

Data Preservation in Robotic Sensor Network : Covering Salesman Approach

Computer Science Department, California State University Dominguez Hills

Soham Patil

Advisor:- Dr. Bin Tang

Outline

Background and Motivation

II Problem Formulation

Ι

- III Methodology
- IV Results and Analysis
- V Future Work

What are Wireless Sensor Networks Base Station Sensor Nodes Sense Collect

Transmit

Applications

The Traditional Approach (Multi-Hop)

Robot/Data Mule/Mobile Data Sink Approach (Budget Constraint Travelling Salesman Problem)

Proposed Covering Salesman Approach

- Robot has a range.
- Collect data from multiple sensor nodes.

Problem Formulation

Weighted graph G (V, E)

 $(u,v) \in E$ has weight w(u,v)

 $i \in V$ has prize P_i

Network size : 2000m X 2000m Sensor Nodes : 200 Transmission Range: 200m

Methodology

Greedy P

Selects node with most data packets to visit next.

Ability to collect more data packets.

Exhausts budget very quickly.

AggDataPackets A = A + B + C +D

Methodology

Greedy R

Selects the node based on prize cost ratio.

Can visit more nodes than Algorithm 1.

Has more budget left.

Methodology

Markov decision process

MARL Multi Agent Reinforcement Learning

Observes the environment.

Exploits and Explores to find best action.

Gets a reward based upon the action.

Maximize the cumulative reward.

We are first to implement RL technique to BCTSP and CSP !!!

Results

Total Data Packets Collected

Results

Budget Remaining

Conclusion

- Covering Salesman(*Travelling Salesman but with range*) Approach collects **45% more data packets,** than the existing solution of TSP.
- The budget remaining after completing a tour is more significantly more in CSP1 and CSP2 , but a slight change in MARL.
- Both MARL algorithms outperform the Greedy Algorithms and the CSP approach MARL is the best among all.

Future work

- Applying Graph Neural Networks.
 - Optimize Execution Time
 - \circ Get rid of the heuristics

Thank You

Questions ?

Soham Patil