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Preamble

* The workings of our brain is one of the most fascinating and
challenging subjects for research and practical applications.

e During the last couple years, we’ve been working on a number of
projects related to BCI — Brain Computer Interface.

* The results allow us to see the research opportunities in studying the
cognitive processes in the brain, the ultimate Big Data machine.



Outline

The talk will touch on the following subjects:
Brain Computer Interface:
From electrical signals on the head's surface to recognition of neuron activities
Models of electrical field inside the brain's cortex:
Potential fields and method of fundamental solutions
Known inverse problem solutions in potential field models:
Mathematical challenges in finding a stable and satisfactory solution
Suggested approach:
Big data model and constructing Artificial Neural Network
Experiments:
Description of the process of gathering data
Machine learning applied to solution of the inverse problem
Supervised and unsupervised models and Deep Learning methods



What do we know about brain...



Human Brain in silico: the Big Data model

P Acquiring experimental data

“Reconstruction st A/ Mt
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published in Cell

In silico predictions for
the in vivo state

on Oct. 8, 2015

It's a piece of rat brain containing about 30,000 neurons and 40 million synaptic
connections.

There’s nothing remarkable about it, except that it isn’t real!

It's a digital reconstruction—a representation of a one-third cubic millimeter of rat
neocortex—and it seems to work like the real thing.
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Cerebral cortex

The newer portion of the cerebral
cortex serves as the center of higher
mental functions for humans.

Some Functions of
the Ventromedial
Prefrontal Cortex

Monitors brain and body
information indicating
emotional state

Helps to assess emotional
relevance and emotional
viability of prefrontal
planning

Relays results of prefrontal

processing to the amygdala,

other emotion centers,
and other brain areas.

The neocortex contains some 100 billion cells.
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Emotional brain
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The spectrum of emotions

BACKGROUND FEELINGS

Irritation  Discontent Grumpiness



Big Data in the eyes of the brain researchers

* The Open Connectome project
* The Activitome study
* The BRAIN Initiative

“...a mouse brain contains 500x10° cubic micron pixels and if we want
to record all of them for 20 min at 1000Hz we have 500 petabytes of
raw data...” but

“... the big data could be ... compressed into information albeit
complex.” Prof. F. Engert, Harvard Univ.

The information compression comes with simulation of the brain
activities rather than of the brain topology.

It makes the Big Data model more manageable and productive.




How to collect Big Data for the Brain activities?

In-vivo — Live experimental methods

Stimulate different emotional states,
Collect the EEG information, or run fMRI

Interpret the data collected, using
Signal processing
Frequency analysis,
Fractal analysis, and others

In order to map activated parts of the cortex onto the field of emotion
Inverse model solution is needed:
from EEG to the brain activated areas



Neuron dynamics

The detailed study of singular neurons is an interesting subject per se
but most important is to understand

e the macroscopic dynamics and

* function of neuronal networks.

Neuronal networks present collective phenomena, like

e synchronization, waves and avalanches,

* global bifurcations or phase transitions,

All of those cannot be studied in small neuronal populations.



Brain Computer Interface



Experiments with eMotiv — a brainwear to register EEG

open your mind to
open your mind to

. . Peace
BrainWear

Build a better relationship

The most accurate, cost- with your brain and develop
effective whole brain
measuring technology on the
market

better, more relevant
practices for calming the

storm.

open your mind to
open your mind to

Performance

Monitor cognitive load and
discover emotional responses
that are preventing you from
achieving peak mental
performance

Control

EMOTIV Mental Commands and SDKs
makes our technology an highly
effective Brain-Computer-Interface
and can put EMOTIV at the center of
the Internet of Things and the ability
to control the world around you.

. ..




EMOTIV Epoc+

=

* The work started in Spring 2015 as part of the HCI class

Experiments with eMotiv device

* A few team projects by the graduate students were performed
* The eMotiv device was used to study BCI



Project 1 Emotional response to the pictures

Implications

At 1ts basic level, a circuit takes an electrical input, deciphers a pattern and then — based
upon the pattern and programming — the circuit opens and closed gates. The resulting
configuration of gates allows the electrical signal to propagate in a certain manner thus, allowing
for the signal to be processed and, i turn, that signal can produce an output — to be used as input
— to a mechanical device.

This is pertinent to the topic in that; the EMOTIV device transmits an electrical signal —
from your brain. So, simply thinking about something — that signal could be processes just as
any another electric signal and be used to manipulate a circuit and/or computer chips. This
means, you could think about moving a back-hoe and, if circuitry is configured correctly — the
back-hoe will operate — based upon vour thoughts!

The implications are astounding!

“Stephen William Hawking CH CBE FRS FRSA (born 8 January 1942) is a British
theoretical physicist, cosmologist, author and Director of Research at the Centre for Theoretical
Cosmelogy within the University of Cambridge ™ “Hawking suffers from a rare early-onset.
slow-progressing form of amyotrophic lateral sclerosis (ALS), also known as motor neuron
disease or Lou Gehrig's disease, that has gradually paralyzed him over the decades. He now
communicates using a single cheek muscle attached to a speech-generating device ™

However, his mind is as active as ever and, with this sort of devise, Hawkins (and other
paraplegics could regain motor functions — by, for example, wearing exoskeletons that they can
control — with their mind!

Everything could become easier! This paper — it could write itself simply by me thinking
about the text I want to enter — versus actually typing in the text.

The capabilities are only limited by our imagination!
SDK

The SDK is a software suite for the EMOTIV Xavier device.

= emot [~ — - =3 Calibration.

Detections.

The next set of training is a bit
lengthier. This involves a series of
mental comments (mentioned above)
where vou think about moving a 3D
cube in 3D space.

Facial Expressions.

The SDK has the ability to detect
facial expressions and, thus, could
infer different non-verbal commands.

Performance Metrics and Internal
Sessions are also included but will
not be covered here.

B GRADTIW -«_.. — -
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Device/Composer.

‘What 15 the EmoComposser?

The EmoComposser allows the developer to program additional functionality, using the
SDE, where — the composer supplies data to the SDE as though it were data from the device.
This allows the developer to have a stable development environment — allowing for the signal to
be repeatedly produced in a predictable manner.

e
i

D e
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The first process it to calibrate the
device/software to your specific
signal. This is done though a two-
step process: 1.) a training session
where vou wear the device and keeps
vour eyes open for about 30 seconds
then 2.) vou do the next 30 second
trading session with yvour eves closed.
That's it!

**  Interactive component — pictured at left, creates a signal on each of the

areas listed in the Detection tab. The label correlate with SDK methods —
so, if you select: 1.) Auto repeat checkbox, 2.) Affectiv Excitemnent — to a
positive number and then click 3.) “send” — the positive number selected
(in the excitement area) will repeatedly be produced/send to the SDEK on
an interval of 025 seconds. The correlated code will be shown below, in
the C# section.

EmoScripts component.

Once vour program 1s running and accepting composer data, you
can incorporate — EmoScripts. Scripts are similar to the Detection
functionalist however, the methods produce pre-scripted/changing signals

[m— 0 the different methods. This would be used for further development —



Project 2 EEG Learning Engine

k ‘ Content . Implementation ‘ Data Thread ‘

l‘ EEGLearningEngine Project Description e hanhbachieve e e Implements the Producer in the Producer-
‘ g g ‘ Englne DeSIgn Ul Thread: this thread handles rendering and interaction with Ul ‘ Consumef pattern ‘

CSC 546 Implementation R e O o theeada e Reads EmoStates from the device buffer.
N Data Thread: this thread processes the Emotiv Device data and writes 2
Demonstratlon it to a thread-safe shared queue L] Wl’|tes EmOState data tO a Shared thread'
Adrian J. Mirabel Alternative Classification NN Thread: this thread handles the training of the Neural Network, as safe queue.

well as applying the NN to the task of predicting the user's emotional

e References at
Shawn Her Many Horses .

Description ‘v1 Engine Design NN Thread ‘ Demonstration

e Our research indicates that we should be able to detect The engine consists of two phases Implements the Consumer Portion of the Producer-
learning/comprehension based on physiological data 1. Training Phase Consumer pattern. .
outputted by Emotiv device ‘ a. useris subjected to a series of information prompts uses a Feed Forward Neural Network (NN), that is

| i ) trained with Backpropagation algorithm.
Th ftware monitors a r who is in the pr of b. the engine is trained to recognize the user's ment use z 2 ;
as:iri‘izl’ati: esor:e 12f§rm::§n BIOCHSS feedback through the Ul NN with 50 input neurons, over a sliding time window.

9 : 2. Recognition Phase NN outputs the Comprehension state of the user.

The software determines if the user has understood the ‘Confused’

Z % a. User is subjected to a different series of prompts.
material yet, or if they are confused

L b. the engine attempts to predict the user's comprehension or confusion o ‘Understood




Participant

Project 3 Recognition of

emotions iﬂ education — Shadi Shiri 0.743 0.743 0.748 0.744
R _ d ff | _ d Anusha Karur 0.724 0.747 0.872 0.781
Manar Algarni 0.743 0.743 0.743 0.743
eactions to aitterent sliaes Mean 0.736 0.744 0.787 0.756
Standard Deviation 0.008957 0.001886 0.059668 0.017682

during a lecture

Participant

Shadi Shiri
Anusha Karur
Manar Algarni

Mean

Standard Deviation

Participant

Shadi Shin ! 0.615
Anusha Karur 0423 0.547 0.081 0.350
Manar Algarni 0477 0.608 0.237 0.440
Mean 0315 0.520 0.311 0.387
Standard Deviation 0.1916 0.0841 0.22412 0.0384

First Test

Table 1. Boredom
Second Test

Third Test

Average Time

First Test

Table 2. Frustration

Second Test

Average Time

First Test

Table 3. Excitement

Second Test

Average Time

The average time the participants were Bored during the experiment is 0.756 second. The average time
the participants were Frustrated during the experiment is 0.774 second. The average time the participants
were Excited during the experiment is 0.387 second.



Words, Emotions, Semantics — how they are
imprinted in our brain



l[dentifying Emotions on the Basis of Neural
Activation (Carnegie-Mellon U.)

“... Actors were asked to self-induce nine emotional states (anger,

disgust, envy, fear, happiness, lust, pride, sadness, and shame) while in
an fMRI scanner.

.... Using a Gaussian Naive Bayes pooled variance classifier, we

demonstrate the ability to identify specific emotions experienced by an
individual.

These results suggest a structure for neural representations of
emotion and inform theories of emotional processing.”



Tom Mitchel: How are words processed in the
brain?

“We don’t know. But ... perhaps:

* Visual system recognizes character string and
organizes to process word by 130 ms

* There is no single moment when the word is
suddenly perceived

* Semantics trickles in over time

» Different cortical regions collaborate to jointly
infer specific stimulus properties they
specialize in

e Similar to other types of memory retrieval — an
iterative, joint effort

hd Left S U p ra m a rgi n a I gy r U S Se rve a S Se m a nt i C Figure 3. Group-level image of voxels used for within-subject classification. Images of the 240 most stable voxels across six presentations

of emotion words were superimposed on one another, with resulting clusters of 25 or more voxels depicted. Color intensity reflects the number of

h u b cO I | ecti ng re I eva nt sema ntics at 400 m S” participants for whom the voxel was among the 240 highest in stability.

doi:10.1371/journal.pone.0066032.g003



Berkley semantic map

Natural speech reveals the semantic maps that tile human cerebral
cortex by Alexander G. Huth, Wendy A. de Heer, Thomas L. Griffiths,
Frederic E. Theunissen & Jack L. Gallant (Nature, 2016)

extremetech.com/extreme/227498-uc-berkeley-team-built-a-semantic-
atlas-of-the-human-brain

http://www.nature.com/nature/journal/v532/n7600/full/naturel17637.
html



http://www.nature.com/nature/journal/v532/n7600/full/nature17637.html

From authors

“Our goal in this study was to map how the brain represents the meaning (or
“semantic content”) of language.

Most earlier studies of language in the brain have used isolated words or
sentences.

We used natural, narrative story stimuli because we wanted to map the full
range of semantic concepts in a single study.

This made it possible for us to construct a semantic map for each individual,
which shows which brain areas respond to words with similar meaning or
semantic content.

Another aim of this study was to create a semantic atlas by combining data
from multiple subjects, showing which brain areas represented similar
information across subjects”



What’s new there?

“We used natural narrative language rather than simple words
presented in isolation.

We used cross-validation on a separate dat a set to test model
prediction performance and generalization.

We used voxel-wise modeling to construct a separate semantic tuning
curve for each voxel in each participant.

We used a probabilistic and generative model of areas tiling cortex
(PrAGMATIC) to construct the semantic atlas.”



What were the main conclusions of the study?

“The resulting maps show that semantic information is represented in
rich patterns that are distributed across several broad regions of cortex.

Furthermore, each of these regions contains many distinct areas that
are selective for particular types of semantic information, such as
people, numbers, visual properties, or places.

We also found that these cortical maps are quite similar across
people, even down to relatively small details.”



How does this study change the way that we
think about language and the brain?

“These semantic maps give us, for the first time, a detailed map of how
meaning is represented across the human cortex.

Rather than being limited to a few brain areas, we find that language
engages very broad regions of the brain.

We also find that these representations are highly bilateral: responses
in the right cerebral hemisphere are about as large and as varied as
responses in the left hemisphere.

This challenges the current dogma (inherited from studies of language
production, as opposed to language comprehension as studied here)
holding that language involves only the left hemisphere.”
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A known research solution



Standardized low resolution brain electromagnetic tomography

SLORETA

Exact low resolution brain electromagnetic tomography

eLORETA

zero error, like it or not

Functional connectivity

Lagged physiological coherence and phase synchronization, functional
ICA (fICA), isolated effective coherence (iCoh)

Roberto D. Pascual-Marqui
The KEY Institute for Brain-Mind Research
University Hospital of Psychiatry, Zurich Swiyzerland
pascualm@key.uzh.ch
www.Kkeyinst.uzh.ch /loreta.htm

Guest Professor at Department of Neuropsyquiatry
Kansai Medical University, Osaka, Japan
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Our research objective — MindDriver project:
EEG-based real time tomography



Formulation of the research

1. Experimental research

* Using eMotiv or any similar headset collect EEG data for different cognitive and
emotional states

* Can be done in both temporal and frequency domains

* Collected data are interpreted using ML (as we did last spring) for two emotional
modes

2. Theoretical research
1. Create a forward model — from activated voxels to the boundary surface potentials
2. Associate voxel with specific cognitive and emotional states (setting f-labels)
3. Collect modeled data: voxels activation mapped to the surface potential
4. Create the ML model mapping a given surface potentials onto f-labels



Experimental research

* BCl study

* The project covered mostly such areas as applications for educational
use and recognition of emotions

* Among others, the following subjects were investigated:
**Emotiv Xavier SDK
A BCI Learning Engine
**BCl based slide show presentation
**Emotional response to the educational material



Theoretical research under consideration

* Inverse problems solved by Pasqual-Marqui (sLoreta)
* |ssues: sensitivity to noise,
* ill posed matrix,
* undetermined equations

* Forward Monte Carlo neural activity simulation and construction of
ML model



What is EEG mapping

* To establish correspondence between the EEG in discrete points on
the head surface and the activation zones in the brain

* These zones are responsible for (presumably) corresponding to
certain ideas, functions, emotions, etc.

* The zones are considered to be voxels as sections of a 3D brain
model.



Our approach to investigate

* Generate activation voxels and calculate the potential on the surface
* Collect data to create a Machine Learning model: EEG to f-label

e Use of Monte-Carlo, Latin cube, etc.

* Avoid ill-posed matrix operations



Our approach - why

* Using EEG to identify what’s “on your mind” is faster (real time) than
MRI and fMRI used in the many published works.

* Opportunities to take an instantaneous electrical signals (EEG) from
the scalp and map them onto the f-labels (emotions, words, etc.)



Forward model

* Neural network level
e Can be huge — really Big Data model

* Currently model of mice brains introduced with more than 30 million
synapses (!)



Forward model: Method of Fundamental
Solutions

The brain electrical field u can be modeled as an elliptical equation:
Lu = O, (x; YV, Z) € G;
u=g9gxvy,z); (xv,2)€dG
where G is the domain (the brain);

g(x,y,z) is the boundary conditions (the potentials on the surface of
the brain).



MES

Using the method of fundamental solutions means to construct
solution’s approximation, u*(x,y,z), as the linear combination of the
basis functions of the elliptical equation (functions of the distance
between the source points and the collocation points on the boundary

where the electrodes are located):

N
w'y,2) = ) )
=1
1= 1, 2) = (i, sy, 520

where (sx;, sy;, Sz;) is the location of the source (the center of the
voxel).



Basis functions

In the 3D case the basis function

o(r) =1/7
The MFS representation is equivalent to the model used in LORETA,
that is a set of local electrical sources.



Inverse problem approach

* The Monte-Carlo method is suggested because it is supposed to avoid
the instability of the inverse method that leads to the operations with
the ill-imposed matrices.

* The algorithm is a sequence of the direct solutions — from the sources
to the boundary points.

* The values of the potentials in the sources are selected randomly.



Algorithm

* The solutions are registered at the boundary points.
* The solutions can be presented as the look-up table.

* This Big Dataset is used in the real time mapping of the electrode
potentials to the voxels intensity. The measured vector of scalp potentials is
compared with the closest match using some norm (the max(.) norm may
work better).

OR (AND), which is what we are going to study

* A Machine Learning model should be created to map the scalp EEG
potentials onto the f-labels

* f-labels are functions (such as emotions, words, etc.) associated with
specific voxels



Latin Hypercube

* The Monte Carlo method is based on propagating probability
distributions.

* Given a region in design space, we can assign a uniform distribution
to the region and sample points.

* It is likely, though, that some regions will be poorly sampled.

* For example, in 5-dimensional space, with 32 sample points, the
chance that all n- dimensional quadrants (orthants) will be occupied
is (31/32)(30/32)(1/32) ...(1/32) =1.8e7%3.



Latin Hypercube sampling

* To scan the parametric space deterministically, a prohibitively high number
of calculations is needed.

* Monte Carlo simulation: the chance is that the intervals are sampled with
higher density because the same random sample can contribute to more
than one parameter’s sampling.

|t can be a waste of simulation runs if the clusters are formed in less
important parts of parametric space

 Latin Hypercube, orthogonal sampling, uniform space filing methods and
others can be used.

* Applied to both sensitivity analysis and parametric interval control.
e Each variable range divided into n equal probability intervals.



MATLAB models of LHC
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Forward modeling for BCl research

* Create a forward model — from activated voxels to the boundary
surface potentials

* Associate voxel with specific cognitive and emotional states (setting f-
labels)

* Collect modeled data: voxels activation mapped to the surface
potential

* Create the ML model mapping a given surface potentials onto f-labels



Static and dynamic models

Assumption: the potentials on the surface are resulted from a dynamic process of the wave
of neuron activations.

Each neuron’s process is defined as a set of dynamic equations such as

dy
_=F ) ;t

where x(t), y(t) are input and output time t -dependant functions; F() is a non-linear and
nonstationary function representing the dynamic property as well.

The input of a neuron is under influence of many other neurons.
For example, a simplified model can be presented as

dy
P ko (2 a; yl.)

where k is a time constant and ¢ (. ) is a nonlinear sigmoid function applied to a sum of the
outputs y, of the connected neurons.



Dynamic, random and fractal models

 Activation of a set of seed neurons leads to propagation of the wave
of electrical potential chain until it reaches the surface.

* NEURON Simulator (www.neuron.yale.edu)

* Such dynamic models allow for performing analysis in the frequency
domain allowing to deal with a limited number of parameters (alpha,

delta, theta, etc.).

* Dynamic modeling should include also the creation of chain of the
neuron activations. It is suggested that a fractal (self-similarity) model
should be considered. The fractal dimension can be used to
characterize time series of potentials instead of analysis in the

frequency domain.
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et s Input.txt contains 10000 combinations of source values at 1000
locations (clusters) on the cortex; Output.txt has the
corresponding potentials expected at the electrodes.




Active areas in the brain (f-labels)
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Big Data: Machine Learning

* During the last fall (F 2016) semester, two term project research
graduate groups continued working on this project.

* Below are some results presented in their report.



Problem

* Develop and train a machine learning model which can correctly
associate signals from activated source points within the brain to EEG
Sensors

* Develop a machine learning model which can then correctly associate
EEG activity with the correct sources within the brain




Tools

 TensorFlow
* Open source Python machine learning library
by Google
 Meant for computation of complex data flow
graphs
* Docker
* Lightweight virtualization application
* Maintains a library of system images to enable
quick implementation of software with all
necessary dependencies

e Jupyter Notebooks
* Used for data science applications

« Compartmentalizes portions of code into cells
that can be run separately




Training Data

A set of 2000 1x625 arrays consisting
of source potential signals received by
each electrode, with random sources
activated

A set of 2000 1x25 arrays witha 1
indicating the electrode receiving the
strongest total signal

The sets are coupled and fed to the
neural network

Electrode|(Source 1 |Source 2 (Source 3 |Source 4 (Source 5 |Source 6
1| 0.111956 0| 0.016095| 0.010684| 0.008244| 0.006794
2| 0.018517 0| 0.010609| 0.016171| 0.006831| 0.00816
3| 0.016525 0| 0.120093| 0.010647| 0.015071| 0.007826
4| 0.010848 0| 0.010687| 0.123195| 0.007903| 0.014847
5 0.0082 0| 0.014492 0.0078| 0.106447| 0.007956
6| 0.006772 0| 0.007747| 0.014232| 0.007962| 0.107227
7| 0.005813 0| 0.007753| 0.006202| 0.014512 0.0076
8| 0.005307 0| 0.006126| 0.007722| 0.007472| 0.01464
9| 0.005237 0| 0.00607| 0.00562| 0.008408| 0.007011
Electrode 1 2 3 4 5 6 7 2 9
Sum of Sources | 0.153773| 0.060288 [ 0.170162 | 0.16748 | 0.144894| 0.143941 | 0.041881 | 0.041266 | 0.032343

One Hot

0

0

1

0

0

0

0

0

0




Neural Networks
with Rectified Linear
Unit (RelLU)
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Deep neural network
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Neural Network Model

def reverse network model (data):
. L ]
1 I n pUt Iaye r hidden 1 layer = {'weights': tf.Variable (tf.random normal ([625, n nodes hll]}},
. 'biases':tf.Variable (tf.random normal ([n nodes hll]})}
* 3 hidden layers
hidden 2 layer = {'weights': tf.Variable(tf.random normal ([n nocdes hll,n nocdes hlZ]}),
b 1 Output |aye r 'biases':tf.Variable (tf.random normal ([n nodes hl2]})}

® 500 nOd eS pe r hidden 3 layer = {'weights': tf.Variable(tf.random normal ([n nodes hl2, n nodes hl3])},
. 'biases':tf.Variable (tf.random normal ([n nodes hl3]})}
hidden layer

output layer = {'weights'
"biases"

tf.Variable (tf.random normal ([n_nodes hl3, n classes])),
tf.Variable (tf.random normal ([n_cla=ses]))}

11 = tf.add(tf.matmul (data, hidden 1 layer['weights']), hidden 1 layer['biases'])
11 = tf.on.relu(ll}

12 = tf.add({tf.matmul (11, hidden 2 layer['weights']}, hidden 2 layer['biases'])
12 = tf.on.relu(ll)}

13 = tf.add(tf.matmul (12, hidden 3 layer|['weights'])}, hidden 3 layer['biases’'])
13 = tf.on.relu(l3}

output = tf.matmul (13, output layer['weights']) + output layer['biases']

return output




Training

* Passes data from
the training set to
the model for
training

def train neural network(x}:
prediction = reverse network model (x)

# The model will use cross—entropy with soft-max
fines the cost function, but doesn't do anything yet

T
it
i
b
=i
[y

ds
cost = tf.reduce mean( tf.nn.softmax cross entropy with logits(predictiom, ¥y)

# Optimize the model, using a defaulft learning
i the cptimizer, doesn't do anythin

with tf.S5=ssicn() as sess:
sess.run({tf.initialize all wariables({)}

for epoch in range(hm epochs}:
epoch leoss = 0
# get sach batch of data, then run through the model
for i in range(training data.shape[0]):
#x 15 the raw data, y is5 the labels
#epoch x, epoch y = [training datafi]]
epoch x, epoch y = training sst[i]
#run the cptimizer with cost

3}), ¥: Epach_y}T
epoch loss += c

print ("Epoch ", epeoch, ! '

completed out of ', hm epochs,

#This compares the predicted results and the expected results
fcorrect results are closer to

correct = tf.equal (tf.argmax(predicticon,l), tf.argmax(y,1})
accuracy = tf.reduce mean(tf.cast(correct, 'float'})

print('Accuracy: ", accuracy.eval({x:training data,
y:training labels})}

train neural network(x)

)

c = sess.run{[optimizer, ceost], feed dict= {x: np.reshape(epoch x, (-1,

loss:", epoch loss)

&

2




Results

* An identical dataset was
tested against neural
networks consisting of O,
1, 2, and 3 hidden layers
of 500 nodes

# Hidden

Layers Accuracy
0 77.9%
1 01.9%
2 93.9%
3 91.8%
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Unsupervised machine learning method



Deep Learning as a DBN

* A fragment of a Deep Belief Network

* Unsupervised learning

e Spectrogram as an input (visual nodes)
 Stacked layers

e Supervised layer as a final one

* Parallel solutions at each stage (Map-Reduce)
* Backpropagation at the last stage



Deep Learning classification

* Deep networks for unsupervised or generative learning, which are
intended to capture high-order correlation of the observed or visible data
for pattern analysis or synthesis purposes when no information about
target class labels is available.

* Deep networks for supervised learning, which are intended to directly
provide discriminative power for Eattern classification purposes, often by
characterizing the posterior distributions of classes conditioned on the
visible data. Target label data are always available in direct or indirect
forms for such supervised learning. They are also called discriminative deep

networks.

. H1ybrio_l deep networks, where the goal is discrimination which is assisted,
often in a significant way, with the outcomes of generative or unsupervised

deep networks.



Restricted Boltzmann Machine

* The most widely used hybrid deep architecture

* A special type of Markov random field that has one layer of (typically
Bernoulli) stochastic hidden units and one layer of (typically Bernoulli
or Gaussian) stochastic visible or observable units

Hidden/Units

Bias Unit

Visible\Units



RBM: theory and method

The joint distribution p(v,h;$) over the visible units v and hidden units h, given the

model parameters 9, is defined in terms of an energy function E(v,h;8) of

p(v,h;ﬁ):UXD(_E;V’]];O)), Z =%, Shexp(~E(v, h;0)

The marginal probability that the model assigns to a visible vector v is

exp(—F(v,h; 0
p(v:0) = Snexp(E(v. i) ! J

The energy function is defined as E(v,h;0) ZZ wijvih; — wai — Z”’-fh'-'f"

i=1j=1 i=1 j=1

The conditional probabilities can be efficiently calculated as
/

p(hj =1|v;0) = o (Z WiV + ”_j) ;

[.,IZI,' l

J
p(vi=1h;0) = o (Z 'U?i_,'/l_,'nlb,') ,

j=1

vo(x) = 1/(1 + exp(—2x)).



Deep Learning: Stacking the RBM’s

e Stacking a number of the RBMs learned layer by layer from bottom up
gives rise to a DBN.

* The stacking procedure is as follows. After learning a RBM with binary
features such as spectral bins indexed for different electrodes, we treat the
activation probabilities of its hidden units as the data for training the
Bernoulli RBM one layer up.

* The activation probabilities of the second layer Bernoulli-Bernoulli RBM are
then used as the visible data input for the third-layer Bernoulli-Bernoulli
RBM, and so on.

* It has been shown that the stacking procedure improves a variational lower
bound on the likelihood of the training data under the composite model.

. IThat is, this greedy procedure achieves approximate maximum likelihood
earning.

* This learning procedure is unsupervised and requires no class label.



The Deep Belie
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Training example

Six visible nodes (V1..V6): theta rhythm presence (1) and otherwise (0) at different electrode locations

Two hidden nodes to differentiate unknown emotional states

Training samples: A(1,1,1,0,0,0), B(1,0,1,0,0,0), C(1,1,1,0,0,0), D(0,1,1,1,0,0), E(0,0,1,1,1,0), F(0,0,1,1,1,0)

The network learned the following weights:

Bias Unit
V1
V2
V3
V4
V5
V6

In the testing mode, a sample (0,0,0,1,1,) is tested. It turns Hidden 1 on and Hidden 2 off. Interpretation?

Bias Unit
-0.08257658
-0.82602559
-1.84023877
3.92321075
0.10316995
-0.97646029
-4.44685751

Hidden 1

-0.19041546
-7.08986885
-5.18354129
2.51720193
6.74833901
3.25474524
-2.81563804

Hidden 2
1.57007782
4.96606654
2.27197472
4.11061383
-4.00505343
-5.59606865
-2.91540988




Big Data Brain model: What is the best choice
of a platform

* All of this accessing and processing of data can be done entirely
within MATLAB, no matter where the data might be stored including

SQL/NoSQL databases, Spark™, and/or Hadoop®.

* There are also multiple choices when it comes to the Deep Machine
Learning platform — Tensor Flow, the R system, MATLAB package and

possibly more.



MATLAB: Big Data and tall arrays — a plausible choice

Advantages of MATLAB platform:

 Work with arrays of any size tall tables

* Deferred evaluations

* Looks like working with normal arrays in memory

* Evaluation occurs when gather command called

e Used datastore: ds = datastore (eeg.csv)

* Create a tall table from datastore: eeg tall = tall (ds)
 Strong graphics support

* Vast mathematical support



In conclusion...

* Big Data models and Machine Learning methods are the natural
choice in study of brain activities and human cognitive functions

* EEG tomography opens an opportunity to follow human emotions
and thoughts real time

* The Method of fundamental solutions shows some promise in
achieving this goal



