the minimal total system costs, as shown below:

Rt ¼ � a � ceðtÞ þ b � ccðtÞ þ u � csðtÞ þ z � cmðtÞð Þ; (12)

where the imdmediate cost of energy ce, communication cc,
SLAV cs, and migration cm are defined as follows:

ceðtÞ ¼
P Nsj j

i¼1 eiðtÞ; ccðtÞ ¼
P Nsj j

i¼1
P Nsj j

j¼1 lsi;j:ubðtÞ;
csðtÞ ¼ ccpus ðtÞ þ cbds ðtÞ; cmðtÞ ¼

P
nv2MðtÞ n

v:mðtÞ:

(
(13)

4.2 DDQN-Based Virtual Network Migration
Algorithm

This section proposes the MiOvnm algorithm to achieve the
multi-objective VNM method based on the DDQN
model [14]. Our MiOvnm algorithm contains two deep neu-
ral networks (DNNs), the primary Q network and the target
Q network. The former generates the Q value for each
action, and the latter generates the Q value used to train the
primary Q network. The specific definition is as follows:

1) The primary Q network, which takes the current
state st and the action at as input, can obtain poten-
tial reward (i.e., Q value) for each action. We define
the primary Q network as QvðS;AÞ.

2) The target Q network, which is used to train the pri-
mary Q network, periodically copies model parame-
ters from the primary Q network. We define the
target Q network as Q0v0 ðS;AÞ, from which we

Fig. 3. Learning scheme of the proposed algorithm.

WANG ETAL.: MULTI-OBJECTIVE VIRTUAL NETWORK MIGRATION ALGORITHM BASED ON REINFORCEMENT LEARNING 2045

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on April 05,2024 at 22:33:50 UTC from IEEE Xplore. Restrictions apply.

calculate the potential rewards of atþ1 and stþ1,
namely Q0v0 ðstþ1; atþ1Þ.

We usually use the experience replay method to train the
primary Q network. We store the quadruple <
st; at; stþ1; rt > generated during the training process in
replay memory and then randomly extract empirical data to
train the network model parameters. We define the loss
function of the primary Q network with the mean square
error function ((14)).

J vð Þ ¼ E yt �Qv st; atð Þð Þ2
h i

; (14)

where Qvðst; atÞ is the potential reward of Q network ((15)).
The yt is the target Q value ((16)), where g 2 ½0; 1� is the dis-
count rate.

Qv st; atð Þ ¼ E rt þ g �Qv stþ1; atþ1ð Þ½ �; (15)

yt ¼ rt þ g �Q0v0 ðstþ1; argmax
a

Qvðstþ1; aÞÞ: (16)

With a random mini-batch experience from replay mem-
ory < st; at; stþ1; rt > , ðt 2 f1; . . . ; XgÞ, the parameter v is
updated through gradient as Equation (17). The parameter
v of the primary Q network is copied periodically to target
Q network v0.

5vJ vð Þ ¼ E 2 yt �Qv st; atð Þð Þ 5v Qv st; atð Þ½ �: (17)

At each specific training step, v is updated as follows:

v ¼ v� aQ

X
�
XX
t¼1

2 yt �Qv st; atð Þð Þ 5v Qv st; atð Þ½ �; (18)

where aQ is the learning rate.
We have designed the MiOvnm algorithm to determine

migration actions. Due to the vast and discrete state and
action space in large-scale networks, it is practically infeasi-
ble to traverse all actions to make the best decision. So we
design a method for selecting candidate actions in the next
section. In this way, we can significantly reduce the action
space and improve the model efficiency. The training pro-
cess of the MiOvnm algorithm is shown in algorithm 1.

Algorithm 1.MiOvnm Training Procedure

1: Initialize the primary Q network QvðS;AÞ and target Q net-
work Q0v0 ðS;AÞ;

2: Alist ? , create replay;
3: for each episode do
4: for each i 2 ½1;K� do
5: Initialize the environment and obtain state information;
6: Alist actfilterðGs;GvÞ //Algorithm 3;
7: at argmaxQvðst; a 2 AlistÞ, execute action at;
8: Calculate immediate reward rt ((12)), and observe the

next statestþ1;
9: Store the quadruple < st; at; stþ1; rt > in replay

memory;
10: Sample mini-batch from the replay memory;
11: Update primary Q network based on Equations (17);
12: Update target Q network by copying from primary Q

network periodically;

In each episode, we first obtain the current resource state
information (line 5). For the current state, we obtain a set of
candidate actions Alist (line 6) according to the actfilter
algorithm proposed in the next section and select the action
at with the most significant Q value from Alist (line 7). We
perform at, calculate the immediate reward rt, observe the
next state stþ1, and save the obtained experience quadruple
< st; at; stþ1; rt > to replay memory (lines 8-9). After that,
by randomly sampling the previous experience in the
replay memory, we train the primaryQ network parameters
v (lines 10-11). Finally, we periodically update the target Q
network (line 12).

The training process also faces the exploration-exploita-
tion dilemma. Since the �-greedy strategy can solve this
problem effectively, the �-greedy strategy is used to solve
the exploration-discovery dilemma in the model training
phase (line 7). This step is omitted in our algorithm. We can
select an action randomly from candidate actions with the
probability of � and select the action with the most signifi-
cant Q value of 1� �.

After the MiOvnm model training is completed, it is used
to decides the migration actions (Algorithm 2).We first obtain
the current state information and calculate the immediate
reward rt (lines 3-4). Then, we obtain candidate action set
Alist (line 5) according to the actfilter algorithm for the current
state and select the action at with the most significantQ value
fromAlist (line 6). If rt increases, we consider at an executable
action and complete the migration action (lines 8). Otherwise,
themodel terminates the decision-making process.

Algorithm 2.MiOvnm

1: Alist ? , Rmax �Inf ;
2: while True do
3: Obtain current state information st;
4: Calculate immediate reward rt ((12));
5: Alist actfilterðGs;GvÞ //Algorithm 3;
6: at argmaxQvðst; a 2 AlistÞ;
7: if rt > Rmax then
8: Execute action at;
9: Rmax rt;
10: else
11: break;

4.3 Action Filter Algorithm

In a large-scale cloud environment, even if we have adopted
the scheme to migrate a single virtual node as an action, the
discrete action space is still huge (i.e., jNvj � jNsj), and the
training speed is languid. We propose a heuristic action
selection algorithm to obtain a candidate action set. Under
each system state, numerous actions are meaningless. For
example, if the source physical node is the target physical
node or the virtual node migrates from a normal physical
node to an overutilized one, the ideal agent should abandon
these evil actions. Therefore, we have designed a heuristic
algorithm named actfilter for the agent to filter the original
action space. This will reduce the action space and conse-
quently speed up the training process.

The goal of actfilter (Algorithm 3) is to select a set of
actions that may reduce one or more types of costs and then

2046 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on April 05,2024 at 22:33:50 UTC from IEEE Xplore. Restrictions apply.

use the neural network to select the action with the most sig-
nificant cost reduction among these actions. As mentioned
in Equation (8), the four costs are conflicting in nature. So
we cannot find actions to minimize all of them simulta-
neously. The actfilter starts from optimizing a single objec-
tive and selects a series of actions that will not excessively
drag down other costs.

Algorithm 3. Actfilter

Input: Gs, Gv;
Output: candidate action set Alist;
1: Alist; Ae; Ac; A

s
cpu; A

s
bd ? ;

2: Get the physical node ns with the lowest CPU utilization;
3: Get the virtual node nv on ns with the smallest nv:mðtÞ

nv:cðtÞ value;
4: for each ns

i 2 Ns do
5: if jns

i :vðtÞj < ns
i :n then

6: add < ns; ns
i ; n

v > to Ae;

7: Get virtual link lvm;n with the highest communication cost,
where nv

m:mðtÞ < nv
n:mðtÞ;

8: for each ns
i 2 Ns do

9: if Pnvn:locðtÞ;nsi < lvm;n:pðtÞ AND jns
i :vðtÞj < ns

i :n then

10: add < nv
m:locðtÞ; ns

i ; n
v
m > to Ac;

11: for each ns
i 2 Ns do

12: if ns
i :rcðtÞ ¼ 0 then

13: Get virtual node nv 2 ns
i :vðtÞwith smallest nv:mðtÞ

nv:cðtÞ value;
14: for each ns

j 2 Ns do
15: if ns

j:ucðtÞ þ nv:rcðtÞ < ns
j:tcðtÞ AND jns

j:vðtÞj < ns
j:n

then
16: add < ns

i ; n
s
j ; n

v > to As
cpu;

17: for each lsi;j 2 Ls do
18: if lsi;j:rbðtÞ ¼ 0 then

19: Get each virtual link lvm;n spanning over lsi;j and find the

virtual node nv
m with smallest

nvm:mðtÞ
lvm;n:bðtÞ value;

20: for each ns
k 2 Ns do

21: if psn;k:ubðtÞ þ lvm;n:bðtÞ < psn;k:tbðtÞ AND jns
k:vðtÞj <

ns
k:n then

22: add < nv
m:locðtÞ; ns

k; n
v
m > to As

bd;

23: Add each action in Ae [Ac [As
cpu [As

bd to Alistwith proba-
bility 1ffiffiffiffiffiffiffi

jNsj
p ;

24: return Alist;

First, we select candidate action set Ae for energy optimi-
zation (lines 2-6). Since running a physical host consumes
energy, we try to migrate the virtual nodes on the physical
host when the physical host utilizes only a few resources.
The physical node can be finally shut down, saving energy.
We choose the physical host with the lowest CPU utilization
as the source host and select the virtual node nv with the
smallest nv:mðtÞ

nv:cðtÞ ratio as the virtual node to be migrated, con-
sidering migration cost. Without reaching the maximum
number of virtual nodes, we select under-used hosts as tar-
get hosts. Add these actions to the candidate action set Ae.
The size of the action set Ae is less than jNsj � 1.

Then, we select candidate action set Ac for communica-
tion optimization (lines 7-10). For a pair of virtual nodes
that possess large communication requests with each other,
we can migrate one of the virtual nodes to the physical host
where the other virtual node is located or to a physical host

closer to the other virtual node to reduce communication
costs. We select the virtual link lvm;n with the highest com-
munication cost (line 7), i.e., lvm;n:bðtÞ � lvm;n:pðtÞ. Considering
migration cost, we choose the virtual node (assuming nv

m)
with the smallest nv

m:mðtÞ as the virtual node to be migrated.
Consequently, the physical host nv

m:locðtÞ is the source host.
We choose the under-used hosts that make the communica-
tion path between nv

m and nv
n shorter as the target host and

add these actions to the candidate action set Ac. The size of
action set Ac is less than jNsj � 1.

Next, we select candidate action set As
cpu for computation

SLAV optimization (lines 11-16). When the CPU utilization
of all virtual nodes on the physical host exceeds the host
capacity, the physical node cannot provide enough compu-
tation resources for each VM, resulting in the computation
SLAV Ccpu

s . If virtual nodes in these physical hosts are
migrated out, Ccpu

s will be reduced. Therefore, we choose
the over-utilized physical hosts as the source hosts. Consid-
ering migration cost, we select the virtual node nv with the

smallest nv:mðtÞ
nv:cðtÞ ratio in each source host as the virtual node

to be migrated. We select the under-used host with ade-
quate resources to run the virtual node as the target host
and add these actions to the candidate action set As

cpu. The
size of the action set As

cpu is less than jNsj � 1.
Last, we select candidate action set As

bd for network SLAV
optimization (lines 17-22). When the network resources of a
physical link are over-utilized, the physical link cannot pro-
vide sufficient bandwidth for virtual links, resulting in net-
work SLAV Cbd

s . Each over-utilized physical link lsi;j is
responsible for the communication of each virtual link lvm;n

in lsi;j:lðtÞ. If the virtual nodes communicating through these
physical links are migrated, the communication path will
also change, reducing the Cbd

s . When selecting virtual nodes
to be migrated, we get all virtual nodes (take nv

m as an exam-

ple) connected to these virtual links, calculate
nvm:mðtÞ
lvm;n:bðtÞ value,

and select the virtual node with the smallest value as the
virtual node to be migrated (assuming nv

m). The physical
host nv

m:locðtÞ is the source host. We select the under-used
host that can provide sufficient bandwidth resource for the
virtual link lvm;n as the target host, and add these actions to
the candidate action set As

bd. The size of the action set As
bd is

less than jNsj � 1.
In order to further reduce the action space, we put each

action into the final candidate action set Alist with a proba-
bility of 1ffiffiffiffiffiffiffi

jNsj
p (line 23). The time complexity quantities of the

above four action selection processes are OðjNsjÞ, OðjLvj þ
jNsjÞ, OðjNsj2Þ, and OðjLsj � jNsjÞ, respectively. Thus, the
time complexity of Algorithm 3 is OðjLvj þ jNsj2 þ jLsj�
jNsjÞ.

4.4 Mathematical Analysis

The proposed algorithm applies DDQN to calculate the Q
values for migration actions in the jNvjjNsj-size discrete
action space and select an action with the most significant Q
value. The training speed is languid in large-scale cloud
environments. With the action filter, the agent reduces the
action space. The total size of the candidate action sets Ae,
Ac, A

s
cpu, and As

bd is smaller than 4 � jNsj � 4, indicating that
the ”bad” migration size is greater than jNvj � jNsj � 4 �

WANG ETAL.: MULTI-OBJECTIVE VIRTUAL NETWORK MIGRATION ALGORITHM BASED ON REINFORCEMENT LEARNING 2047

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on April 05,2024 at 22:33:50 UTC from IEEE Xplore. Restrictions apply.

jNsj þ 4. Considering the selection probability of 1ffiffiffiffiffiffiffi
jNsj
p , the

actfilter can speed up the training process via reducing

action space from jNvj � jNsj to less than 4�jNsj�4ffiffiffiffiffiffiffi
jNsj
p . Further-

more, the proposed method provides a performance guar-
antee to make a migration decision that can reduce one or
more types of costs.

5 EXPERIMENTAL EVALUATION

In order to verify the performance of our migration strategy
in terms of multiple aspects, including the energy cost, com-
munication cost, migration cost, SLAV, and total cost, we
conduct simulation experiments. We choose to compare
with three existing migration strategies in the simulation
experiment. To verify the generalizability of the proposed
MiOvnm, we design static and dynamic simulation experi-
ments, where the VN state information stays constant in
static simulation while the VN state information changes
dynamically in dynamic simulation.

Furthermore, we conduct a real-world OpenStack experi-
ment to verify the migration performance of MiOvnm.

5.1 Experimental Setup

5.1.1 Simulation Experimental Setup

In the small-scale experiment, the numbers of physical
nodes and links are 10 and 20, respectively, while the num-
bers of virtual nodes and links are 50 and 100, respectively.
In the medium-scale experiment, the numbers of physical
nodes and links are 200 and 800, respectively, while the
numbers of virtual nodes and links are 1000 and 2000,
respectively. In the large-scale experiment, the numbers of
physical nodes and links are 1000 and 2000, respectively,
while the numbers of virtual nodes and links are 5000 and
10000, respectively The maximum number of virtual nodes
on a host is set at 50. Both PNs and VNs are generated with
BRITE [36]. Physical node resources and link resources are
randomly generated through normal distribution. The CPU
resource of each physical node obeys a normal distribution
with a mean of 120 and a variance of 20. The bandwidth
resource of each physical link obeys a normal distribution
with a mean of 150 and a variance of 20.

Each virtual node includes CPU resources and memory
resources, and each virtual link includes bandwidth resour-
ces. In the experimental VNs, to simulate the dynamic
workloads in the cloud center environment more realisti-
cally, we select the Alibaba Cluster Data1 open-sourced by
Alibaba in 2017 as the experimental data set. The cluster-
trace-v2017 contains CPU, memory, and other resources’
changing information of 1313 machines and 11275 tasks in
the 12 hours. Each task’s current CPU request amount and
memory request amount are recorded every 5 minutes. We
randomly choose a resource state for 5 minutes as an experi-
mental environment in the static simulation. While in
dynamic simulation experiments, we choose resource infor-
mation as the resource variation of each virtual node during
the experiment and update each virtual node’s CPU and
memory resources every 5 minutes for 20 times.

In order to fully illustrate the performance of our
MiOvnm, we compare with the following three algorithms.

1) VMCUP-M algorithm [18] is a dynamic migration
algorithm based on prediction. The core idea is to
determine the source host by predicting the resource
usage in the next six moments, selecting the virtual
node to be migrated, and finding the target host to
avoid frequent migration of virtual nodes.

2) DRAUVM algorithm [15] is based on exponentially
weighted moving average parameters. The algo-
rithm introduces the concept of resource skewness
to measure the unevenness of server resource utiliza-
tion. It uses skewness to determine the target host for
migration. Thereby resource allocation is more even.

3) NSGA-II algorithm [37], as the static genetic-based
solution for multi-objective optimization, stratifies
the population through non-dominated sort, retains
the excellent individuals to the offspring, and contin-
uously selects and iterates the excellent offspring,
wherein the mapping of each virtual node acts as the
encoding method.

5.1.2 OpenStack Experimental Setup

We use the open-source cloud service platform OpenStack
as the real-world experimental platform in this study. The
platform framework is shown in Fig. 4. Each server pos-
sesses two Intel(R) Xeon(R) Silver 4116 processors, provid-
ing 128GB of memory and a disk size of 3.3TB. A measured
network environment of approximately 300Mbps for each
host. The operating system is Centos-release-7-5 x86_64. We
use a VN composed of VMs to verify the proposed migra-
tion algorithm. The nova service in the framework is a proj-
ect where KVM is deployed, and each node has a vCPU
quota of 192. The maximum number of instances on a host
is set to 50. The platform includes five nova computing
nodes and a switch (the controller node is omitted in Fig. 4).
Each nova node has two network interface controllers
(NICs) in this architecture. One, named tunnel-nic, provides
the tunnel network used for communication between VMs;
and the other, named manage-nic, is used for management,
including VM migration. In addition, we set the coefficients
a ¼ b ¼ z ¼ 1 and u ¼ 5, indicating the optimization objec-
tives of our cloud platform.

We designed the VN in Fig. 5, used to verify and analyze
the migration performance of the MiOvnm algorithm on the
real-world platform. We deployed a VN with 100 VMs on
the OpenStack platform, and the initial vCPU, memory, and
disk configurations were 1, 2GB, and 40GB, respectively.

Fig. 4. The OpenStack-base physical network framework.

1. https://github.com/alibaba/clusterdata

2048 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on April 05,2024 at 22:33:50 UTC from IEEE Xplore. Restrictions apply.

The memory and disk resources of each host are sufficient
in general. We evaluate the performance with DaCapo [38]
benchmarks on each VM and select computation-intensive
benchmarks (including h2, eclipse, avrora, jython, sunflow,
lusearch, lusearch-fix, pmd, luindex, batik, fop, xalan). Dur-
ing the experiment, we package these programs together
and execute them sequentially. In addition, we also choose
a network-intensive test, setting 20 VMs (VM1-VM20) as
FTP servers, while the remaining VMs (VM21-VM100) ran-
domly extract fixed-size files from the FTP server document.
We set the bandwidth requirement of each virtual node to
be proportional to the size of the file to be transmitted,
10Mbps for each 1GB file. We set the migration scheduling
period in the platform to 30 minutes (not including the
migration process time). Let the workload of the VM also
change every 30 minutes to evaluate the program execution
performance and resource usage.

5.2 Pre-Training Process and Parameter Setting

Before training, we set training data regarding VNs and
PNs, where each PN is set the same as experimental PNs.
Each VN shares the same topology structure as experimen-
tal VNs. The CPU and memory of each virtual node obey
normal distributions with a mean of 10 and a variance of 3,
and with a mean value of 5 and a variance of 2, respectively.
Moreover, the bandwidth of each virtual link obeys a nor-
mal distribution with a mean value of 10 and a variance of 3.

The training processes for small-scale, medium-scale,
large-scale, and OpenStack experiments are performed
according to algorithm 1, where both small-scale and Open-
Stack experiments experience 10,000 episodes, medium-
and large-scale experiments experience 30,000 episodes.
The Q networks’ input layer is a jNsj þ 2jNvj þ jLsj þ jLvj þ
3 dimensional vector, and the output layer is a one-dimen-
sional vector. In the small-scale simulation and the Open-
Stack experiments, we apply a four-layer fully connected
network as the structure of the DNN, wherein the two hid-
den layers have 128 and 16 dimensions. In the medium- and
large-scale simulation experiments, a five-layer fully con-
nected network is used as the structure of the DNN,
wherein the three hidden layers have dimensions of 1024,
128, and 16, respectively. All networks use the Relu function
as the activation function. During the training process, the �
value in the �-greedy strategy is 0.2, and the Adam opti-
mizer is used to update the neural network parameters.
Generally, the discount factor g ranges from 0 to 1. The
larger the g is, the broader the algorithm’s vision on global
optimization; the smaller the g is, the more the algorithm
focuses on the current performance [39]. Here, we suggest
g ¼ 0:9 to attain a broader vision of global optimization in

the proposed algorithm. As for the learning rate aQ, which
is generally set at a small value (such as value from 10�6 to
10�1), based on the observation in numerous experiments,
we find that the MiOvnm attains better performance during
the training process when aQ ¼ 10�3.

5.3 MiOvnm Analysis

We analyze the MiOvnm in terms of efficiency and perfor-
mance and present each migration step in a small-scale
dynamic experiment (where a ¼ b ¼ u ¼ z ¼ 1). We train a
MiOvnm model with and without actfilter for 10 hours (h),
respectively. The MiOvnm trains for 53219 episodes when it
runs with actfilter while only 1705 episodes for no actfilter.
Additionally, we train a MiOvnm model with actfilter for
1705 episodes, of which the completion time is only 1180
seconds (s). These results indicate that actfilter improves the
efficiency of MiOvnm significantly. We compare the trained
models in a small-scale dynamic experiment.

Fig. 6 presents the comparison results. The MiOvnmwith
actfilter achieves smaller energy, communication, and
SLAV costs. For the total cost, the MiOvnm with actfilter
shows 13.06% and 5.65% less cost than the MiOvnmwithout
actfilter. The comparison between ”with (1180s, 1705 epi-
sodes)” and ”without (10h, 1705 episodes)” indicates that
actfilter helps MiOvnm make better decisions when the
early agent learns relatively little information.

We also present the relation between immediate cost and
migration steps under the ”with (10h, 53219 episodes)” situ-
ation (Fig. 7). The immediate cost is the negative of the
immediate reward (i.e., �Rt). As stated in Section 5.1.1, the
VN experiences 20-time resource variation stages during
the experiment. Empty results (such as Figs. 7f, 7g, 7h, 7m,
7p, 7q, 7s, and 7t) mean that our MiOvnm decides not to
migrate. While the other results present that our MiOvnm
chooses migration actions that reduce immediate cost. The
experimental results indicate that the proposed MiOvnm
always makes the migration decisions that reduce the
immediate cost, achieving the overall optimization of multi-
ple VNM objectives.

5.4 Small-Scale Static Simulation

In a small-scale static simulation experiment, we evaluate
the performance of MiOvnm under a ¼ b ¼ u ¼ z ¼ 1.

Fig. 8 presents the results of MiOvnm and the compari-
son algorithms. According to the results, the MiOvnm
achieves optimal SLAV and total cost. In total cost result
(Fig. 8e), the MiOvnm presents 6.30%, 9.22%, and 15.52%
less cost than NSGA-II, DRAUVM, and VMCUP-M,

Fig. 5. The FTP-base virtual network topology.

Fig. 6. Comparison between three MiOvnm models.

WANG ETAL.: MULTI-OBJECTIVE VIRTUAL NETWORK MIGRATION ALGORITHM BASED ON REINFORCEMENT LEARNING 2049

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on April 05,2024 at 22:33:50 UTC from IEEE Xplore. Restrictions apply.

respectively. In terms of SLAV overhead (Fig. 8c), the
MiOvnm algorithm is 10.04%, 22.03%, and 35.99% less than
the NSGA-II, DRAUVM, and VMCUP-M, respectively. The
NSGA-II presents more SLAV and migration costs to reduce
communication consumption, whereas NSGA-II presents
90.10% and 10.04% higher than MiOvnm in migration and
SLAV overhead. Furthermore, the MiOvnm presents nearly
the exact energy cost as NSGA-II and DRAUVM, while
8.81% worse than the VMCUP-M (Fig. 8a). However, the
VMCUP-M results in more SLAV and communication costs
to reduce energy and migration overhead, resulting in a
higher total cost.

Compared with three benchmark algorithms, MiOvnm
reduces the total cost by the average rate of 10.35%, with

SLAV cost reduced by 22.68% on average. The results verify
that the MiOvnm can improve static VNM evaluation
performance.

5.5 Small-Scale Dynamic Simulation

The NSGA-II needs to repeat the time-consuming genetic-
mutation process for the new network state to find an opti-
mal individual when VN state information changes in a
small-scale dynamic simulation experiment. By numerous
attempts, the time-consuming computation processes reveal
that NSGA-II is challenging to tackle the situation in which
the VN state information changes dynamically. Therefore,
the NSGA-II is absent in the dynamic simulation evalua-
tions. In this section, we set z ¼ 1 and demonstrate the per-
formance of MiOvnm under different a, b, and u values.

We first take different a values, indicating different
weights are given to the energy optimization. Fig. 9 presents
the results of MiOvnm and the comparison algorithms. The
MiOvnm achieves smaller costs in energy, communication,
and SLAV. In total cost result (Fig. 9e), when a takes
f0:5; 1; 2; 4g, the MiOvnm presents 15.42%, 12.90%, 15.45%,
38.92% less cost than DRAUVM, and 18.26% 19.33% 7.11%
21.51% lower than VMCUP-M. In energy cost result
(Fig. 9a), when a changes in f0:5; 1; 2; 4g, the energy cost of
our MiOvnm performs 6.64%, 4.92%, 11.51%, 21.18%
smaller than DRAUVM, and 8.52%, 4.65%, 10.78%, 14.23%
smaller than VMCUP-M. With the weight (i.e., a) of energy
cost in the reward function increasing, our MiOvnm
reduces energy consumption during decision-making to
obtain lower energy costs. In terms of communication cost
(Fig. 9d), the MiOvnm presents 16.29% and 11.42% less than
the DRAUVM and VMCUP-M on average, respectively. In
terms of the SLAV (Fig. 9c), the MiOvnm result is 28.05%
and 21.81% less than the DRAUVM and VMCUP-M on
average, respectively.

Fig. 10 presents the results of our MiOvnm and two com-
parison algorithms under different b values, indicating differ-
ent weights are given to the communication optimization.
The MiOvnm can achieve better energy, communication
SLAV, and total costs. In terms of total cost, when b changes
in f0:5; 1; 2; 4g, the MiOvnm result is 21.51%, 12.90%, 18.12%,
19.47% lower than the DRAUVM, and 10.87%, 19.33%,
24.23%, 34.39% lower than the VMCUP-M.When b takes val-
ues in f0:5; 1; 2; 4g, the MiOvnm can achieve better results in
communication cost, presenting 18.34%, 11.68%, 12.04%,
22.90% less costs than DRAUVM, and 8.53%, 11.87%, 13.56%,

Fig. 7. Relation between immediate cost and migration step under the
”with (10h, 53219 episodes)” situation.

Fig. 8. Cost comparison in small-scale static simulation.

Fig. 9. Cost comparison under different energy parameters in small-
scale dynamic simulation.

2050 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on April 05,2024 at 22:33:50 UTC from IEEE Xplore. Restrictions apply.

12.91% less than that of VMCUP-M. Except for the compari-
son with DRAUVMunder b ¼ 0:5 and VMCUP-M under b ¼
4, the rest is consistent with the fact that our MiOvnm can
reduce more communication costs with the increase of b.
Since the communication cost and the network SLAV possess
a specific correlation, the action that reduces the communica-
tion costmay also reduce the network SLAV, so the SLAV can
also achieve better results with the increase of b. Similar to
experiments with different a, the migration cost takes more
thanDRAUVMandVMCUP-M becausemore decisions need
to be made to reduce the communication cost and network
SLAV. In terms of energy consumption, the MiOvnm is
12.81% and 11.11% less than the DRAUVM and VMCUP-M
on average, respectively. In terms of SLAV, theMiOvnmalgo-
rithm is 16.95% and 36.21% less than the DRAUVM and
VMCUP-Mon average, respectively.

Fig. 11 shows the results when u takes different values.
That is, different weights are given to SLAV in the reward
function. The MiOvnm achieves better results than two
comparison algorithms in energy cost, communication cost,
and SLAV. In total cost (Fig. 11a), with u value increasing in
f0:5; 1; 2; 4g, our MiOvnm can often achieve better results,
presenting 5.29%, 12.90%, 44.26%, 19.16% less cost than the
DRAUVM, and 15.66%, 19.33%, 32.34%, 41.94% lower than
the VMCUP-M. When u increases, the MiOvnm considers
more decisions to reduce SLAV, reducing by -2.24%,
15.41%, 52.29%, 20.08% compared to the DRAUVM, and
24.36%, 25.31%, 40.20%, 46.72% than VMCUP-M. The
MiOvnm will produce higher migration overhead under
different u. Since the MiOvnm considers the energy cost and
computation SLAV in the VMCUP-M and DRAUVM algo-
rithms, communication cost, and network SLAV, the

MiOvnm needs to make more migration decisions than the
other two algorithms to reduce communication cost and
network SLAV. Furthermore, the additional migration cost
in MiOvnm is less than the reduced communication cost
and SLAV, thereby achieving better results in total cost. In
terms of energy consumption, the MiOvnm is 12.44% and
9.47% less than the DRAUVM and VMCUP-M on average,
respectively. The communication cost of MiOvnm is 15.67%
and 10.81% less than that of the DRAUVM and VMCUP-M.
These results show that the MiOvnm also reduces energy
and communication costs under different u values.

Based on the above experimental results, we can con-
clude that the MiOvnm can achieve less cost than two com-
parison algorithms in terms of energy cost, communication
cost, and SLAV in small-scale experiments. Compared with
the comparison algorithms, MiOvnm reduces the SLAV,
communication cost, and energy cost by 26.43%, 13.69%,
and 11.07% on average, respectively, with total cost reduced
by 20.86% on average. The results demonstrate superiority
of the MiOvnm in multi-objective VNM optimization.
Although the migration costs are higher than the compari-
son algorithms, the MiOvnm can achieve the slightest
results in the total cost. Furthermore, with different parame-
ters in the reward function, the MiOvnm adapts the migra-
tion decision to align the resource allocation to different
objectives.

5.6 Medium-Scale Dynamic Simulation

In medium-scale experiments, we also set z ¼ 1 and evalu-
ate the performance of MiOvnm under different a, b, and u

values in the reward function.
According to the results (Fig. 12), the MiOvnm achieves

optimal migration cost, communication cost, SLAV, and
total cost. In terms of total cost (Fig. 12e), when a takes
f0:5; 1; 2; 4g, the MiOvnm presents 8.07%, 6.24%, 12.49%,
5.74% less than the DRAUVM, and 15.86%, 12.75%, 10.69%,
5.25% less than the VMCUP-M. Regarding energy cost
(Fig. 12a), MiOvnm is the same as DRAUVM, while 7.35%
worse than the VMCUP-M on average. However, the
VMCUP-M presents more SLAV to reduce energy con-
sumption, resulting in a higher total cost. In terms of migra-
tion cost (Fig. 12b), the MiOvnm is 64.88% and 45.67% less
than the DRAUVM and VMCUP-M on average, respec-
tively. Regarding communication cost (Fig. 12d), the
MiOvnm is 5.52% and 4.24% less than the DRAUVM and
VMCUP-M on average, respectively. In terms of SLAV

Fig. 11. Cost comparison under different SLAV parameters in small-
scale dynamic simulation.

Fig. 12. Cost comparison under different energy parameters in medium-
scale dynamic simulation.

Fig. 10. Cost comparison under different communication parameter in
small-scale dynamic simulation.

WANG ETAL.: MULTI-OBJECTIVE VIRTUAL NETWORK MIGRATION ALGORITHM BASED ON REINFORCEMENT LEARNING 2051

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on April 05,2024 at 22:33:50 UTC from IEEE Xplore. Restrictions apply.

(Fig. 12c), the MiOvnm is 16.32% and 27.27% less than the
DRAUVM and VMCUP-M on average, respectively.

Fig. 13 shows the results of the MiOvnm and two com-
parison algorithms when the parameter b takes different
values in f0:5; 1; 2; 4g, indicating different weights are given
to the communication optimization. According to the
results, the MiOvnm achieves optimal migration cost, com-
munication cost, SLAV, and total cost. In terms of the total
cost, when b changes in f0:5; 1; 2; 4g, the MiOvnm possesses
stable improvements compared to the DRAUVM and
VMCUP-M, presenting 11.06%, 6.24%, 5.62%, 6.12% less
cost than the DRAUVM, and 20.11%, 12.75%, 8.58%, 10.23%
less than the VMCUP-M. Regarding energy cost, MiOvnm
is similar to that of the DRAUVM but worse than the
VMCUP-M. However, the VMCUP-M causes more SLAV to
reduce energy cost, resulting in a large gap between the
VMCUP-M and the MiOvnm regarding the total cost. In
terms of migration cost, the MiOvnm is 67.93% and 37.16%
less than the DRAUVM and VMCUP-M on average, respec-
tively. In the medium-scale evaluation environment, the
migrations of virtual nodes can make link state change sig-
nificantly. When an action reduces a specific cost, it may
lead to the increase of other costs. Therefore, our MiOvnm
reduces many migration actions to reduce the total cost. In
terms of SLAV, the MiOvnm is 12.06% and 31.70% lower
than the DRAUVM and the VMCUP-M on average, respec-
tively. In terms of communication cost, MiOvnm is 1.94%,
9.38%, 7.49%, 4.76% less than DRAUVM, and 0.48%, 6.94%,
5.01%, 3.20% less than VMCUP-M.

Fig. 14 shows the results of the MiOvnm and the compar-
ison algorithms when different u weights are assigned to the
SLAV optimization. According to the results, the MiOvnm

also achieves optimal migration cost, communication cost,
SLAV, and total cost. In terms of total cost, when u takes
f0:5; 1; 2; 4g, the MiOvnm presents 7.03%, 6.24%, 13.25%,
9.64% less than the DRAUVM, and 5.51%, 12.75%, 19.09%,
32.49% less than the VMCUP-M. Similar to the previous
results in energy cost, the MiOvnm shows similar results to
the DRAUVM but worse than the VMCUP-M. The
VMCUP-M performs worse in the total cost, proving the
VMCUP-M optimizes the energy cost while ignoring the
impact of other costs. In terms of migration cost, the
MiOvnm is 75.95% and 60.18% less than the DRAUVM and
VMCUP-M on average, proving that our MiOvnm reduces
many migration actions to obtain a continuous reduction of
the total cost. In terms of communication cost, the MiOvnm
is 7.02% and 4.06% less than the DRAUVM and VMCUP-M
on average, respectively. In terms of SLAV, when u takes
f0:5; 1; 2; 4g, the MiOvnm is 4.40%, 5.64%, 18.27%, 14.53%
less than the DRAUVM, and 16.81%, 23.08%, 29.18%,
44.27% less than the VMCUP-M. With the SLAV parameter
u increasing, the MiOvnm can can significantly reduce
SLAV.

Based on the above experimental results, we can con-
clude that the MiOvnm can achieve the best results in
migration, communication, SLAV, and total cost in
medium-scale experiments. Compared with two compari-
son algorithms, MiOvnm reduces the SLAV, communica-
tion cost, and migration cost by average rates of 21.07%,
5.11%, and 58.63%, respectively, with total cost reduced by
10.99% on average. Regarding energy cost, the MiOvnm
presents close results to the DRAUVM, while slightly larger
than the VMCUP-M. However, the VMCUP-M sacrifices
more SLAV to reduce the energy cost, increasing the total
cost. When the weight of the SLAV parameter u changes,
the MiOvnm makes different decisions. The larger the
weight u, the smaller the SLAV. However, the energy cost
parameter a has little effect on the migration result. In
medium-scale evaluation, the migration actions affect com-
munication cost and SLAV significantly but have less
impact on energy cost. The results of VMCUP-M verify that
migration actions that try to reduce energy costs may signif-
icantly increase SLAV. In comparison, our MiOvnm tries to
avoid numerous actions to reduce energy consumption due
to the consideration of multiple objectives.

5.7 Large-Scale Dynamic Simulation

In a large-scale experiment, we evaluate the performance of
MiOvnm under a ¼ b ¼ u ¼ z ¼ 1 situation. Fig. 15 presents
the results of MiOvnm and the comparison algorithms.

Fig. 13. Cost comparison under different communication parameters in
medium-scale dynamic simulation.

Fig. 14. Cost comparison under different SLAV parameters in medium-
scale dynamic simulation.

Fig. 15. Cost comparison in large-scale dynamic simulation.

2052 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on April 05,2024 at 22:33:50 UTC from IEEE Xplore. Restrictions apply.

According to the results, the MiOvnm achieves optimal
migration cost, SLAV, and total cost. In total cost (Fig. 15e),
the MiOvnm presents 6.86% and 8.36% less cost than
DRAUVM and VMCUP-M. In terms of energy cost
(Fig. 15a), MiOvnm presents slightly less than DRAUVM,
while 7.89% worse than the VMCUP-M. However, the
VMCUP-M presents more SLAV and migration costs to
reduce energy consumption, resulting in a higher total cost.
The MiOvnm performs slightly less than comparison meth-
ods regarding communication cost (Fig. 15d). In terms of
migration cost (Fig. 15b), the MiOvnm is 73.34% and 61.53%
less than the DRAUVM and VMCUP-M, respectively. In
terms of SLAV overhead (Fig. 15c), the MiOvnm is 21.38%
and 32.80% less than the DRAUVM and VMCUP-M,
respectively.

Compared with the two comparison algorithms,
MiOvnm reduces the total cost by the average rate of 7.61%,
with SLAV and migration costs reduced by 27.09% and
67.43% on average, respectively. The results verify that the
MiOvnm can improve performance in large-scale scenarios.

5.8 OpenStack-Based Experiment

The OpenStack-based experiment process is divided into
three stages. Each stage contains 30 minutes after the migra-
tion is completed. The bandwidth requests and the FTP
tasks of the VMs do not change at each stage. While the
CPU requests and computation-intensive benchmarks of
VMs change: i) stage 1, 1vCPU, FTP task; ii) stage 2, 2vCPU,
FTP task, 1-round DaCapo benchmarks; and iii) stage 3,
4vCPU, FTP task, 2-round DaCapo benchmarks. We test the
three stages separately under the default deployment of
OpenStack (called Default) and under MiOvnm migration,
respectively. We observe the tasks’ completion time and
resource usage in each stage, whereas we analyze the migra-
tion cost, SLAV, communication cost, and energy cost.

5.8.1 Migration Cost

Before the test program of the first stage start, we perform a
migration based on our MiOvnm. The virtual nodes are
migrated through the manage-nic NICs in each host. We
obtain the upload and download traffic information during
the migration process (Fig. 16). Before the beginning of the
remaining two phases, no migration occurs according to
our MiOvnm algorithm.

During the VMmigration process, the target hosts receive
the copy-on-write image file and memory data of the VM
from the source host and may also need to receive the origi-
nal backing image from the control node. Therefore, these

five compute nodes’ total upload and download traffic
behave inconsistently. The migration process is complete
throughmanage-nic and does not compete with the commu-
nication tunnel-nicNICs, demonstrating the feasibility of set-
ting a relatively lowmigration parameter in evaluation.

5.8.2 Service Level Agreement Violation

We obtain the completion time of the benchmarks in the
three stages, as shown in table 3.

Compared with the default deployment of OpenStack,
the MiOvnm significantly improves the performance of
VMs, reducing the completion time of the FTP and DaCapo
tasks by average rates of 10.31% and 11.35%, respectively.

In the default deployment of OpenStack, the distribution
of VMs is relatively even. At the same time, the computing
resource requests and workloads of VMs are the same.
Therefore, as the amount of computing resource requests
increases, resource allocation of default deployment is rela-
tively reasonable for VMs. However, default deployment
ignores bandwidth resource allocation and causes VMs to
suffer from bandwidth restrictions, resulting in a relatively
large network SLAV. After our MiOvnm migration process,
communication between VMs can be improved, reducing
competition for PN resources and the completion time of
network-intensive tasks. The experimental results in Table 3
demonstrate that the MiOvnm reduces the FTP task comple-
tion time by an average rate of 10.31% compared with the
default deployment of OpenStack.

In addition, the IO events in the host NIC are reduced by
our MiOvnm migration, which can reduce the waiting time
for responding to IO events and the competition for compu-
tation resources. Figs. 17, 18, and 19 show the CPU resource
usage of each compute node in the three stages. The CPU
resources of the physical hosts in each stage have been
more efficiently used, and the completion time of the com-
puting process is shortened. According to the results in
Table 3, the MiOvnm migration reduces the completion

Fig. 16. Migration traffic through manage-nic of compute nodes.

TABLE 3
Completion Times of Benchmarks in Three Stages

Stage Default (s) MiOvnm (s)

DaCapo FTP DaCapo FTP

1 — 175.460265 — 176.184192
2 694.77783 208.99754 652.5817 189.56458
3 1092.734145 279.1179752 911.0479614 217.5921428

Fig. 17. CPU utilization during the first stage.

WANG ETAL.: MULTI-OBJECTIVE VIRTUAL NETWORK MIGRATION ALGORITHM BASED ON REINFORCEMENT LEARNING 2053

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on April 05,2024 at 22:33:50 UTC from IEEE Xplore. Restrictions apply.

time of the DaCapo benchmarks by 11.35% compared to the
default deployment of OpenStack.

5.8.3 Communication Cost

We obtain the traffic information of the communication tun-
nel-nic NIC of each physical host during the experiment
and accumulate it. The traffic information of the communi-
cation process is shown in Figs. 20, 21, and 22. Firstly,
similar to CPU utilization, the completion time of the net-
work-intensive tasks has been reduced in all stages by
our MiOvnm migration. Secondly, our MiOvnm migration
reduces the traffic size between physical nodes, optimizing
the performance of network tasks and alleviating the con-
gestion in the PN.

5.8.4 Energy Cost

Based on the above results, our MiOvnm migration can fully
use computation resources, which is beneficial for energy
optimization. As for optimizing the number of active comput-
ing nodes, due to the limited size of the PN in this experiment,
it is challenging to release resources in the limited five com-
pute nodes, and energy has not been significantly optimized.

Therefore, we set a relatively low energy parameter (i.e., a) in
the OpenStack experimentalmodel.

5.8.5 Total Cost

Finally, we obtain the total cost for the three stages via our
VNM program, as shown in Fig. 23.

Compared with the default deployment of OpenStack,
the MiOvnm presents 26.02% less total cost, indicating that
our MiOvnm can significantly optimize the overall VNM
performance in terms of multiple objectives.

6 CONCLUSION

This paper has modelled the multi-objective VNM problem
with the consideration of energy cost, communication cost,
migration cost, and SLAV. Then, it has proposed a MiOvnm
algorithm based on deep reinforcement learning, which uses
DNNs to process large-scale network state space and applies
an action selection method called actfilter to deal with large-
scale action space. The MiOvnm finds the migration action
with optimal potential reward from the candidate action set.
We have conducted two types of experiments to verify the
effectiveness of MiOvnm. Then, we have compared the pro-
posed MiOvnm with existing algorithms in the simulation
experiment. Small-, medium- and large-scale simulation
experiments reveal that theMiOvnmperforms better than the
comparison methods. In particular, SLAV and communica-
tion costs are reduced by 24.32% and 4.95% on average,
respectively. The total cost is reduced by 12.45% on average.
Furthermore, the experimental results of the real-world

Fig. 18. CPU utilization during the second stage.

Fig. 19. CPU utilization during the third stage.

Fig. 20. Bandwidth utilization during the first stage.

Fig. 21. Bandwidth utilization during the second stage.

Fig. 22. Bandwidth utilization during the third stage.

Fig. 23. Total cost comparison.

2054 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on April 05,2024 at 22:33:50 UTC from IEEE Xplore. Restrictions apply.

OpenStack show that the MiOvnm migration can make full
use of the computation and network resources of the com-
pute nodes. The completion time of computation- and net-
work-intensive programs is reduced by 11.35% and 10.31%,
respectively, in comparison with the default OpenStack
deployment. The total cost reduction reaches as high as
26.02%.

REFERENCES

[1] B. Shi and H. Shen, “Memory/disk operation aware lightweight
VM live migration across data-centers with low performance
impact,” in Proc. IEEE Conf. Comput. Commun., 2019, pp. 334–342.

[2] R. W. Ahmad, A. Gani, S. H. A. Hamid, M. Shiraz, A. Yousafzai,
and F. Xia, “A survey on virtual machine migration and server
consolidation frameworks for cloud data centers,” J. Netw. Com-
put. Appl., vol. 52, pp. 11–25, 2015.

[3] L. Gao and G. N. Rouskas, “Virtual network reconfiguration with
load balancing and migration cost considerations,” in Proc. IEEE
Conf. Comput. Commun., 2018, pp. 2303–2311.

[4] Z. Tang, X. Zhou, F. Zhang,W. Jia, andW. Zhao, “Migration model-
ing and learning algorithms for containers in fog computing,” IEEE
Trans. Services Comput., vol. 12, no. 5, pp. 712–725, Sep./Oct. 2019.

[5] Z. Zhang, H. Cao, S. Su, and W. Li, “Energy aware virtual network
migration,” IEEE Trans. Cloud Comput., vol. 10, no. 2, pp. 1173–1189,
Apr.–Jun. 2022.

[6] M. Masdari and M. Zangakani, “Green cloud computing using
proactive virtual machine placement: Challenges and issues,”
J. Grid Comput., vol. 18, no. 4, pp. 727–759, 2020.

[7] P. K. Sahoo, C. K. Dehury, and B. Veeravalli, “LVRM: On the
design of efficient link based virtual resource management algo-
rithm for cloud platforms,” IEEE Trans. Parallel Distrib. Syst.,
vol. 29, no. 4, pp. 887–900, Apr. 2017.

[8] H. Wang, Y. Li, Y. Zhang, and D. Jin, “Virtual machine migration
planning in software-defined networks,” IEEE Trans. Cloud Com-
put., vol. 7, no. 4, pp. 1168–1182, Oct.–Dec. 2019.

[9] J. L. Chen, D. Liaqat, M. Gabel, and E. de Lara, “Starlight: Fast con-
tainer provisioning on the edge and over the WAN,” in Proc. 19th
{USENIX} Symp. Netw. Syst. Des. Implementation, 2022, pp. 35–50.

[10] L. Zeno et al., “SwiSh: Distributed shared state abstractions for
programmable switches,” in Proc. 19th {USENIX} Symp. Netw.
Syst. Des. Implementation, 2022, pp. 171–191.

[11] W. Zhang, D. Wang, S. Yu, H. He, and Y. Wang, “Repeatable multi-
dimensional virtual network embedding in cloud service platform,”
IEEE Trans. Services Comput., to be published, doi: 10.1109/
TSC.2021.3102016.

[12] F. Zhang, G. Liu, X. Fu, and R. Yahyapour, “A survey on virtual
machine migration: Challenges, techniques, and open issues,”
IEEE Commun. Surveys Tuts., vol. 20, no. 2, pp. 1206–1243,
Apr.–Jun. 2018.

[13] Z. Han, H. Tan, R. Wang, G. Chen, Y. Li, and F. C. M. Lau,
“Energy-efficient dynamic virtual machine management in data
centers,” IEEE/ACM Trans. Netw., vol. 27, no. 1, pp. 344–360,
Feb. 2019.

[14] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement
learning with double Q-learning,” in Proc. AAAI Conf. Artif. Intell.,
2016, pp. 2094–2100.

[15] Z. Xiao, W. Song, and Q. Chen, “Dynamic resource allocation
using virtual machines for cloud computing environment,” IEEE
Trans. Parallel Distrib. Syst., vol. 24, no. 6, pp. 1107–1117, Jun. 2013.

[16] N. J. Kansal and I. Chana, “Energy-aware virtual machine migra-
tion for cloud computing-a firefly optimization approach,” J. Grid
Comput., vol. 14, no. 2, pp. 327–345, 2016.

[17] F. Tao, C. Li, T.W. Liao, andY. Laili, “BGM-BLA:Anewalgorithm for
dynamic migration of virtual machines in cloud computing,” IEEE
Trans. Services Comput., vol. 9, no. 6, pp. 910–925,Nov./Dec. 2016.

[18] N. T. Hieu, M. Di Francesco, and A. Yl€a-J€a€aski, “Virtual machine
consolidation with multiple usage prediction for energy-efficient
cloud data centers,” IEEE Trans. Services Comput., vol. 13, no. 1,
pp. 186–199, Jan./Feb. 2020.

[19] A. Al-Dulaimy, W. Itani, R. Zantout, and A. Zekri, “Type-aware
virtual machine management for energy efficient cloud data cen-
ters,” Sustain. Comput. Informat. Syst., vol. 19, pp. 185–203, 2018.

[20] J. Sha, A. G. Ebadi, D. Mavaluru, M. Alshehri, O. Alfarraj, and
L. Rajabion, “A method for virtual machine migration in cloud
computing using a collective behavior-based metaheuristics algo-
rithm,” Concurrency Comput. Pract. Experience, vol. 32, no. 2, 2020,
Art. no. e5441.

[21] K. Karthikeyan et al., “Energy consumption analysis of virtual
machine migration in cloud using hybrid swarm optimization
(abc–ba),” J. Supercomput., vol. 76, no. 5, pp. 3374–3390, 2020.

[22] V. Garg and B. Jindal, “Energy efficient virtual machine migration
approach with sla conservation in cloud computing,” J. Central
South Univ., vol. 28, no. 3, pp. 760–770, 2021.

[23] M. I. Khaleel andM.M. Zhu, “Adaptive virtual machine migration
based on performance-to-power ratio in fog-enabled cloud data
centers,” J. Supercomput., vol. 77, no. 10, pp. 11 986–12 025, 2021.

[24] W. Zhang, S. Han, H. He, and H. Chen, “Network-aware virtual
machine migration in an overcommitted cloud,” Future Gener.
Comput. Syst., vol. 76, pp. 428–442, 2017.

[25] W. Xue, W. Li, H. Qi, K. Li, X. Tao, and X. Ji, “Communication-
aware virtual machine migration in cloud data centres,” Int.
J. High Perform. Comput. Netw., vol. 10, no. 4/5, pp. 372–380, 2017.

[26] Y. Cui, Z. Yang, S. Xiao, X. Wang, and S. Yan, “Traffic-aware vir-
tual machine migration in topology-adaptive DCN,” IEEE/ACM
Trans. Netw., vol. 25, no. 6, pp. 3427–3440, Dec. 2017.

[27] H. Flores, V. Tran, and B. Tang, “Pam & pal: Policy-aware virtual
machine migration and placement in dynamic cloud data cen-
ters,” in Proc. IEEE Conf. Comput. Commun., 2020, pp. 2549–2558.

[28] D. Saxena, A. K. Singh, and R. Buyya, “OP-MLB: An online VM
prediction based multi-objective load balancing framework for
resource management at cloud datacenter,” IEEE Trans. Cloud
Comput., to be published, doi: 10.1109/TCC.2021.3059096.

[29] B. Li, B. Cheng, X. Liu, M. Wang, Y. Yue, and J. Chen, “Joint
resource optimization and delay-aware virtual network function
migration in data center networks,” IEEE Trans. Netw. Service
Manag., vol. 18, no. 3, pp. 2960–2974, Sep. 2021.

[30] H. Nashaat, N. Ashry, and R. Rizk, “Smart elastic scheduling algo-
rithm for virtual machine migration in cloud computing,” J. Super-
comput., vol. 75, no. 7, pp. 3842–3865, 2019.

[31] A. Jajoo, Y. C. Hu, and X. Lin, “Your coflow has many flows: Sam-
pling them for fun and speed,” in Proc. USENIX Annu. Tech. Conf.,
2019, pp. 833–848.

[32] A. Jajoo, Y. C. Hu, X. Lin, and N. Deng, “A case for task sampling
based learning for cluster job scheduling,” in Proc. 19th USENIX
Symp. Netw. Syst. Des. Implementation, 2022, pp. 19–33.

[33] A. Jajoo, Y. C. Hu, and X. Lin, “A case for sampling based learning
techniques in coflow scheduling,” IEEE/ACM Trans. Netw., to be
published, doi: 10.1109/TNET.2021.3138923.

[34] J. Hao, K. Ye, and C.-Z. Xu, “Live migration of virtual machines in
openstack: A perspective from reliability evaluation,” in Proc. Int.
Conf. Cloud Comput., 2019, pp. 99–113.

[35] R. Zolfaghari and A. M. Rahmani, “Virtual machine consolidation
in cloud computing systems: Challenges and future trends,”Wire-
less Pers. Commun., vol. 115, no. 3, pp. 2289–2326, 2020.

[36] A.Medina, A. Lakhina, I.Matta, and J. Byers, “Brite: Universal topo-
logy generation from a user’s perspective,” Boston University Com-
puter ScienceDepartment, Tech. Rep. BUCS-TR-2001-003, 2001.

[37] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elit-
ist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol.
Comput., vol. 6, no. 2, pp. 182–197, Apr. 2002.

[38] S. M. Blackburn et al., “The dacapo benchmarks: Java benchmark-
ing development and analysis,” in Proc. 21st Annu. ACM SIGPLAN
Conf. Object-Oriented Program. Syst. Lang. Appl., 2006, pp. 169–190.

[39] L. Wang, W. Mao, J. Zhao, and Y. Xu, “DDQP: A double deep q-
learning approach to online fault-tolerant SFC placement,” IEEE
Trans. Netw. Service Manag., vol. 18, no. 1, pp. 118–132, Mar. 2021.

Desheng Wang received the BEng degree in
computer science and engineering from Harbin
Engineering University, Harbin, China, in 2015,
and the PhD degree in cyberspace security from
the Harbin Institute of Technology, Harbin, China,
in 2022. His research interests include virtualiza-
tion techniques for cloud-edge computing and
machine learning.

WANG ETAL.: MULTI-OBJECTIVE VIRTUAL NETWORK MIGRATION ALGORITHM BASED ON REINFORCEMENT LEARNING 2055

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on April 05,2024 at 22:33:50 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TSC.2021.3102016
http://dx.doi.org/10.1109/TSC.2021.3102016
http://dx.doi.org/10.1109/TCC.2021.3059096
http://dx.doi.org/10.1109/TNET.2021.3138923

Weizhe Zhang (Senior Member, IEEE) received
the BEng, MEng and PhD degrees all in com-
puter science and technology from the Harbin
Institute of Technology, China, in 1999, 2001 and
2006, respectively. He is currently a professor
with the School of Computer Science and Tech-
nology, Harbin Institute of Technology, China, and
the director with the Cyberspace Security
Research Center, Peng Cheng Laboratory,
Shenzhen, China. His research interests are pri-
marily in parallel computing, distributed comput-
ing, cloud and grid computing, and computer
networks.

Xiao Han received the BEng degree in informa-
tion security from the Harbin Institute of Technol-
ogy, China, where he is currently working toward
the MEng degree with the School of Cyberspace
Science. His research interests include cloud
computing and edge computing.

Junren Lin received the BEng degree in informa-
tion security from the Harbin Institute of Technol-
ogy, China, where he is currently working toward
the MEng degree with the School of Cyberspace
Science. His research interests include edge
computing and machine learning.

Yu-Chu Tian (Senior Member, IEEE) received
the PhD degree in computer and software engi-
neering from the University of Sydney, Sydney
NSW, Australia, in 2009, and the PhD degree in
industrial automation from Zhejiang University,
Hangzhou, China, in 1993. He is currently a pro-
fessor with the School of Computer Science,
Queensland University of Technology, Brisbane
QLD, Australia. His research interests include Big
Data computing, cloud computing, computer net-
works, optimization and machine learning, net-
worked control systems, and cyber-physical
system security.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2056 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on April 05,2024 at 22:33:50 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

